
Journal Pre-proof

A hard-sphere model of protein corona formation on spherical and cylindrical
nanoparticles

I. Rouse, V. Lobaskin

PII: S0006-3495(21)00736-0

DOI: https://doi.org/10.1016/j.bpj.2021.09.002

Reference: BPJ 11282

To appear in: Biophysical Journal

Received Date: 28 April 2021

Accepted Date: 2 September 2021

Please cite this article as: Rouse I, Lobaskin V, A hard-sphere model of protein corona formation
on spherical and cylindrical nanoparticles, Biophysical Journal (2021), doi: https://doi.org/10.1016/
j.bpj.2021.09.002.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2021 Biophysical Society.

https://doi.org/10.1016/j.bpj.2021.09.002
https://doi.org/10.1016/j.bpj.2021.09.002
https://doi.org/10.1016/j.bpj.2021.09.002


 
A hard-sphere model of protein corona formation on spherical and 

cylindrical nanoparticles 

I. Rouse
1,*

 and V. Lobaskin
1
 

1
School of Physics, University College Dublin, Belfield, Dublin 4, Ireland 

*
Correspondence: ian.rouse@ucd.ie 

ABSTRACT 

A nanoparticle (NP) immersed in biological media rapidly forms a corona of adsorbed proteins, which 

later controls the eventual fate of the particle and the route through which adverse outcomes may occur. 

The composition and timescale for the formation of this corona are both highly dependent on both the NP 

and its environment. The deposition of proteins on the surface of the NP can be imitated by a process 

processes of random sequential adsorption and, based on this model, we develop a rate-equation 

treatment for the formation of a corona represented by hard spheres on spherical and cylindrical NPs. We 

find that the geometry of the NP significantly alters the composition of the corona through a process 

independent of the rate constants assumed for adsorption and desorption of proteins, with the radius and 

shape of the NP both influencing the corona. We further investigate the roles of protein mobility on the 

surface of the NP and changes in the concentration of proteins. 

SIGNIFICANCE The adsorption of proteins to nanoparticles is key to understanding their biological 

activity and fate. We present an improved version of the rate-equation based adsorption model that 

imitates random sequential adsorption and can be applied to curved nanoparticle surfaces. Our results 

demonstrate that the geometry of the nanoparticle alters both the evolution and the final state of the 

corona when proteins are modelled as rigid particles. In comparison to the previously employed 

mean-field model, in which proteins are taken to be arbitrarily deformable, we find a significantly 

longer timespan for the corona to form and reach the equilibrium state. We also demonstrate that the 

protein-nanoparticle interaction can change the corona formation kinetics and the resulting corona 

content, thus affecting the biological fate of the nanoparticle. 

INTRODUCTION 

Matter, even elements which are well-known on everyday size scales, takes on new properties on the 

nanoscale due to increased surface area and quantum mechanical effects, such that even a famously 

inert metal like gold may become highly reactive in the form of nanoparticles (NP) (1). These new 

properties, however, potentially lead also to hazards when the NPs are inhaled, absorbed through the 

skin, ingested, or otherwise find their way into the human body (2, 3). A key finding so far has been 

the observation that a NP in a biological medium rapidly forms a “corona” of adsorbed proteins and 

other molecules (4, 5). This corona is known to be linked to the transport of the NPs around the body, 

their uptake by cells, and potential adverse outcomes (6–8). Thus, the prediction of the content of this 

corona is key to predicting the safety of novel nanomaterials. 

Qualitatively, the corona may be separated into two classes of bound protein: “hard” and “soft” (4). 

The hard corona refers to the proteins strongly bound directly to the surface of the NP, whereas the 

soft corona is a collection of proteins which are loosely bound on top of the adsorbed protein layer. 

The content of the hard corona is highly dependent on the material and morphology of the NP, and 

evolves through the adsorption of proteins upon their diffusion from the bulk, followed by their later 

desorption and replacement by other proteins over several hours (4, 5). The rate at which proteins 

desorb is linked to the strength with which they are bound to the NP. The weakly bound proteins are 

typically smaller and so diffuse faster through the biological medium. Thus, they have a higher rate of 

collisions with the NP and may feature more in the earlier stages of the corona before being replaced 

by more strongly-binding proteins which collide less frequently, but do not desorb as rapidly. The 

phenomenon of protein replacement in the adsorption layer is known as the Vroman effect (9). The 

chemical composition of the NP and any modifications to the surface directly influence the strength 

with which different proteins bind to it, for example, titania NPs are known to be strongly hydrophilic 

and thus bind more strongly to certain classes of proteins (10). Intuitively, the curvature of the surface 

of the NP also influences the strength of the binding: a flat NP will have more of its surface contacting 



 a given protein (assuming it is convex around the site of binding), and thus experience a stronger 

attractive force than a curved NP that makes a point contact. Likewise, at least for spherical and 

cylindrical NPs, a lower curvature implies a larger radius and thus a larger volume with a stronger van 

der Waals interaction between the protein and NP (11). We may readily expect therefore that the 

strength of the binding differs between NPs of the same material but different surface curvatures, i.e., 

as a function of the geometry of the NP, as is observed in calculations of the binding energy through 

coarse-grained methods (11, 12). Beyond this, we expect that the curvature of the surface plays a role 

in defining how tightly proteins may pack on the surface as a purely geometrical effect (13, 14). 

Indeed, as observed in recent work (15), spherical and cylindrical NPs of the same material may have 

have differing corona compositions, which are attributed to a combination of these two effects. 

Likewise, spherical NPs of the same material but different radii have been observed to exhibit 

different corona compositions (16). 

Given the relevance of the corona to biological outcomes, it is therefore essential to get insight into 

the mechanisms of its formation and predict its content. This can be done experimentally through a 

variety of methods, but these are typically highly sensitive to the exact concentration of proteins used, 

which may vary significantly between the samples of real biological fluids, and cannot be 

immediately applied to novel NPs. We therefore turn to theoretical and computational methods to 

predict both the evolution and the steady state. In principle, this could be achieved by performing a 

molecular dynamics simulation of the NP immersed in the biological liquid. A brute force solution of 

the problem is difficult due to the combination of extremely large numbers of atoms and long 

timescales involved. Atomistic simulations of individual proteins typically require several days to 

produce a few nanoseconds of simulated time, while the corona may consist of hundreds of proteins 

and reach equilibrium over several hours to days (16, 17). Thus, to model the actual adsorption-

desorption kinetics it is necessary to employ a coarse-grained approach in which the biomolecules are 

represented by less complex structures that are more amenable to simulation. Even these coarse-

grained simulations may be still limited in terms of the amount of computational time taken, and so to 

probe the dynamics of corona formation on biological timescales one may need to turn to alternate 

methods, e.g. rate-equation treatments or different simulation techniques (18–26). 

Previous work on the formation of the corona based on rate equation treatments has primarily focused 

on a mean-field (MF) approach in which the rate of incoming proteins is reduced by a factor 

dependent on the total surface area occupied by proteins but further steric factors are not taken into 

account. That is, if 50% of the surface area of the NP is occupied by a protein, the binding rate for all 

incoming proteins is reduced by 50%. This assumption is justified if the proteins are sufficiently 

deformable that they pack perfectly tightly without any gaps. If this is not the case, then it is 

straightforward to envision a situation in which the total uncovered area is sufficiently large to allow 

the binding of further proteins, but is distributed across a number of gaps each of which are too small 

individually to admit a further protein. In general, proteins cannot arbitrarily adjust their bound 

configurations and so it is reasonable to assume that some parts of the NP will be uncovered but 

unavailable for binding. If we consider in particular globular proteins which may be approximated as 

spherical, then it is clear that there must be gaps between these proteins due to the impossibility to 

perfectly pack spheres. This leads us to consider a model of random sequential adsorption (RSA) with 

the addition of desorption and surface diffusion, see e.g. Ref(27) for an overview of models. In this 

paradigm, the proteins are modelled as hard spheres with well-defined positions on the NP. 

