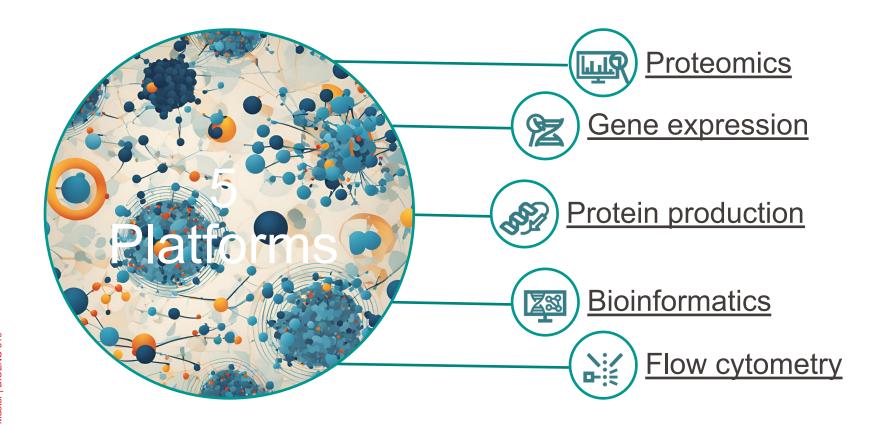


 École polytechnique fédérale de Lausanne

SV Research Core Facilities (RCF)



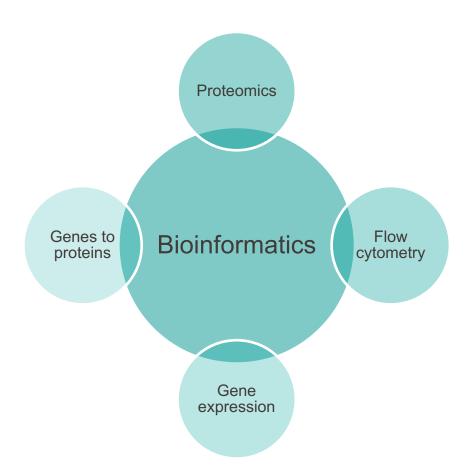
Dr. Roman Chrast, coordinator of RCF

Master | BIOENG-519

data collected between 2021-2023

EPFL Participating platforms

EPFL Logistics


- Course will be held in person (no Zoom no recordings)
- ✓ Practicals are mandatory
- Exam
- 40% reports covering 4 lab rotations (the format of the evaluation will be communicated to you by participating platforms)
- 60% written exam during official exam session (for the written exam, each of the covered topics will count 1/5)
- ✓ Course material will be available via Moodle
- ✓ Contact for general course organization related questions: roman.chrast@epfl.ch

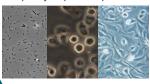
Date / Time	Sept 13 th	Sept 20 th	Sept 27 th	Oct 4 th	Oct 11 th	Oct 18 th	Oct 25 th	Nov 1 st	Nov 8 th	Nov 15 th	Nov 22 nd	Nov 29 th	Dec 6 th	Dec 13 th	Dec 20 th
8:15-10:00	Intro	Protein production	Gene expression	Platform rotations			FREE	Dietfe we notetion o					Bioinformatics		
10:15-12:00	Intro	Proteomics	Flow cytometry				FREE	Platform rotations							

CO 120

CO 120

EPFL Course description

From genes to proteins- Florence Pojer



Lecture

How has the production of recombinant proteins revolutionized our lives

Strategies for production of recombinant proteins in different hosts

- Purification of proteins by affinity tags and other chromatography techniques
- State-of-the-art biophysical methods to ensure quality of purified proteins

Week 1: Purification of recombinant proteins by affinity

Week 2: Protein Quality control (QC) using biophysical techniques such as 2MP and DLS

Covered topics:

- Hands-on experience and expertise in the most advanced techniques used in the production and purification of recombinant proteins.
- Strategies to optimize protein production and ensure high-quality outputs.

EPFL Proteomics- Maria Pavlou

PCF

Lecture

Introduction in Proteomics

Mass Spectrometry-based Proteomics Workflows

Week 1: In-gel digestion and basic mass spectrometry principles

Week 2: Database search and protein annotation principles

Covered topics:

- Bottom-up mass spectrometry-based proteomics (from sample preparation to data analysis)
- Mass spectrometer hands-on experience

Flow cytometry- Miguel Garcia

Lecture

Introduction to Flow Cytometry & Cell Sorting

How it works

Examples & applications

Week 1: Acquisition of stained cells on instruments

Week 2: Sorting demo & analysis + Wrap up and discussion/conclusion

Covered topics:

- Instrument set up & QC
- Acquisition settings
- · Data analysis and QC
- Standardization
- Cell Sorting

Gene expression- Bastien Mangeat

Lectur

The NGS toolbox

Gene expression analysis (single cell and bulk)

Week 1: quantification and quality control of nucleic acids

Week 2: single cell transcriptomics

Covered topics:

- Methods for quantification of RNA/DNA
- Methods for QC of RNA/DNA
- 10X Genomics single cell transcriptomics experiment and downstream data QC

Bioinformatics- Christian Iseli and Nicolas Geux

-ecture & Practicals

Week 1: Analysis of flow cytometry data

Week 2: Analysis of RNAseq data

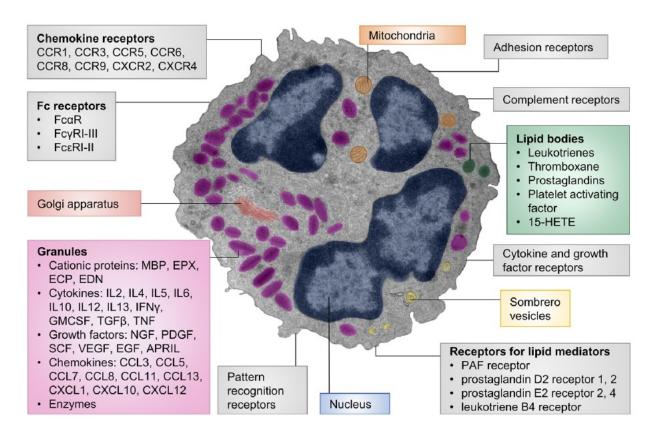
Week 3: Analysis of proteomics data

Covered topics:

- Mission of a bioinformatic facility
- Experimental design and sample nomenclature
- Protein, transcript and genome reference databases, nomenclature
- Biological function knowledge, protein and gene annotations
- Data QC, mapping, analysis and visualization
- Data clustering and its applications: theory and practice
- Data formats and handling
- Variant calling, peak calling, quantification, GSEA
- Evaluation of genetic mutation impact

Quiz

EPFL Group exercise


- ✓ Your group is working on a new blood disease which affects one type of white blood cells, the eosinophils while all other white blood cell types (neutrophils, basophils, monocytes, T cells and B cells) are not affected. A mouse model which mimics the human pathology exists and your initial characterization of this model showed that eosinophils in adult mutant mice (2 months old) present an increased accumulation of eosinophil granules.
- ✓ You would like to understand the molecular mechanism(s) underlying the disease. Think about samples that you will need, methods that you will use to analyse them and finally the way you will treat the data (results) that you will generate.
- Prepare a 10 minute presentation to sell it to a panel of investors that are deciding if they will spend their money on your project.

Ground rules:

- No internet research allowed
- When working on your strategy, you can ask questions to anyone in the room
- You can use PowerPoint and/or white-board to present your approach
- You can decide who will be presenting your project (it can be 1 person or a group of persons)

Cellular structure, receptors and mediators of wild-type eosinophils

