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ABSTRACT

A nanoparticle (NP) immersed in biological media rapidly forms a corona of adsorbed proteins, which
later controls the eventual fate of the particle and the route through which adverse outcomes may occur.
The composition and timescale for the formation of this corona are both highly dependent on both the NP
and its environment. The deposition of proteins on the surface of the NP can be imitated by a process
processes of random sequential adsorption and, based on this model, we develop a rate-equation
treatment for the formation of a corona represented by hard spheres on spherical and cylindrical NPs. We
find that the geometry of the NP significantly alters the composition of the corona through a process
independent of the rate constants assumed for adsorption and desorption of proteins, with the radius and
shape of the NP both influencing the corona. We further investigate the roles of protein mobility on the
surface of the NP and changes in the concentration of proteins.

SIGNIFICANCE The adsorption of proteins to nanoparticles is key to understanding their biological
activity and fate. We present an improved version of the rate-equation based adsorption model that
imitates random sequential adsorption and can be applied to curved nanoparticle surfaces. Our results
demonstrate that the geometry of the nanoparticle alters both the evolution and the final state of the
corona when proteins are modelled as rigid particles. In comparison to the previously employed
mean-field model, in which proteins are taken to be arbitrarily deformable, we find a significantly
longer timespan for the corona to form and reach the equilibrium state. We also demonstrate that the
protein-nanoparticle interaction can change the corona formation kinetics and the resulting corona
content, thus affecting the biological fate of the nanoparticle.

INTRODUCTION

Matter, even elements which are well-known on everyday size scales, takes on new properties on the
nanoscale due to increased surface area and quantum mechanical effects, such that even a famously
inert metal like gold may become highly reactive in the form of nanoparticles (NP) (1). These new
properties, however, potentially lead also to hazards when the NPs are inhaled, absorbed through the
skin, ingested, or otherwise find their way into the human body (2, 3). A key finding so far has been
the observation that a NP in a biological medium rapidly forms a “corona” of adsorbed proteins and
other molecules (4, 5). This corona is known to be linked to the transport of the NPs around the body,
their uptake by cells, and potential adverse outcomes (6-8). Thus, the prediction of the content of this
corona is key to predicting the safety of novel nanomaterials.

Qualitatively, the corona may be separated into two classes of bound protein: “hard” and “soft” (4).
The hard corona refers to the proteins strongly bound directly to the surface of the NP, whereas the
soft corona is a collection of proteins which are loosely bound on top of the adsorbed protein layer.
The content of the hard corona is highly dependent on the material and morphology of the NP, and
evolves through the adsorption of proteins upon their diffusion from the bulk, followed by their later
desorption and replacement by other proteins over several hours (4, 5). The rate at which proteins
desorb is linked to the strength with which they are bound to the NP. The weakly bound proteins are
typically smaller and so diffuse faster through the biological medium. Thus, they have a higher rate of
collisions with the NP and may feature more in the earlier stages of the corona before being replaced
by more strongly-binding proteins which collide less frequently, but do not desorb as rapidly. The
phenomenon of protein replacement in the adsorption layer is known as the Vroman effect (9). The
chemical composition of the NP and any modifications to the surface directly influence the strength
with which different proteins bind to it, for example, titania NPs are known to be strongly hydrophilic
and thus bind more strongly to certain classes of proteins (10). Intuitively, the curvature of the surface
of the NP also influences the strength of the binding: a flat NP will have more of its surface contacting



a given protein (assuming it is convex around the site of binding), and thus experience a stronger
attractive force than a curved NP that makes a point contact. Likewise, at least for spherical and
cylindrical NPs, a lower curvature implies a larger radius and thus a larger volume with a stronger van
der Waals interaction between the protein and NP (11). We may readily expect therefore that the
strength of the binding differs between NPs of the same material but different surface curvatures, i.e.,
as a function of the geometry of the NP, as is observed in calculations of the binding energy through
coarse-grained methods (11, 12). Beyond this, we expect that the curvature of the surface plays a role
in defining how tightly proteins may pack on the surface as a purely geometrical effect (13, 14).
Indeed, as observed in recent work (15), spherical and cylindrical NPs of the same material may have
have differing corona compositions, which are attributed to a combination of these two effects.
Likewise, spherical NPs of the same material but different radii have been observed to exhibit
different corona compositions (16).