Intuitively, we may expect this hard-sphere (HS) model to produce different results to the MF 

approach. Indeed, numerical simulations have empirically shown that the HS model predicts effects 

arising purely from the geometry of the NP and deviations from the MF predictions for the adsorption 

of a single species of protein (13). Although these individual works each detail certain aspects of the 

protein-NP corona formation, none completely describe the realistic case of a mixture of rigid proteins 

binding to curved surfaces. There is therefore a need to develop a theory capable of accounting for the 

effects of curvature when multiple species of protein are present to enable a more physically realistic 

modelling of the corona formation on curved NPs. However, rate equation treatments have a 

limitation in that the medium in which the NP is immersed may contain a very large number of 

different protein species, each of which may bind at an essentially arbitrary orientation relative to the 

NP with an affinity unique to each orientation. Numerical integration of such a large number of 



 dependent variables rapidly becomes infeasible, while models more complex than the MF typically 

lack analytical solutions for even a single spherically symmetric protein. Thus, we must consider also 

computational approaches capable of simulating large periods of time, e.g., kinetic Monte Carlo 

approaches in which the time between the adsorption and desorption of proteins is not directly 

simulated. 

In this work, we employ a combined analytical and computational approach to investigate the effects 

of the geometry of the NP on the corona composition in terms of how this alters the packing 

efficiency and the rate at which proteins adsorb to the surface. We demonstrate that the MF and hard 

sphere (HS) models predict significant differences in the timescales and numbers of adsorbed proteins 

for a simple system of three common blood serum proteins previously employed in studies of corona 

formation on spherical NPs (18, 19). Using an approach based on scaled particle theory as previously 

proposed for adsorption onto planar surfaces (28), we develop a rate-equation treatment for the HS 

model that may be numerically integrated to obtain the evolution of the corona on spherical and 

cylindrical NPs, finding that the geometry of the NP alters the composition of the corona even when 

the change in binding affinity due to the surface curvature is neglected. We confirm these results 

using Kinetic Monte Carlo simulations, finding excellent agreement. Our model highlights the 

importance of geometric effects, binding strength, and the surface diffusion of the bound proteins, and 

extends previous work for adsorption on planar surfaces by demonstrating how it may be adapted for 

adsorption to curved surfaces for sets of multiple adsorbing particles. 

METHODS 

Rate equations 

We consider a model of reversible adsorption of proteins to the surface of an NP in which the protein 

is in physical contact with the surface and occupies an area iA  thus making it inaccessible for other 

proteins. The surface area of the NP is NPA , and we denote the number of available binding sites for a 

given protein as NP /i in A A . We define the average number of proteins of type i which are bound to 

the NP to be iN  and further define the surface coverage of this type to be /i i is N n . Each protein is 

further characterised by a rate constant for adsorption, ,a ik  (in units s
1
 M

1
) and desorption ,d ik  and 

a bulk molar concentration [ ]iC . We assume that this bulk concentration remains fixed during the 

evolution of the corona due to either diffusion of proteins from a reservoir or a sufficiently low 

concentration of NPs that the effect of binding on the concentration of unbound proteins is negligible. 

Once a NP is immersed in a protein solution, the evolution of the resulting corona using a rate-

equation treatment is given by 

 , ,[ ] ,i
a i i i i d i i

dN
k n C P k N

dt
 N   (1)  

where proteins of type i collide with the NP at a rate given by , [ ]a i i ik n C  and  iP N  is the probability 

that a colliding protein of this type successfully binds to the surface of the NP as a function of the set 

of bound proteins, denoted by  1 2, iN N N N . We further assume that the protein binds to the 

surface with unit probability if there is sufficient space for it to do so, with any other factor which 

might prevent binding subsumed into ,a ik , e.g., the protein only binding in certain orientations. Thus, 

the probability of binding is determined by the probability that a protein randomly positioned on the 

surface of the NP does not overlap with other proteins. In the MF approach of Refs.(18, 19), this 

probability is simply equal to the fraction of the surface area of the NP that is not already covered by 

proteins, 
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This function is independent of the identity of protein i and thus the rate of binding of all proteins is 

reduced by the same amount. Using this definition and changing variables from iN  to is  we obtain 

, ,[ ] 1 ,i
a i i j d i i

j

ds
k C s k s
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 
    

 
   (3)  

which is independent of the set of values in . Thus, in the MF model, the corona composition defined 

in terms of the surface coverages depends only on the concentration of unbound proteins and the rate 

constants for adsorption and desorption. The set of linear first-order differential equations given by (3) 

can be solved analytically using standard techniques. Here, we simply give the steady-state corona 

composition 
1
: 
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  


  (4)  

It should be noted that this result is essentially equivalent to the Langmuir isotherm, and that although 

we have obtained it through a kinetic approach it may also be obtained as the thermodynamical 

equilibrium. Under this model, if the proteins are reasonably strongly binding or have a high 

concentration then the occupied fraction of the NP surface rapidly approaches unity, that is, the NP 

becomes completely covered in proteins with no gaps between them. This simple model is valid if the 

area occupied by a protein can be deformed to enable this optimal packing. In general, however, 

proteins possess some degree of rigidity preventing this deformation. Consequently, gaps will likely 

exist between proteins bound to the surface. In the mean field model, the sum of these gaps represents 

valid area for the binding of further proteins, even if each gap is individually too small to admit a 

protein. A further limitation of this model is that it assumes that the coverage of the NP reduces the 

binding rate of each protein identically. Intuitively, we might expect that small proteins are less 

effected by the increased coverage due to their ability to fit better into gaps between proteins already 

present on the surface. To quantify these effects, we investigate a model in which the projections of 

the proteins are taken to be rigid and the proteins are modelled as spherical. We refer to this as the 

hard-sphere (HS) model, although strictly speaking it is the projections of the proteins which are hard 

in the sense they cannot overlap or deform. As we are interested only in the monolayer hard corona, 

the binding process is equivalent to the two-dimensional random sequential adsorption and desorption 

model which has been thoroughly investigated for planar surfaces. In particular, it has been shown 

that the acceptance probability for an incoming particle in this model can be approximated by (28) 

    HS exp / ,ex

i i BP k T N N   (5)  

where 
ex

i  is the excess chemical potential for the insertion of a new protein of type i as a function of 

the current state, under the assumption that the state is currently in equilibrium. As before, a protein 

successfully binds to the NP with probability 
HS

iP  and rejected with probability 
HS1 iP . In the case 

of the adsorption of disks onto a planar surface, it was shown that this assumption is generally quite 

good even for non-equilibrium states and that the required acceptance probability can be obtained 

from scaled particle theory (SPT) (28). The probability for a freely-rotating convex particle to have 

sufficient space to bind is given by 

                                                      
1
Unlike in Ref.(19), this is the exact solution to the steady-state as we have made the approximation that the 

concentration of unbound proteins remains fixed.
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where iA  and ip  are the area and perimeter of the projection of protein i onto the surface, 

 1 2, is s s s . This expression implicitly assumes that the bound particles diffuse on the surface, 

and we investigate the effects of this assumption later. 

