Exercises 9

Exercise 9.1

Parmi les paires suivantes, quelle substance possède le point de fusion (ou d'ébullition) le plus élevé ? Justifiez votre réponse.

b) HF HCl c) CH₄ C₂H₆ d) NH₃ H₂O e) NH₃ PH₃

Exercise 9.2

Pour les molécules de type AHx, avec A étant un élément des groupes V (15) à VII (17), qu'est-ce qui distingue la deuxième période des périodes suivantes en termes d'interactions intermoléculaires ? Pourquoi cette distinction n'existe-t-elle pas pour le groupe IV (14) ?

Exercise 9.3

À quel(s) type(s) d'interaction(s) peut-on s'attendre entre les molécules de :

- a) Benzene
- b) CH₃CH₂OH
- c) CH₃CH₂OCH₂CH₃

Exercise 9.4

Quelle(s) interaction(s) peut-on observer entre les molécules de C₂F₄Br₂ ? Commencez par dessiner les deux structures de Lewis possibles pour cette molécule.

Puis, utilisez chacune des structures de Lewis possibles pour prédire les interactions entre les molécules de C₂F₄Br₂.

Exercise 9.5

Décrivez trois types d'orbitales hybrides qui peuvent se former dans un atome de carbone. Incluez un diagramme de niveaux d'énergie pour chaque type, et fournissez des illustrations montrant la forme et l'orientation de chaque orbitale hybride résultante.

Exercise 9.7

Dessinez un diagramme schématique des niveaux d'énergie des orbitales moléculaires pour l'interaction entre deux atomes d'hélium, incluant des illustrations des orbitales moléculaires résultantes. Étiquetez chaque orbitale atomique et orbitales moléculaires, en ajoutant les électrons à chacune. Définissez les termes "orbitales moléculaires liantes" et "orbitales moléculaires anti-liantes", et expliquez pourquoi He₂ est instable comparé à deux atomes d'hélium isolés.