Given the relevance of the corona to biological outcomes, it is therefore essential to get insight into
the mechanisms of its formation and predict its content. This can be done experimentally through a
variety of methods, but these are typically highly sensitive to the exact concentration of proteins used,
which may vary significantly between the samples of real biological fluids, and cannot be
immediately applied to novel NPs. We therefore turn to theoretical and computational methods to
predict both the evolution and the steady state. In principle, this could be achieved by performing a
molecular dynamics simulation of the NP immersed in the biological liquid. A brute force solution of
the problem is difficult due to the combination of extremely large numbers of atoms and long
timescales involved. Atomistic simulations of individual proteins typically require several days to
produce a few nanoseconds of simulated time, while the corona may consist of hundreds of proteins
and reach equilibrium over several hours to days (16, 17). Thus, to model the actual adsorption-
desorption kinetics it is necessary to employ a coarse-grained approach in which the biomolecules are
represented by less complex structures that are more amenable to simulation. Even these coarse-
grained simulations may be still limited in terms of the amount of computational time taken, and so to
probe the dynamics of corona formation on biological timescales one may need to turn to alternate
methods, e.g. rate-equation treatments or different simulation technigques (18-26).

Previous work on the formation of the corona based on rate equation treatments has primarily focused
on a mean-field (MF) approach in which the rate of incoming proteins is reduced by a factor
dependent on the total surface area occupied by proteins but further steric factors are not taken into
account. That is, if 50% of the surface area of the NP is occupied by a protein, the binding rate for all
incoming proteins is reduced by 50%. This assumption is justified if the proteins are sufficiently
deformable that they pack perfectly tightly without any gaps. If this is not the case, then it is
straightforward to envision a situation in which the total uncovered area is sufficiently large to allow
the binding of further proteins, but is distributed across a number of gaps each of which are too small
individually to admit a further protein. In general, proteins cannot arbitrarily adjust their bound
configurations and so it is reasonable to assume that some parts of the NP will be uncovered but
unavailable for binding. If we consider in particular globular proteins which may be approximated as
spherical, then it is clear that there must be gaps between these proteins due to the impossibility to
perfectly pack spheres. This leads us to consider a model of random sequential adsorption (RSA) with
the addition of desorption and surface diffusion, see e.g. Ref(27) for an overview of models. In this
paradigm, the proteins are modelled as hard spheres with well-defined positions on the NP.
Intuitively, we may expect this hard-sphere (HS) model to produce different results to the MF
approach. Indeed, numerical simulations have empirically shown that the HS model predicts effects
arising purely from the geometry of the NP and deviations from the MF predictions for the adsorption
of a single species of protein (13). Although these individual works each detail certain aspects of the
protein-NP corona formation, none completely describe the realistic case of a mixture of rigid proteins
binding to curved surfaces. There is therefore a need to develop a theory capable of accounting for the
effects of curvature when multiple species of protein are present to enable a more physically realistic
modelling of the corona formation on curved NPs. However, rate equation treatments have a
limitation in that the medium in which the NP is immersed may contain a very large number of
different protein species, each of which may bind at an essentially arbitrary orientation relative to the
NP with an affinity unique to each orientation. Numerical integration of such a large number of



dependent variables rapidly becomes infeasible, while models more complex than the MF typically
lack analytical solutions for even a single spherically symmetric protein. Thus, we must consider also
computational approaches capable of simulating large periods of time, e.g., kinetic Monte Carlo
approaches in which the time between the adsorption and desorption of proteins is not directly
simulated.

In this work, we employ a combined analytical and computational approach to investigate the effects
of the geometry of the NP on the corona composition in terms of how this alters the packing
efficiency and the rate at which proteins adsorb to the surface. We demonstrate that the MF and hard
sphere (HS) models predict significant differences in the timescales and numbers of adsorbed proteins
for a simple system of three common blood serum proteins previously employed in studies of corona
formation on spherical NPs (18, 19). Using an approach based on scaled particle theory as previously
proposed for adsorption onto planar surfaces (28), we develop a rate-equation treatment for the HS
model that may be numerically integrated to obtain the evolution of the corona on spherical and
cylindrical NPs, finding that the geometry of the NP alters the composition of the corona even when
the change in binding affinity due to the surface curvature is neglected. We confirm these results
using Kinetic Monte Carlo simulations, finding excellent agreement. Our model highlights the
importance of geometric effects, binding strength, and the surface diffusion of the bound proteins, and
extends previous work for adsorption on planar surfaces by demonstrating how it may be adapted for
adsorption to curved surfaces for sets of multiple adsorbing particles.