In general, the acceptance probability in the HS model is reduced in comparison to that in the MF 

model, reflecting the fact that an incoming protein is not necessarily able to find a suitably large gap 

to bind to the NP even if there is sufficient space in total. To illustrate this effect, we consider the 

special case of a single type of spherically symmetric protein binding to a spherical NP, for which we 

can assume the projection of the molecule is circular. In this case, Eq.(6) becomes independent of the 

actual sizes of the protein and NP, but does not reduce to the MF case. In Figure 1 we plot the average 

time taken to adsorb a new protein,  1/ [ ]a i i ik C n P  as a function of the surface coverage for both the 

MF and HS cases, setting 
1[ ] 1a i ik C n s  such that one potential adsorption occurs per second. It can 

immediately be seen that the time taken to adsorb a single new protein rapidly increases even at 

modest surface coverages in the HS model compared to the MF model. Since the formation of the 

corona likely involves many adsorption events, it follows that even if individual adsorption attempts 

proceed quicker than the rate of 
11s  considered in this simple example, the overall formation of the 

corona will proceed slowly once a moderate surface coverage is reached. Consequently, the steady-

state may not be reached on experimental timescales unless desorption of bound proteins is very fast 

and the equilibrium surface coverage is low. A rough estimate of the total collision rate 

coll [ ]a i ik k n C  for a spherical protein to a spherical NP in terms of proteins per unit time can be 

obtained from diffusion theory (29), 

  coll NP NP4 [ ]i i i Ak D D R R C N     (7)  

where AN  is Avogadro’s constant and jD  is the diffusion coefficient. For a typical protein diffusion 

coefficient on the order 
2 11 m s 

 (and neglecting the diffusion of the larger NP), protein 

concentration 1 M , with NP 20iR R   nm, this implies a few hundred proteins collide with a 

given NP per second. With this collision rate, we may reasonably expect surface coverages on the 

order of 0.7 in the timeframe of a few hours in the HS model, with a comparable coverage in the MF 

model reached within seconds. 

We hypothesise that we can employ Eq.(6) to estimate the probability for the successful insertion of 

globular proteins into the corona of curved NPs, provided that we correctly calculate ,i iA p  to reflect 

the projected area of the protein onto the surface of the NP when evaluating the insertion probability. 

Under the assumption that this procedure is valid, which we test in this work, the evolution of the 

corona in the HS model is given by 

 HS

, ,[ ] ,i
a i i i d i i

ds
k C P k s

dt
 s   (8)  

where 
HS

iP  will in general be a function of both the geometry of the NP and of the proteins. We may 

therefore expect that, unlike the MF case, the corona composition in this model will depend on the 

geometry of the NP even if the parameters , ,[ ]d ika k C  are kept fixed, since this will alter the values 

of ,i iA p  used to calculate the value of 
HS

iP . For a single protein, we can numerically obtain the 

steady-state surface coverage as a function of the equilibrium constant /eq a dK k k  and 



 concentration, as shown in Fig. 1 and compared to the equivalent prediction for the MF model. It is 

immediately apparent that this steady-state coverage is much less in the HS model than in the MF, 

with two key implications. Firstly, we can generally expect fewer proteins to be bound in the HS 

model, even at very high concentrations or if the binding is particularly strong. Secondly, given an 

observed surface coverage (e.g. obtained from experiment) and initial concentration of proteins, 

different equilibrium constants would be obtained depending on which of the two models was 

employed, as noted in Ref (13). 

Binding areas 

To apply this model, we must define the area iA  occupied by a protein on the surface of an NP. We 

consider two morphologies of NP: spherical NPs of radius NPR  and rod-like cylindrical NPs of radius 

NPR  and effectively infinite length. Planar surfaces can be obtained as a limit of either of these with 

NPR  . We assume that all proteins are approximately spherical and characterised by a radius iR , 

and that a bound protein is in physical contact with the NP. We project the protein onto a curved 

surface as shown schematically in Fig. 2. For a spherical NP, this occupied area is given in terms of 

the angle 
1

NP
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m

i
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  (10)  

For a very large NP, the area tends towards 
2

iR , i.e., the maximum cross-section of the protein. 

Conversely, for an NP much smaller than the protein, the number of available binding sites 

approaches the limiting value of 2, in agreement with the geometrical constraint that only two spheres 

may touch at a single point. In all cases, the number of binding sites is given by the surface area of the 

sphere divided by the area occupied by a protein, 
2

NP4 /i in R A . For the HS model we also require 

the projected perimeter of the protein. By reasons of symmetry, it follows that the projection should 

be circular and thus the perimeter can be obtained from the area by 2 /i jp A  . 

Next we turn to a cylindrical NP. The irreversible adsorption of monodisperse spheres onto a cylinder 

has been recently investigated in Ref.(14) and demonstrated to be equivalent to the deposition of 

approximately ellipsoidal shapes onto a planar surface, as depicted in Fig. 3. The exact area of the 

projection of the protein onto the cylinder is given by integrating the expression in Ref.(14) and re-

scaling to restore the dependence on NPR , 

NP NP
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  (11)  

where  E m  and  K m  are the complete elliptic functions of the second and first kind respectively 

and are given in terms of the parameter 
2m k . 



 The area iA  can be used to calculate the number of available binding sites for a cylinder of finite (but 

large) length L and convert the surface fraction into the number of bound proteins according to 

NP2 /i in R L A . To apply the HS model, we must take into account the fact that the projections are 

not freely-rotating and thus Eq. (6) does not apply. Following Refs. (30, 31), the acceptance 

probability for shapes with a fixed orientation is given by 
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2
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where  
1

2

ex

ij j iA A A A    is the excess excluded area for protein j due to protein i, defined in 

terms of the co-area 
ijA  which is the area of space in which the centre of protein j cannot be placed 

without causing an overlap with protein i. For the particular case of spherical proteins binding to a 

cylinder, for which all the projections are aligned along the same axis, we approximate this area by 

the area of an ellipse with axes ,i j i jR R R R  , where 

1

NP

NP

sin ,i
i

i

R
R R

R R

  
  

 
  (13)  

and   ij i j i jA R R R R   . 

We may demonstrate how the curvature of the NP affects the probabilities for an incoming protein to 

be accepted into the corona. We consider a simple system consisting of two types of proteins with 

radii 1 5R   nm and 2 2.5R   nm, and in Fig. 4 we plot iP  as a function of 2s  for two values of 1s  

on spherical NPs of radius 5 nm. We additionally plot the results obtained for planar NPs in the HS 

model and in the MF model. In all HS cases, the insertion probability for 2 0s   is significantly lower 

than the MF model, and so we may immediately expect the rate of corona evolution to be slower in 

the HS model. We also observe that the curvature of the NP plays a role, with the spherical NP of 

radius 5 nm exhibiting a greater acceptance probability for the larger protein than the planar HS 

model predicts. Conversely, the smaller protein exhibits a lower acceptance probability to the curved 

NP than to a planar NP if the larger protein is already adsorbed. Thus, larger proteins are not only 

inserted into the corona more efficiently for curved NPs, but also more effectively screen out smaller 

proteins. We may therefore expect that the corona content of small, spherical NPs is more strongly 

biased towards larger proteins than would be predicted for planar NPs. We find very similar effects 

for cylindrical NPs and do not show these for reasons of space. 

It is important to note that, although we have presented the binding areas assuming a spherical 

protein, the general model proposed here depends only on the projection of the protein onto the 

surface and not its exact shape. Since Eq.(6) is applicable to freely-rotating convex projections and 

Eq.(12) to projections of fixed orientation, a wide range of proteins can be modelled using this 

approach provided that their projected area and perimeter can be calculated and it is reasonable to 

model their exclusion of other proteins based on their projected area onto the NP. Thus, a complex 

protein can be treated by estimating binding constants and an associated binding area for each 

possible orientation relative to the surface of the NP. In this work, we limit ourselves solely to 

considering spherical proteins to simplify the computational approach described later. We also note 

that it is the projections of the proteins which cannot overlap, which is a more strict requirement than 

simply that the proteins themselves do not overlap. This assumption is necessary to allow small 

proteins to block larger ones and vice-versa (32). Physically, this model of blocking based on 

occupied area represents that the protein makes contact with the NP over a surface greater than a 



 single point. In this way, small proteins cannot adhere in the region between a larger protein and the 

NP which would be permitted in a purely HS model. Likewise, large proteins cannot bind to the NP in 

regions occupied by smaller proteins by simply making a point contact with the NP, which in reality 

would not be likely to produce stable adsorption and lead to a very rapid desorption of the protein. 

