Exercises 7

Exercise 7.1

Predict the VSEPR geometry and polarity for the following molecules:

a) BeH₂ b) BrF₃ c) SeBr₂ d) BrF2 f) SO₂ h) O₃ e) IF₅ g) SiCl₄ i) PCl₃ j) SBr₄ k) ICl₃ 1) SbF5 m) SeCl₆ n) XeF₄ o) AlBr₃

Solutions

- a) AX₂ (non polar) d) AX₂E₃ (non polar) b) AX₃E₂ (polar) c) AX₂E₂ (polar) f) AX₂E (polar) e) AX₅E (polar) g) AX₄ (non polar) h) AX₂E (non polar) j) AX₄E (polar) k) AX₃E₂ (polar) 1) AX₅ (non polar) i) AX₃E (polar) m) AX₆ (non polar) n) AX_4E_2 (non polar) o) AX_3 (non polar)

Exercise 7.2

Place the following molecules or ions in order of *decreasing* bond length:

- (a) the CO bond in CO, CO₂, CO₃²-
- (b) the SO bond in SO₂, SO₃, SO₃²-
- (c) the CN bond in HCN, CH₂NH, CH₃NH₂.

Explain your reasoning.

Solutions

- (a) CO₃²- (all bonds in a resonance structure have the same length. The length of the bond is shorter than a single bond, but longer than a double bond) > CO₂ (has two double bonds) > CO (has a triple bond). Multiple bonds are shorter than single bonds.
- (b) SO₃²- (negative charges increase repulsion in the molecule) > SO₂ (partial double bond character due to resonance) > SO₃ (sulfur atom forms double bond with each oxygen)
- (c) CH₃NH₂ (single bond) > CH₂NH (double bond) > HCN (triple bond).

Exercise 7.3

What geometry can we expect for the following molecules: BeCl₂, BF₃, ClF₃, XeF₄ and SF₆?

Solutions

- BeCl₂, VSEPR AX₂ model \Rightarrow linear.
- BF₃, VSEPR AX₃ model \Rightarrow trigonal planar.
- ClF₃, VSEPR model AX₃E₂ \Rightarrow T-shaped. If chlorine forms 3 bonds, it has two free pairs left.
- XeF₄, VSEPR model AX₄E₂ \Rightarrow square planar. Similarly, when Xe forms 4 bonds, it is left with two lone pairs.
- SF₆, VSEPR model $AX_6 \Rightarrow$ octahedral.

Exercise 7.4

Which do you predict to have the strongest CX bond, where X is a halogen: (a) CF₄, (b) CCl₄, or (c) CBr₄? Explain.

Solution (a) CF₄ has the strongest C–X bond.

As we move down the halogen group in the periodic table—from fluorine to chlorine to bromine—the atomic radius of the halogen atoms increases. An increased atomic radius leads to weaker bonds.

Exercise 7.5

Which do you predict to have the strongest CN bond: (a) NHCH₂, (b) NH₂CH₃, or (c) HCN? Explain.

Solution: (c) HCN has the strongest bond.

Bond strength trends are opposite to bond length trends. The triple bond in (c) means there are more electrons binding the atoms together, when compared to the double bond in in (a) and single bond in (b).

.