METHODS

Rate equations

We consider a model of reversible adsorption of proteins to the surface of an NP in which the protein
is in physical contact with the surface and occupies an area A thus making it inaccessible for other
proteins. The surface area of the NP is A, , and we denote the number of available binding sites for a
given protein as n, = Ay, / A . We define the average number of proteins of type i which are bound to
the NP to be N, and further define the surface coverage of this type to be S, = N, / n,. Each protein is
further characterised by a rate constant for adsorption, ka,i (inunits s M) and desorption kd’i and

a bulk molar concentration [C,]. We assume that this bulk concentration remains fixed during the
evolution of the corona due to either diffusion of proteins from a reservoir or a sufficiently low
concentration of NPs that the effect of binding on the concentration of unbound proteins is negligible.

Once a NP is immersed in a protein solution, the evolution of the resulting corona using a rate-
equation treatment is given by

%:ka,ini[ci]F)i(N)_kdxiNi’ (1)

where proteins of type i collide with the NP at a rate given by ka’ini [C.]and P, (N) is the probability
that a colliding protein of this type successfully binds to the surface of the NP as a function of the set
of bound proteins, denoted by N = ( N;, N,...N, ) We further assume that the protein binds to the
surface with unit probability if there is sufficient space for it to do so, with any other factor which
might prevent binding subsumed into ka’i , 8.0., the protein only binding in certain orientations. Thus,

the probability of binding is determined by the probability that a protein randomly positioned on the
surface of the NP does not overlap with other proteins. In the MF approach of Refs.(18, 19), this
probability is simply equal to the fraction of the surface area of the NP that is not already covered by
proteins,



This function is independent of the identity of protein i and thus the rate of binding of all proteins is
reduced by the same amount. Using this definition and changing variables from N, to s, we obtain

ds,
E;=kMB;{}—2}J—kM%’ ®

which is independent of the set of values n,. Thus, in the MF model, the corona composition defined

in terms of the surface coverages depends only on the concentration of unbound proteins and the rate
constants for adsorption and desorption. The set of linear first-order differential equations given by (3)
can be solved analytically using standard techniques. Here, we simply give the steady-state corona
composition *:

ka,j/kd,j[Ci] .
1+ K, kg IC)]

It should be noted that this result is essentially equivalent to the Langmuir isotherm, and that although
we have obtained it through a kinetic approach it may also be obtained as the thermodynamical
equilibrium. Under this model, if the proteins are reasonably strongly binding or have a high
concentration then the occupied fraction of the NP surface rapidly approaches unity, that is, the NP
becomes completely covered in proteins with no gaps between them. This simple model is valid if the
area occupied by a protein can be deformed to enable this optimal packing. In general, however,
proteins possess some degree of rigidity preventing this deformation. Consequently, gaps will likely
exist between proteins bound to the surface. In the mean field model, the sum of these gaps represents
valid area for the binding of further proteins, even if each gap is individually too small to admit a
protein. A further limitation of this model is that it assumes that the coverage of the NP reduces the
binding rate of each protein identically. Intuitively, we might expect that small proteins are less
effected by the increased coverage due to their ability to fit better into gaps between proteins already
present on the surface. To quantify these effects, we investigate a model in which the projections of
the proteins are taken to be rigid and the proteins are modelled as spherical. We refer to this as the
hard-sphere (HS) model, although strictly speaking it is the projections of the proteins which are hard
in the sense they cannot overlap or deform. As we are interested only in the monolayer hard corona,
the binding process is equivalent to the two-dimensional random sequential adsorption and desorption
model which has been thoroughly investigated for planar surfaces. In particular, it has been shown
that the acceptance probability for an incoming particle in this model can be approximated by (28)

R (N)=exp(~4* (N) /K, T), (6)