Computational methods 

The set of equations in the MF approximation can in principle be integrated analytically to produce 

the evolution of the corona as a function of concentrations and shapes of the proteins. The more 

complex HS, however, must be integrated numerically. In practice, we also numerically integrate the 

rate equations in the MF model for consistency and to simplify the code. We employ the numerical 

integration routines (“NDSolve”) in Mathematica 12.1 for both HS and MF models (33). For the 

parameter sets considered here, we find that the default options for the automatic selection of 

integration methods and step sizes perform sufficiently well that we do not need to manually optimise 

these. We have found that the numerical integration for the MF rate equations produces results in very 

good agreement with the analytical solution with absolute errors in the surface coverage of less than 
85 10  for a typical set of proteins, further validating this approach. 

To validate the rate-equation approach, we also perform simulations of the adsorption process. As 

discussed previously, even highly coarse-grained models of corona formation using molecular 

dynamics take an extreme amount of computational time. Thus, we instead employ a kinetic Monte 

Carlo (KMC) method (34) that can readily be extended to large numbers of proteins. This algorithm 

samples a set of events – adsorption or desorption of proteins – advancing from one to the next 

without requiring the evaluation of the time inbetween them, allowing for the efficient simulation of a 

large number of events and thus an extended amount of time. At a given time t, the algorithm 

generates a list of possible events, randomly selects one with a probability weighted by the rate at 

which that event occurs and the system is updated accordingly. Afterwards, the time is advanced by a 

random amount given by 

 ln
Δ

tot

u
t

k
    (14)  

where totk  is the sum of all event rates and u is a random number uniformly distributed in the interval 

[0,1] . This process iterates until the time reaches a pre-determined stopping point. The possible 

events correspond to proteins colliding with (and potentially adsorbing to) or desorbing from the 

surface of the NP. Collisions occur with a rate given by , [ ]a i i ik n C  and desorption with a rate ,i d iN k . 

If a desorption event rate is selected, a randomly chosen protein of the specified type is removed from 

the surface of the NP. Conversely, if a collision occurs, the protein is either accepted or rejected with 

criteria depending on the model employed. In the MF model, the current occupied surface fraction 

j

j

s  is calculated, and a random number in the interval [0,1]  is generated. If this random number is 

greater than j

j

s , the protein is accepted and added to the state of the system. If not, the simulation 

proceeds to the next event. We note that this may allow a temporary “over-saturation” of the surface 

of the NP by a single protein since it does not test if the space remaining on the surface is sufficiently 

large to allow for the admission of this protein, but this effect is likely to be significant only for very 

small NPs in which an individual protein occupies a large amount of the surface of the NP. 

In the HS model, the location of each protein is explicitly tracked by generating a location for each 

colliding protein, where these positions are uniformly distributed on the surface of the NP. In the 

spherical case, a pair of angles ,i i   are randomly generated to produce a uniform distribution of 

points on the surface of the sphere. This is achieved by drawing two random numbers 1 2,u u  from the 

uniform distribution [0,1]  and taking  1

1 22 , cos 2 1i iu u       (35). A protein of the 



 corresponding type is then inserted at the Cartesian coordinates given by 

 NP [cos sin ,sin sin ,cos ]i i i i i iR R       provided that it does not overlap with any existing 

proteins. An overlap is deemed to have occurred if the condition, 
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 
  (15)  

is found to hold for any protein j already adsorbed to the NP and where protein i is the new protein. 

This ensures that the projections of the proteins onto the surface do not overlap, as assumed in the 

rate-equation model, and is derived by projection of the centre of the two proteins onto the sphere and 

calculating the minimum angular distance between them allowable without overlap occurring. In both 

models, regardless of whether the protein successfully adsorbs or not the simulation is then moved to 

the next timestep. In this way we ensure that the rate of successfully adsorbing proteins is consistent 

with the rate-equation model. 

For the cylindrical NP, the position of the protein is defined by the coordinates , ,i i iz  , where 

NPi iR R    such that the protein is in contact with the NP and binding occurs only to the curved 

surface. The angular coordinate i  is chosen from a uniform distribution in [0,2 ] . The final 

coordinate z is chosen uniformly from the interval [ / 2, / 2]L L , where L is the length of the 

cylinder. To minimise edge effects, we ensure that L is large compared to the typical radius of the 

proteins and employ periodic boundary conditions at / 2L . Unlike in the spherical case, we cannot 

write down a simple expression to test if a pair of proteins overlap due to the more complex shape of 

the projection of proteins onto the cylinder. Instead, for a pair of proteins of radii ,i jR R , we 

determine if overlap occurs by setting the radial co-ordinate for both to  , NP max ,i j i jR R R    

and determining if this causes a physical overlap between the proteins, i.e. if the distance between 

their centres is less than i jR R . This procedure ensures that a smaller protein cannot bind in the 

region between a larger protein and the NP, which would be possible if physical overlap was only 

checked for at their actual location, is consistent with the definition used for the spherical NP, and 

avoids a computationally expensive test for overlapping based on the projections of the two proteins 

onto the surface. By projecting the locations of proteins obtained from simulations onto a planar 

surface as depicted in Fig. 3 we have determined that this test correctly prevents the overlap of the 

projected areas of proteins for those considered here, although in general this method may fail if the 

proteins are much larger than the NP. To implement the periodic boundary conditions with respect to 

the ends of the cylinders, overlap is tested for the incoming protein against the original set of bound 

proteins and copies of this set translated by L  along the axis of the cylinder. For both spherical and 

cylindrical NPs, these overlap criteria are expected to produce equivalent results to the theoretical 

expressions Eq. (6) and Eq. (12) respectively, but the KMC program does not evaluate these 

probabilities when assessing if a protein is accepted or not. Thus, this method provides a means to test 

the validity of these expressions for the systems considered here. 

For the majority of the simulations, we assume that once a protein has adsorbed to the NP it remains 

fixed in place until it desorbs. It is known, however, that the diffusion of proteins on the surface of the 

NP increases the packing efficiency (36), and the rate-equation model assumes that the adsorbed 

proteins are effectively in a fluid phase (28). The desorption and readsorption of proteins produces a 

restructuring of the surface equivalent to the diffusion, justifying the exclusion of this process. If, 

however, proteins are sufficiently tightly bound that they do not escape the NP but are still free to 

diffuse across the surface, then it is of interest to investigate how the surface restructuring impacts the 

results. To implement this, after each event the proteins are selected in a random order and the angular 

position of each molecule perturbed by a small random amount. These perturbations are randomly 

drawn from zero-mean normal distributions with standard deviations given by (37) 
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where Δt  is the time between the most recently applied event and the event before and sD  is the 

surface diffusion coefficient, which we set to 
510  nm

2 s
1
 for all proteins. A test move is generated 

and accepted if it does not result in an overlap between proteins and otherwise rejected, with up to 

four test moves attempted before moving to the next protein, with proteins selected in a random order. 

Proteins which are not successfully moved are not re-tested following the moving of other proteins, 

but are tested again on the next timestep. The inclusion of this restructuring requires re-checking for 

collisions following each trial perturbation and so dramatically slows the simulation. Thus, we do not 

employ this procedure for simulations except where noted and have implemented it in the code only 

for spherical NPs. We note that this procedure is not a completely physical representation of diffusion 

but is employed to produce a restructuring of the adsorbed layer consistent with the effects produced 

by diffusion while maintaining a reasonable computational cost. 

The code used for the KMC simulations is implemented in Python 2.7 and available for download as 

part of the UnitedAtom software package (38). 

RESULTS 

In this work, we are primarily interested in determining how the geometry of the NP influences the 

corona, independently of the strength with which a given protein binds to the surface of the NP. Thus, 

we first vary the size and shape of the NP while keeping the concentrations and rate constants for 

adsorption and desorption for each protein fixed and present results comparing the KMC simulations 

to the rate-equation model. For consistency with the literature, we primarily employ the same system 

of proteins as in Ref. (18) using the same rate constants and concentrations quoted there as 

summarised in Table 1. This system consists of three proteins: HDL, HSA, and fibrinogen (Fib). Of 

these, HDL and HSA are globular and so can be reasonably modelled as spherical. Fibrinogen is a 

rod-like protein, which can be treated using the analytical model but not in the current implementation 

of the CoronaKMC program for side-on orientations. For the purposes of this work, we simply 

assume the binding is achieved through an end-on configuration, such that the binding profile is 

approximately equivalent to that of a globular protein. The exact identity of these proteins is 

immaterial as we are focused on the mathematical treatment rather than attempting to match 

experimental results, and we simply require a range of concentrations and binding constants. Thus, 

Fib can also be considered to be a large but weakly binding globular protein, with the name used 

purely to ensure consistency with Ref. (18). Of the proteins considered here, HDL binds significantly 

more strongly than the other two, with a characteristic lifetime 1/ dk  on the order of about 9 hours 

compared to ca. 8 minutes for HSA and Fib. In certain simulations, we also consider two fictional 

proteins corresponding to one comparable to Fib but with a higher concentration, and one which is a 

slightly larger form of HDL. To enable a comparison between NPs of different sizes and 

morphologies, we present all results in terms of the surface coverages is , using the relation 

/i i is N n  to convert the numbers of bound proteins observed in KMC simulations to the surface 

coverage. 

First, we investigate the MF model, with results shown for both the rate-equation model and the KMC 

simulations for spherical NPs of radius both 5 and 50 nm in Fig. 5. The agreement between the results 

obtained from the rate-equation and KMC simulations is excellent, and it can be seen that the mean 

surface fraction is independent of the radius of the NP, with HSA rapidly absorbed and then replaced 

by HDL, and with Fib essentially excluded entirely at all times. The exclusion of Fib is due to the 

preferential adsorption of the other proteins, since if these are excluded we find 0.90Fibs   in the 



 steady-state. Although the mean coverages are independent of the radius of the NP, it can be seen that 

the fluctuations around the mean value are larger for the smaller NP. The coverage for single-particle 

adsorption on infinite surfaces is known to follow a Poisson distribution (39), for which 

2 2

i i iN N N      , such that fluctuations in the surface coverage scale as /i is n . The true 

distribution for multi-component adsorption on finite surfaces is of course likely to be much more 

complex, but heuristically we can expect similar scaling of fluctuations, especially when the steady-

state corona consists of essentially only a single protein as in the present case. 

Next, we perform simulations for this same set of proteins in the HS model. The results for spherical 

NPs of size 5 and 50 nm are shown in Fig. 6. It is immediately apparent that this significantly alters 

both the surface coverage and the rate at which the system approaches equilibrium compared to the 

MF model. The analytical model using the surface coverage given by Eq. 6 is in good agreement with 

the numerical results. It can be seen that, unlike in the MF model, the surface coverage in the steady-

state depends on the radius of the NP. Since we have left the rate constants unchanged, this implies 

that this is a purely geometric effect arising solely from the different packing efficiencies of spheres 

on curved surfaces. Likewise, in Fig. 7 we present a comparison between the numerical simulations 

and the numerically-integrated rate equation treatment for cylinders of radius 1R   and 5R  nm, 

again finding that the radius of the NP plays a role in defining the evolution of the corona even when 

rate constants are not altered. In both cases, the time taken to reach the steady-state is on the order of 

several hours despite the relatively quick desorption of individual HSA molecules, which occurs on 

the order of minutes. This is most likely caused by the preferential re-adsorption of HSA into the gaps 

left by its desorption compared to the adsorption of the larger HDL molecules. As with the MF case, 

Fib is essentially excluded from the binding. 

In Figure 8, we plot the steady-state surface coverage obtained from the rate-equation treatment for 

HDL as a function of the radius of the NP for both spherical and cylindrical cases. It can clearly be 

seen that for both the coverage increases as the radius approaches zero due to the increased packing 

efficiency of spheres around curved surfaces relative to planar surfaces. For both geometries, the 

selectivity of HDL over HSA decreases as the size of the NP increases. In contrast, the MF model is 

radius independent and predicts almost complete saturation of the NP in HDL, HDL 0.99s  . We note 

that the total surface coverage also exhibits a slight dependency on the curvature of the NP, but for the 

protein set considered here this is a very minor effect and the total coverage falls within the range 

0.62 0.65 . As a measure of the time taken for the corona to evolve, Figure 8 also shows the time at 

which the surface coverage switches from predominantly HSA to HDL as a function of the radius. In 

general, it appears that NPs with smaller radii approach this point more rapidly than larger ones, 

indicating that the corona evolves faster for these high-curvature NPs. Likewise, the effects are more 

strongly pronounced for the spherical geometry in comparison to cylinder of the same radius, 

reflecting the higher local curvature of the sphere. Convergence towards the planar limit is very slow 

in both cases. 

With the geometric effects established, we next consider how varying the binding parameters alters 

the outcome. Certain nanomaterials, for example gold, are known to adsorb proteins so strongly that 

the binding is essentially irreversible, , 0d ik   (11). In this case, we may intuitively expect that the 

corona primarily represents the proteins which collide with the NP more frequently than others. The 

rate-equation model proposed previously is in principle still valid if we set 0dk   for all proteins, 

however, the probability for successful adsorption of a protein in the HS model assumes a fluid-like 

phase of bound proteins (28). If proteins cannot desorb, then the bound layer of proteins does not meet 

this requirement and so we may expect deviations between the simulations and rate-equation model. 

The fluid-like behaviour can also be obtained by allowing bound proteins to diffuse on the surface of 

the NP and so we perform simulations including a process based on surface diffusion which enables 

the layer of bound proteins to restructure. The results in Figure 9 show a comparison between the 

simulations with (points) and without (open circles) surface diffusion for the protein set in the absence 

of desorption. Clearly, the rate-equation model remains accurate when surface diffusion is enabled for 

irreversible adsorption, but fails to accurately describe the results if the adsorbed proteins are fixed on 



 the surface. Due to the limitations of computational resources, only a small number of simulations 

were performed with restructuring, but these confirm the fact that the corona has effectively reached 

its steady state within 360 s. Formally, we expect the rate-equation model in the limit of non-

desorbing proteins to produce inaccurate results after an extreme period of time, as it can 

straightforwardly be seen that a steady-state solution with 
, 0d ik   can only exist when the surface of 

the NP is completely covered in proteins. Geometrically, this optimum packing cannot be achieved 

for spherical proteins. In practice, however, we find that for the set of proteins considered here the 

numerical integration of the rate-equation treatment provides physically realistic results even for 

timespans of up to one year, far exceeding experimental timescales. 

For small but non-zero desorption rates, we find again that the evolution of the corona is significantly 

delayed. Even a relatively minor decrease in the desorption rates by a factor of 10 (with diffusion 

disabled) as shown in Fig. 9 results in the steady-state corona taking several days to form in the HS 

model. A slightly worse agreement between the KMC and rate-equation models can be observed in 

the initial stages of the corona formation. Taking into account the results found for irreversible 

adsorption, it is likely that this is due to the inability of the layer of bound proteins to restructure 

sufficiently quickly during the initial adsorption to provide the fluid-like properties necessary for the 

model to hold. We have performed further simulations of the initial stage of formation including 

diffusion and find a better agreement when this is included. 