N, (t=c0)=n, (@

ex

where g~ is the excess chemical potential for the insertion of a new protein of type i as a function of
the current state, under the assumption that the state is currently in equilibrium. As before, a protein
successfully binds to the NP with probability P™ and rejected with probability 1—P". In the case

of the adsorption of disks onto a planar surface, it was shown that this assumption is generally quite
good even for non-equilibrium states and that the required acceptance probability can be obtained
from scaled particle theory (SPT) (28). The probability for a freely-rotating convex particle to have
sufficient space to bind is given by

Unlike in Ref.(19), this is the exact solution to the steady-state as we have made the approximation that the
concentration of unbound proteins remains fixed.
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where A and p; are the area and perimeter of the projection of protein i onto the surface,

S= (sl, S,...5 ) . This expression implicitly assumes that the bound particles diffuse on the surface,
and we investigate the effects of this assumption later.

In general, the acceptance probability in the HS model is reduced in comparison to that in the MF
model, reflecting the fact that an incoming protein is not necessarily able to find a suitably large gap
to bind to the NP even if there is sufficient space in total. To illustrate this effect, we consider the
special case of a single type of spherically symmetric protein binding to a spherical NP, for which we
can assume the projection of the molecule is circular. In this case, Eq.(6) becomes independent of the
actual sizes of the protein and NP, but does not reduce to the MF case. In Figure 1 we plot the average

time taken to adsorb a new protein, 1/ (k,[C,]n,P,) as a function of the surface coverage for both the

MF and HS cases, setting Kk, [C, ]n; =1s" such that one potential adsorption occurs per second. It can

immediately be seen that the time taken to adsorb a single new protein rapidly increases even at
modest surface coverages in the HS model compared to the MF model. Since the formation of the
corona likely involves many adsorption events, it follows that even if individual adsorption attempts

proceed quicker than the rate of 1s™ considered in this simple example, the overall formation of the
corona will proceed slowly once a moderate surface coverage is reached. Consequently, the steady-

state may not be reached on experimental timescales unless desorption of bound proteins is very fast
and the equilibrium surface coverage is low. A rough estimate of the total collision rate

K., = K,n;[C,] for a spherical protein to a spherical NP in terms of proteins per unit time can be
obtained from diffusion theory (29),

Keon = 47 (Dyp + D, )(R: + Ry )[C,IN,, )

coll

where N, is Avogadro’s constant and Dj is the diffusion coefficient. For a typical protein diffusion

coefficient on the order 1zm?s™ (and neglecting the diffusion of the larger NP), protein
concentration 1uM , with R, + R\, =20 nm, this implies a few hundred proteins collide with a

given NP per second. With this collision rate, we may reasonably expect surface coverages on the
order of 0.7 in the timeframe of a few hours in the HS model, with a comparable coverage in the MF
model reached within seconds.

We hypothesise that we can employ Eq.(6) to estimate the probability for the successful insertion of
globular proteins into the corona of curved NPs, provided that we correctly calculate A, p; to reflect

the projected area of the protein onto the surface of the NP when evaluating the insertion probability.
Under the assumption that this procedure is valid, which we test in this work, the evolution of the
corona in the HS model is given by

ds.

—= kai[Ci]PiHS (S)_ kd iSiy 8

dt ’ '

where F’iHS will in general be a function of both the geometry of the NP and of the proteins. We may
therefore expect that, unlike the MF case, the corona composition in this model will depend on the
geometry of the NP even if the parameters kak,,[C;] are kept fixed, since this will alter the values
of A, p; used to calculate the value of PiHS. For a single protein, we can numerically obtain the

steady-state surface coverage as a function of the equilibrium constant K, =k, /k; and



concentration, as shown in Fig. 1 and compared to the equivalent prediction for the MF model. It is
immediately apparent that this steady-state coverage is much less in the HS model than in the MF,
with two key implications. Firstly, we can generally expect fewer proteins to be bound in the HS
model, even at very high concentrations or if the binding is particularly strong. Secondly, given an
observed surface coverage (e.g. obtained from experiment) and initial concentration of proteins,
different equilibrium constants would be obtained depending on which of the two models was
employed, as noted in Ref (13).