The adsorption rate constants listed in Table 1 are quite low, corresponding to (on average) less than 

one potential adsorption event per second for Fib interacting with an NP of radius 10 nm, and even the 

highly abundant HSA undergoes less than one hundred events per second. It is of interest to 

investigate how the predicted corona content varies if these adsorption rates are varied, in particular to 

see if increased adsorption rates alter the steady-state corona composition. Although in principle we 

may simply scale the values of ,a ik , it is more physically reasonable (and mathematically equivalent) 

to instead scale the concentrations of each protein by a global factor while keeping their relative 

abundances fixed, representing adding more or less solvent during the preparation of the protein 

solution. The results of numerically integrating
2
 the rate equations for both the HS and MF models 

with the protein concentrations increased by a factor of 1000 are shown in Fig. 10. In the MF model 

for high scale factors, there is essentially no effect on the evolution of the corona compared to the 

results obtained using the original rate constants beyond it reaching the peak coverage of HSA more 

rapidly. In contrast, however, we observe a significant difference in the HS model in this high 

concentration regime: the steady state corona is now primarily composed of the more abundant HSA 

rather than the more strongly binding HDL. Furthermore, the corona still takes a significantly long 

time to reach this steady state, with equilibrium not reached after 12 hours, although only minor 

changes take place after this point. Although the underlying model is less physically realistic at such 

high concentrations, it nonetheless demonstrates that there is a significant change in the corona 

content caused by this scaling. To further investigate this, we calculate the corona composition at 24 

hours for a range of concentration scaling factors, as shown in Fig. 10. The surface coverage of HDL 

can be seen to vary with this scaling factor in a non-trivial way. At concentrations somewhat lower 

than the initial set, HDLs  is increased, while lowering the concentration even further then causes HDLs  

to decrease. Even over the wide range of concentrations considered, Fib. does not appear to 

meaningfully bind to the NP. We have performed equivalent calculations in the MF model and find 

almost no changes in the steady-state coverages, which we discuss further later. 

As a further test of the model, we add two additional proteins to the set originally considered and re-

calculate the expected corona composition. The first of these two proteins, FP1, is simply the original 

set of parameters for Fib with the concentration increased to be equal to that of HSA, while the second 

additional protein FP2 is equivalent to HDL but with a slightly greater radius 5.5iR   nm in 

comparison to the original radius of 5 nm. Results are plotted in Fig. 11 for both HS and MF models. 

In the HS model, it can be seen that even significantly increasing the concentration of Fib is not 

                                                      
2
Due to the high rate of adsorption, simulating the corona using the KMC method for the timespans required to 

reach steady-state for systems with a high concentration of proteins is impractical, even with diffusion disabled.
 



 sufficient to cause it to be expressed in the long-term corona, as although it is initially adsorbed it is 

rapidly replaced by more strongly adsorbing proteins (HDL, FP2) or those with similar adsorption 

characteristics but a smaller size (HSA). Indeed, although both HSA and FP1 have nearly identical 

values of [ ]ak C  and dk , it is notable that of the two only HSA is exhibited in the steady-state corona. 

Meanwhile, FP2 has adsorption kinetics quite similar to that of the original protein HDL, but due to 

its increased size is less strongly expressed in the corona. Conversely, in the MF model, HDL and FP2 

have identical surface coverages as a result of the fact in this model these coverages are independent 

of the radius of the protein. Thus, the difference in surface coverage observed in the HS model is due 

to the radius-dependent insertion probabilities. Likewise, in the MF treatment HSA and FP1 exhibit 

very similar profiles, in contrast to the size effects observed in the HS model. 

DISCUSSION 

From the results shown in the previous section, it is clear that the timescale for the formation of the 

corona – both the initial adhesion of proteins to the surface of the NP and the formation of the steady 

state – varies significantly with the model used to describe how the rate of binding is reduced by pre-

existing proteins. At one extreme, if proteins are allowed to move freely around the surface and 

deform to an effectively arbitrary degree as in the mean field model, the corona approaches 

equilibrium rapidly. At the other extreme in which the proteins are rigid and fixed in place, the time 

taken for the corona to reach equilibrium is dramatically increased for the set of proteins considered 

here. In both cases, the results of the KMC simulations can be adequately explained using analytical 

models of the adsorption process. Strictly speaking, the model of Ref. (28) used for the HS approach 

is valid for an equilibrium state, but appears sufficiently accurate for the dynamical states observed 

here, even taking into account the lack of diffusion in the majority of the simulations. Indeed, in Ref. 

(28) the adsorption probability is shown to be relatively accurate even in the absence of desorption. 

Thus, although strictly speaking the processes with and without diffusion are physically different and 

are expected to show different physics, we find that including either diffusion or desorption in the 

KMC simulations produces a sufficiently good agreement between these and the rate-equation model 

to allow their cross-validation. 

HS and MF models predict qualitatively similar behaviour for the evolution of the corona – a sharp 

initial rise in HSA followed by a slow replacement by HDL until the steady-state is reached, although 

on significantly different timescales. This is in agreement with typical experimental results 

demonstrating the Vroman effect, in which small, weakly-binding proteins adsorb first and are later 

replaced by larger proteins which bind more strongly but collide less frequently with the NP (9). We 

observe an enhancement of this effect for highly curved NPs, i.e., those with small radii, and a 

stronger effect for spheres than for cylinders. With the set of rate constants used here, the NP corona 

in the HS model takes several hours to reach equilibrium as a consequence of the decreased rate of 

adsorption at higher coverages. Experimentally, it has been observed that the corona continues to 

develop for a period of several hours and so this is not an unreasonable estimate of the equilibriation 

time (16). The difference in timescale for the HS approach compared to the MF approach arises from 

two main factors. Firstly, the adsorption probabilities in the HS model are in general lower than that 

of the MF model, and so the rate of adsorption is slowed down. Secondly, the two models behave 

differently when the corona is close to saturation with proteins. In the rate-equation MF model, 

adsorption of the larger HDL can essentially always take place as the total coverage i

i

S s  never 

reaches unity and the adsorption or desorption of a fraction of a molecule is permitted. Thus, the 

amount of HDL in the corona can continuously increase and gradually replace HSA. In the KMC 

implementation of the MF model, adsorption of proteins is only blocked completely when 1S  . The 

desorption of a single HSA molecule is usually sufficient to restore 1S  , enabling the subsequent 

adsorption of the larger HDL even if strictly speaking there is not sufficient room on the surface for it, 

enabling a stepwise replacement of HSA by HDL. In the HS model, however, adsorption of HDL in 

the KMC simulations frequently requires the sequential desorption of multiple HSA molecules in 

order to free up sufficient room on the surface for it to bind. The time scale for the evolution of the 

corona is therefore set by the rate at which a sufficient amount of HSA can desorb without 



 replacement by more HSA to permit the adsorption of HDL, which is accurately captured by the HS 

rate equations. We have tested a form of the MF KMC algorithm in which adsorption of proteins is 

allowed only if this does not lead to over-saturation and found this leads to a decrease in the rate at 

which the corona evolves, supporting this interpretation. 

The above effect explains the observation that increasing the protein concentrations globally by a 

factor of up to one thousand (see Fig. 10) both slows the rate at which the corona approaches the 

steady-state and alters the steady-state corona composition. Increasing the concentration of proteins 

leads to a significantly faster adsorption of HSA such that desorption of HSA is likely followed by re-

adsorption of this rather than adsorption of HDL. Conversely, decreasing the overall concentration of 

proteins initially favours the adsorption of HDL, as it results in a decrease in the amount of adsorbed 

HSA while maintaining a sufficiently high rate of incoming HDL to take advantage of this increase in 

available binding area. As the concentration decreases further, there is no longer a high enough flux of 

HDL to maintain a high surface coverage, and so HDLs  reaches a maximum and then decreases. We 

next consider the corresponding effects in the MF model, for which we may obtain analytical results. 

From Eq. 4, if we apply a scaling factor α to each concentration such that ,0[ ] [ ]i iC C  then the 

equilibrium surface coverages are given by, 
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where we have defined 
, , ,/eq i a i d iK k k . The ratio of two surface coverages, /i js s , in the MF model 

is given by: 
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and is independent of α. By differentiation of Eq. 18 with respect to α, it can also be shown that is  is 

a monotonic function of α. Taken together, these two points imply that much of the dependency of is  

on α observed for the HS case cannot be replicated in the MF case: it is not possible for the relative 

abundances of two proteins to change by making the medium more concentrated or dilute, nor can the 

coverage of a given protein exhibit a maximum as a function of α. Indeed, for , ,0[ ] 1eq i i

i

K C  the 

term of unity in the denominator of Eq.18 can be neglected, such that is  in the MF model is 

practically independent of α. For the present system of proteins, , ,0[ ] 16000eq i i

i

K C  , and so α 

must be extremely small for any effect to be noticeable. These observations provide a means by which 

the MF and HS models can be distinguished experimentally: diluting the protein solution will lead to 

changes of the relative abundance of adsorbed proteins in the HS model but not in the MF model, 

provided that the concentration of proteins remains much larger than the concentration of NPs to 

ensure that the model considered here remains valid. 

In contrast to the MF model, the HS model predicts that the size of the NP relative to the size of the 

proteins significantly alters the evolution of the corona. This is especially apparent in the results 

shown in Fig. 11, where simply increasing the radius of a protein by 0.5 nm significantly reduces the 

extent to which it features in the corona. Likewise, keeping protein sizes fixed and varying the size of 

the NP produces a variation in the coverages of specific proteins and the time taken to reach 

equilibrium as shown in Fig. 8, while the MF model is radius-independent. Over the range of radii 

considered, there does not appear to be a point at which the two models completely converge for the 

set of proteins used here. Qualitatively, for spherical NPs of very small radii the HS model predicts 

results which are somewhat closer to the MF model than obtained for larger radii. For these cases, the 

crossover point at which HDL HSAs s  is reached at around 0.3 hours, comparable to the result 



 obtained for the MF model of 0.25 hours, and likewise for small NPs in the HS model the steady-state 

corona consists almost entirely of HDL, as it does in the MF model. However, the actual value of the 

surface coverage still remains significantly lower at around 0.65 rather than the MF values of close to 

1, and we find analytically that the insertion probability in the limit NP 0R   does not reduce to the 

simple form used in the MF model. From Fig. 1, we can predict that the MF and HS models are likely 

to agree completely only when all proteins present have either an extremely small concentration or 

bind exceedingly weakly to the NP to ensure the total coverage is on the order 0.1 0.2  at most. A 

further difference between the two models is that in the MF model the more strongly-binding protein 

essentially entirely excludes a weaker-binding one, whereas in the HS model a weakly-binding but 

small protein may co-exist in the steady-state corona with a larger, more strongly binding protein. The 

question therefore remains as to which model – MF or HS – is more appropriate to describe the 

formation of protein coronas under biological conditions. In reality, proteins are neither completely 

deformable as assumed for the MF approach, nor completely rigid as in the HS model, and so we may 

expect that the actual timescales are not as slow as predicted in the HS model. 

A key limitation of the analytical approach – whether MF or HS – is the fact that obtaining the 

solution to the set of differential equations rapidly becomes difficult as the number of proteins 

considered increases. For the results shown here, we have included a set of only three to five proteins, 

for which the equations may be numerically integrated using e.g. Mathematica. Realistic systems, 

however, may consist of a much greater number of proteins, each of which may bind through multiple 

orientations. For the MF model at fixed concentrations of unbound proteins as considered here, an 

analytical time-dependent solution can be straightforwardly obtained using matrix methods, producing 

solutions which are sums of exponential functions. For a total of TN  types of protein, this requires 

the diagonalisation of an T TN N  matrix. The computational cost of the numerical integration of the 

rate equations, meanwhile, scales as  2

TO N  for the spherical case, since for each protein we must 

evaluate a sum over all types of protein to obtain  iP N . In the cylindrical case, the scaling is of 

order  3

TO N  due to the presence of the double sum in Eq. 12. The KMC simulations, in contrast, are 

limited instead by the total number of proteins bound bN  due to the requirement to check an 

incoming protein for collisions with each pre-existing protein. The number of proteins bound is 

proportional to 
2

NPR , and so overall the computational time can be expected to scale as  2

NPO R . The 

task becomes significantly more challenging with surface diffusion enabled, since the collision tests 

there require that every existing protein is tested against every other protein, thus scaling as  2

bO N , 

i.e,  4

NPO R . This is manageable for small NPs, but for larger NPs it may be necessary to instead rely 

on numerical integration with a limited selection of proteins present. 

We must also mention the limitations of the current model. We have assumed for the HS model that 

the proteins can be represented by hard disks with diameters calculated from that of the corresponding 

hard sphere. It has previously been shown in the RSA model that a true HS model exhibits different 

dynamics as a result of the decreased ability of smaller proteins to block larger ones, and, conversely, 

the increased ability of smaller proteins to bind in gaps between the NP and larger proteins (32). 

However, that work suggests that for proteins a hard disk model is more reasonable, and it is unlikely 

that proteins make only a single point contact with the NP as the true hard sphere model would 

require. For the system of proteins considered here, the sizes are sufficiently close that there is not 

likely to be a significant difference caused by the differences between these two models. A further 

complication is that protein shapes may deviate significantly from spherical and deform to improve 

their binding ability, with alternate binding profiles shown to result in increased coverage (40). While 

not accounted for in the present model, we note that the surface function (Eq. 6) derived from scaled 

particle theory is in principle valid for an arbitrary convex binding area. It is therefore likely that more 

complex protein shapes can be modelled by finding the area and perimeter of the projection of the 

protein onto the surface of the NP, treating different orientations as being effectively different 



 proteins. This would further allow for a differentiation between different binding profiles, e.g. head-

on vs. side-on for ellipsoidal proteins. Here, we do not investigate this further, but the CoronaKMC 

tool provided in the UnitedAtom package supports proteins with multiple binding profiles by 

representing these as hard spheres of varying size (38). For rod-like proteins or those with more 

complex shapes, it will likely be necessary to update this software to be able to detect overlaps 

between arbitrary projections on the surface of the NP. This, together with testing the analytical 

approach for these non-globular proteins, is an ideal topic for further research. 

The concentration of unbound proteins in this work and the rate at which they diffuse to the NP 

surface is here assumed to be constant. Previous work in the MF model has indicated that finite rates 

of diffusion to the surface of the NP influence the dynamics of the corona formation (41), which could 

be represented here by a decrease in the adsorption rate ak . Likewise, it is reasonable to assume that 

the dynamics will be altered if the concentration of NPs [ ]NP  is sufficiently high that substantial 

protein depletion in the environment occurs, i.e., if [ ] iNP n  is of the same order of magnitude as the 

concentration of the protein. The adsorption in this case is governed by the diffusion-limited 

aggregation. The protein depletion effect can be accounted for in the rate equation model by replacing 

   [ ] [ ] 0 [ ]i i i iC C NP n s t  , and in the KMC simulations by dynamically updating the 

concentrations of proteins based on the number currently bound to the NP, i.e. essentially by treating 

the system via an NVT ensemble rather than grand-canonical one. In this work, we have simply 

assumed that [ ] [ ]iNP C  such that these effects can be neglected. We have performed a preliminary 

exploration of protein depletion, including the necessary modifications to the KMC simulations, and 

found that for a spherical NP of radius 20 nm interacting with the present system of proteins these 

effects can be neglected for NP concentrations of less than 0.1 M . A further possible extension 

would be to include effects such as three-body interactions in the KMC simulations to produce better 

agreement with experiment as in Ref (22). Our model also does not capture more complex 

interactions between the proteins and their environment as considered in the dynamic density 

functional theory of Angioletti et al. (25, 26), which indicates that for an accurate model of corona 

formation it may be necessary to compute more realistic models of the protein density distribution 

near a NP, especially for NPs surrounded by a permeable gel. In the present case, however, we 

operate under the assumption that the NP and proteins in solution are sufficiently mobile that no 

significant concentration gradients develop. 