Binding areas

To apply this model, we must define the area A occupied by a protein on the surface of an NP. We
consider two morphologies of NP: spherical NPs of radius Ry, and rod-like cylindrical NPs of radius
R\ and effectively infinite length. Planar surfaces can be obtained as a limit of either of these with

Ry —> e . We assume that all proteins are approximately spherical and characterised by a radius R,

and that a bound protein is in physical contact with the NP. We project the protein onto a curved
surface as shown schematically in Fig. 2. For a spherical NP, this occupied area is given in terms of

. R
the angle 6, =sin™'| ———— | by
R+ Ryp

A=R%, [ [“sinodedg, (9)

such that

A =27zR%, 1—\/1—(%] . (10

For a very large NP, the area tends towards 7zRi2, i.e., the maximum cross-section of the protein.

Conversely, for an NP much smaller than the protein, the number of available binding sites
approaches the limiting value of 2, in agreement with the geometrical constraint that only two spheres
may touch at a single point. In all cases, the number of binding sites is given by the surface area of the

sphere divided by the area occupied by a protein, n, = 47[R,§,P / A . For the HS model we also require
the projected perimeter of the protein. By reasons of symmetry, it follows that the projection should
be circular and thus the perimeter can be obtained from the area by p, =27, /Aj I .

Next we turn to a cylindrical NP. The irreversible adsorption of monodisperse spheres onto a cylinder
has been recently investigated in Ref.(14) and demonstrated to be equivalent to the deposition of
approximately ellipsoidal shapes onto a planar surface, as depicted in Fig. 3. The exact area of the
projection of the protein onto the cylinder is given by integrating the expression in Ref.(14) and re-

scaling to restore the dependence on Ry,

A =4RR,, ﬁ[ﬁuj El-—* |kl -t (11)
R | R Rl , 2Ry Rl , 2Ry

R* R R R

where E(m) and K (m) are the complete elliptic functions of the second and first kind respectively

and are given in terms of the parameter m =k?.



The area A can be used to calculate the number of available binding sites for a cylinder of finite (but
large) length L and convert the surface fraction into the number of bound proteins according to
n, =27R,L/A. To apply the HS model, we must take into account the fact that the projections are

not freely-rotating and thus Eq. (6) does not apply. Following Refs. (30, 31), the acceptance
probability for shapes with a fixed orientation is given by
S sk s A™ s A%

Azz Zj JA_’J-I-Z:j JA_JI AZJA
:(1—zjlsj]exp (1—2,-3,-) + = o g L (12)

where A% — %(A] -A-A ) Is the excess excluded area for protein j due to protein i, defined in

terms of the co-area AJ. which is the area of space in which the centre of protein j cannot be placed

without causing an overlap with protein i. For the particular case of spherical proteins binding to a
cylinder, for which all the projections are aligned along the same axis, we approximate this area by

the area of an ellipse with axes R +R;, R + R, , where

R =Rysin™ R . (13)
R+ Ryp

and A =7(R+R)(R+R;).

We may demonstrate how the curvature of the NP affects the probabilities for an incoming protein to
be accepted into the corona. We consider a simple system consisting of two types of proteins with

radii R, =5 nmand R, =2.5 nm, and in Fig. 4 we plot P, as a function of s, for two values of s,
on spherical NPs of radius 5 nm. We additionally plot the results obtained for planar NPs in the HS
model and in the MF model. In all HS cases, the insertion probability for s, >0 is significantly lower

than the MF model, and so we may immediately expect the rate of corona evolution to be slower in
the HS model. We also observe that the curvature of the NP plays a role, with the spherical NP of
radius 5 nm exhibiting a greater acceptance probability for the larger protein than the planar HS
model predicts. Conversely, the smaller protein exhibits a lower acceptance probability to the curved
NP than to a planar NP if the larger protein is already adsorbed. Thus, larger proteins are not only
inserted into the corona more efficiently for curved NPs, but also more effectively screen out smaller
proteins. We may therefore expect that the corona content of small, spherical NPs is more strongly
biased towards larger proteins than would be predicted for planar NPs. We find very similar effects
for cylindrical NPs and do not show these for reasons of space.