It is important to note that the HS model, in which the proteins are represented as hard spheres, is 

conceptually quite similar to mesoscopic molecular dynamics simulations of the formation of protein 

coronas as in (22, 23, 42, 43). In future work, it would be interesting to compare the predictions of 

this model to such simulations. However, the timescales predicted for the system to reach equilibrium 

are significantly longer compared to the timescales for individual events. Here, we assumed that 

proteins collide with the NP at a typical rate on the order of 1/second, and equilibrium takes about 

20000 seconds to reach. To get more realistic estimates of the corona equilibriation times, the 

collision rates from real protein and NP concentrations should be used. On the other hand, it may 

therefore be possible to simulate only the initial stages of formation of the corona using such 

simulations and employ the HS model to extrapolate to greater timespans. A similar approach has 

been employed in Ref (22), where the MF model has been fitted to the results of the simulation to 

extrapolate to greater time periods than can be achieved through MD simulation. Based on the present 

work, in which the MF and HS models predict both very different timescales for the corona 

equilibration based on the same rate constants and concentrations and differing steady-state corona 

compositions, we conclude that extraction of rate constants by fitting to numerical data (obtained 

through experiment or simulation) must be done with care to ensure that the correct underlying model 

is chosen. That is, attempting to fit the MF model to results obtained in the HS model would result in 

significantly different rate constants to the underlying values, and vice versa. Thus, it is vital that 

experimental results are interpreted by applying the correct model to obtain physically meaningful 

rate constants. 



 CONCLUSION 

Based on the random sequential adsorption and desorption paradigm, we have developed a rate 

equation model for the evolution of the NP protein corona for proteins modelled as hard spheres 

binding to to spherical and cylindrical NPs. We have demonstrated that the geometry of the NP 

directly influences the composition of the corona through altering the efficiency with which proteins 

can pack and new proteins can adsorb to the NP, and that this results in geometry-dependent corona 

compositions even when the rates at which proteins adsorb or desorb from surface sites are kept fixed. 

We have found that these effects can be explained using scaled-particle theory for both spherical and 

cylindrical NPs as long as there is either desorption or diffusion of adsorbed proteins to ensure a fluid-

like surface layer. Our results pave the way for an improved understanding of experimental results 

and the ab initio prediction of protein corona compositions. 
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Figure 1: Left: The average time taken for a new protein to successfully adsorb to a spherical NP 

for the HS (blue) and MF (red) models as a function of the occupied area of the NP, for an average 

adsorption time of 1 second for a bare NP and assuming all proteins are the same size and have a 

circular binding cross-section. Right: The steady-state surface coverage is  of a protein with a circular 

binding cross-section on a spherical NP, defined as a function of the binding equilibrium constant 

eqK  and bulk protein concentration [ ]C . Surface coverages are given for the HS (blue solid line) and 

MF (red dashed line) models.  

Figure 2:  The projection of a spherical protein (blue) of radius iR  onto an NP (gray) of radius R. 

The angle m  is defined as the angle between the line connecting the centres of the NP and protein 

and the line tangent to the protein and passing through the centre of the NP. The area shaded in pale 

blue is assumed to be occupied by this protein and unavailable for binding by other proteins, blocking 

off a region of the surface of the NP. Under this projection, spherical proteins adsorbed to the NP as 

shown in the centre image can be mapped to two-dimensional regions on the surface of the NP as 

shown on the right.  

Figure 3: A cylinder with multiple adsorbed proteins shown in 3D (top) and the projection of these 

proteins onto the 2D z  plane (bottom). Positions of the proteins on the cylinder were obtained by 

kinetic Monte Carlo simulations and their projections in the plane determined following Ref.(14), 

with the periodic boundary conditions shown by included translated protein projections where 

necessary. 



 Figure 4: Probability for a protein of type i to be successfully inserted into the corona of a NP for a 

two protein system consisting of a large protein 1 5R   nm and small protein 2 2.5R   nm as a 

function of the surface coverage of the smaller protein 2s , taking 1 0s   (left) and 1 0.3s   (right). 

Results for the HS model for a spherical NP of radius 5 nm, HS model on a planar NP, and the MF 

model are shown. The MF model predictions are not visible in the scale used in the plot on the right, 

likewise, the 2i   planar case overlaps with the results for NP2, 5i R   nm in the plot on the left. 

Figure 5:  Evolution of the corona in the MF model, showing the surface fraction occupied by 

HDL (blue), HSA (red) and Fib (green). The points show the results obtained from the kinetic Monte 

Carlo simulations for NPs of radius 5 nm (left, 100 trajectories) and 50 nm (right, 50 trajectories), 

with error bars indicating the standard deviation of these results. The solid lines indicate the analytical 

prediction obtained by integration of the rate-equation model. The protein Fib. is plotted for 

consistency but is essentially non-binding. 

Figure 6: Evolution of the corona in the hard sphere model on a spherical NP of radius 5 nm (left) 

and 50 nm (right). The points show the mean surface fraction of the adsorbed proteins from the KMC 

simulations averaged over 100 runs with the error bars indicating the standard deviation. The solid 

lines indicate the predictions of the rate-equation model.  

Figure 7: Time-dependent surface coverage of proteins on a cylindrical NP of radius 1 (left) and 5 

(right) nm in the hard sphere model. The lengths of the cylinders are set to 100 nm with periodic 

boundary conditions applied. Solid lines indicate the numerical integration of the rate-equation model 

and points indicate the results of numerical simulations. Error bars indicate   one standard deviation 

as obtained from the simulations.  

Figure 8: Left: Steady-state ( 24t   hours) surface coverages of HDL as a function of the radius of 

the NP in the HS model for the spherical and cylindrical NPs obtained via numerical integration of the 

rate equation model. The asymptotic limit for NPR  , i.e. a planar NP, is shown as a dashed line. 

Right: time-point at which the surface coverage crosses over from consisting mainly of HSA to HDL 

as a measure of the time taken for the corona to evolve.  

Figure 9: Left: Time-dependent surface coverage of proteins on a spherical NP of radius 20 nm in 

the hard sphere model in which the adsorption is taken to be irreversible. Solid lines indicate the rate-

equation HS model, solid points indicate the results of simulations with surface diffusion, and open 

symbols indicate the simulations excluding surface diffusion. 10 runs of the simulation are performed 

for each case, with error bars indicating the standard deviation and points the mean. Right: As left, 

except the desorption is only slowed by a factor of 10 relative to the standard set of proteins, diffusion 

is disabled, and NP 10R   nm, with 100 KMC simulations performed. 

Figure 10: Left: Time-dependent surface coverage of proteins on a spherical NP of radius 10 nm in 

the hard sphere model (solid lines) and mean field model (dashed lines and darker shades) obtained 

from the numerical integration of the rate equations. Concentrations for all proteins are increased by a 

factor of 1000 compared to the values presented in Table 1. Right: Surface coverages after 24 hours as 

a function of a global scaling factor by which the concentration of each protein is multiplied, 

calculated for a spherical NP of radius 10 nm.  

Figure 11: Time-dependent surface coverage of proteins on a spherical NP of radius 10 nm in the 

hard sphere model (left) and mean field model (right), including additional proteins: FP1, a variant of 

Fib with a much greater concentration, and FP2, a variant of HDL with the radius increased by 0.5 

nm. Lines show the results of numerical integration of the rate equation treatment and points show 

mean results from 100 trajectories obtained from the KMC simulations, with error bars indicating the 

standard deviation. 

Table 1: Summary of the parameters for the three proteins HDL, HSA and Fib used for the 

numerical investigation taken from Ref (18). The proteins FP1 and FP2 are fictional proteins based on 

modifications of the original three proteins to highlight the effects of varying parameters in the model. 



  [C] [μM] R [nm] 
ak  [

310  M
1
 s

1
] dk  [ 

310  s
1
] 

HDL 15 5 30 0.03 

HSA 600 4 2.4 2 

Fib 8.8 8.3 2 2 

FP1 600 8.3 2 2 

FP2 15 5.5 30 0.03 
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