It is important to note that, although we have presented the binding areas assuming a spherical
protein, the general model proposed here depends only on the projection of the protein onto the
surface and not its exact shape. Since Eq.(6) is applicable to freely-rotating convex projections and
Eq.(12) to projections of fixed orientation, a wide range of proteins can be modelled using this
approach provided that their projected area and perimeter can be calculated and it is reasonable to
model their exclusion of other proteins based on their projected area onto the NP. Thus, a complex
protein can be treated by estimating binding constants and an associated binding area for each
possible orientation relative to the surface of the NP. In this work, we limit ourselves solely to
considering spherical proteins to simplify the computational approach described later. We also note
that it is the projections of the proteins which cannot overlap, which is a more strict requirement than
simply that the proteins themselves do not overlap. This assumption is necessary to allow small
proteins to block larger ones and vice-versa (32). Physically, this model of blocking based on
occupied area represents that the protein makes contact with the NP over a surface greater than a



single point. In this way, small proteins cannot adhere in the region between a larger protein and the
NP which would be permitted in a purely HS model. Likewise, large proteins cannot bind to the NP in
regions occupied by smaller proteins by simply making a point contact with the NP, which in reality
would not be likely to produce stable adsorption and lead to a very rapid desorption of the protein.

Computational methods

The set of equations in the MF approximation can in principle be integrated analytically to produce
the evolution of the corona as a function of concentrations and shapes of the proteins. The more
complex HS, however, must be integrated numerically. In practice, we also numerically integrate the
rate equations in the MF model for consistency and to simplify the code. We employ the numerical
integration routines (“NDSolve”) in Mathematica 12.1 for both HS and MF models (33). For the
parameter sets considered here, we find that the default options for the automatic selection of
integration methods and step sizes perform sufficiently well that we do not need to manually optimise
these. We have found that the numerical integration for the MF rate equations produces results in very
good agreement with the analytical solution with absolute errors in the surface coverage of less than

5x107° for a typical set of proteins, further validating this approach.

To validate the rate-equation approach, we also perform simulations of the adsorption process. As
discussed previously, even highly coarse-grained models of corona formation using molecular
dynamics take an extreme amount of computational time. Thus, we instead employ a kinetic Monte
Carlo (KMC) method (34) that can readily be extended to large numbers of proteins. This algorithm
samples a set of events — adsorption or desorption of proteins — advancing from one to the next
without requiring the evaluation of the time inbetween them, allowing for the efficient simulation of a
large number of events and thus an extended amount of time. At a given time t, the algorithm
generates a list of possible events, randomly selects one with a probability weighted by the rate at
which that event occurs and the system is updated accordingly. Afterwards, the time is advanced by a
random amount given by

At = —Ink(—u) (14)

tot

where Kk, is the sum of all event rates and u is a random number uniformly distributed in the interval
[0,1] . This process iterates until the time reaches a pre-determined stopping point. The possible
events correspond to proteins colliding with (and potentially adsorbing to) or desorbing from the
surface of the NP. Collisions occur with a rate given by k_;n,[C,] and desorption with arate Nk, ;.

If a desorption event rate is selected, a randomly chosen protein of the specified type is removed from
the surface of the NP. Conversely, if a collision occurs, the protein is either accepted or rejected with
criteria depending on the model employed. In the MF model, the current occupied surface fraction

Zsj is calculated, and a random number in the interval [0,1] is generated. If this random number is
i

greater than ZS ;» the protein is accepted and added to the state of the system. If not, the simulation
i

proceeds to the next event. We note that this may allow a temporary “over-saturation” of the surface
of the NP by a single protein since it does not test if the space remaining on the surface is sufficiently
large to allow for the admission of this protein, but this effect is likely to be significant only for very
small NPs in which an individual protein occupies a large amount of the surface of the NP.

In the HS model, the location of each protein is explicitly tracked by generating a location for each
colliding protein, where these positions are uniformly distributed on the surface of the NP. In the

spherical case, a pair of angles 6., ¢ are randomly generated to produce a uniform distribution of
points on the surface of the sphere. This is achieved by drawing two random numbers u,,u, from the
uniform distribution [0,1] and taking ¢ = 27u,,6, = cos™ (2u, —1) (35). A protein of the



corresponding type is then inserted at the Cartesian coordinates given by
(Rye + R )[cosgsing,,singsing,,cosf] provided that it does not overlap with any existing
proteins. An overlap is deemed to have occurred if the condition,

_ R.
cos™ (sin49i sing, +cosé, cos o), cos(¢j —¢ )) csin?— R Lgint_ 0 (15)
Rw + R R + R,

is found to hold for any protein j already adsorbed to the NP and where protein i is the new protein.
This ensures that the projections of the proteins onto the surface do not overlap, as assumed in the
rate-equation model, and is derived by projection of the centre of the two proteins onto the sphere and
calculating the minimum angular distance between them allowable without overlap occurring. In both
models, regardless of whether the protein successfully adsorbs or not the simulation is then moved to
the next timestep. In this way we ensure that the rate of successfully adsorbing proteins is consistent
with the rate-equation model.

For the cylindrical NP, the position of the protein is defined by the coordinates p.,,z;, where
P, = Ry + R, such that the protein is in contact with the NP and binding occurs only to the curved

surface. The angular coordinate ¢ is chosen from a uniform distribution in [0, 2] . The final

coordinate z is chosen uniformly from the interval [-L/2,L /2], where L is the length of the

cylinder. To minimise edge effects, we ensure that L is large compared to the typical radius of the
proteins and employ periodic boundary conditions at =L /2. Unlike in the spherical case, we cannot
write down a simple expression to test if a pair of proteins overlap due to the more complex shape of

the projection of proteins onto the cylinder. Instead, for a pair of proteins of radii R;, Rj , we

determine if overlap occurs by setting the radial co-ordinate for both to p, ; = Ry, + maX(Ri, R, )

and determining if this causes a physical overlap between the proteins, i.e. if the distance between
their centres is less than R, + R; . This procedure ensures that a smaller protein cannot bind in the

region between a larger protein and the NP, which would be possible if physical overlap was only
checked for at their actual location, is consistent with the definition used for the spherical NP, and
avoids a computationally expensive test for overlapping based on the projections of the two proteins
onto the surface. By projecting the locations of proteins obtained from simulations onto a planar
surface as depicted in Fig. 3 we have determined that this test correctly prevents the overlap of the
projected areas of proteins for those considered here, although in general this method may fail if the
proteins are much larger than the NP. To implement the periodic boundary conditions with respect to
the ends of the cylinders, overlap is tested for the incoming protein against the original set of bound
proteins and copies of this set translated by =L along the axis of the cylinder. For both spherical and
cylindrical NPs, these overlap criteria are expected to produce equivalent results to the theoretical
expressions Eq. (6) and Eq. (12) respectively, but the KMC program does not evaluate these
probabilities when assessing if a protein is accepted or not. Thus, this method provides a means to test
the validity of these expressions for the systems considered here.

For the majority of the simulations, we assume that once a protein has adsorbed to the NP it remains
fixed in place until it desorbs. It is known, however, that the diffusion of proteins on the surface of the
NP increases the packing efficiency (36), and the rate-equation model assumes that the adsorbed
proteins are effectively in a fluid phase (28). The desorption and readsorption of proteins produces a
restructuring of the surface equivalent to the diffusion, justifying the exclusion of this process. If,
however, proteins are sufficiently tightly bound that they do not escape the NP but are still free to
diffuse across the surface, then it is of interest to investigate how the surface restructuring impacts the
results. To implement this, after each event the proteins are selected in a random order and the angular
position of each molecule perturbed by a small random amount. These perturbations are randomly
drawn from zero-mean normal distributions with standard deviations given by (37)



o,=——| =+ (17)
0

where At is the time between the most recently applied event and the event before and D; is the

surface diffusion coefficient, which we set to 10° nm?.s™" for all proteins. A test move is generated

and accepted if it does not result in an overlap between proteins and otherwise rejected, with up to
four test moves attempted before moving to the next protein, with proteins selected in a random order.
Proteins which are not successfully moved are not re-tested following the moving of other proteins,
but are tested again on the next timestep. The inclusion of this restructuring requires re-checking for
collisions following each trial perturbation and so dramatically slows the simulation. Thus, we do not
employ this procedure for simulations except where noted and have implemented it in the code only
for spherical NPs. We note that this procedure is not a completely physical representation of diffusion
but is employed to produce a restructuring of the adsorbed layer consistent with the effects produced
by diffusion while maintaining a reasonable computational cost.

The code used for the KMC simulations is implemented in Python 2.7 and available for download as
part of the UnitedAtom software package (38).

RESULTS

In this work, we are primarily interested in determining how the geometry of the NP influences the
corona, independently of the strength with which a given protein binds to the surface of the NP. Thus,
we first vary the size and shape of the NP while keeping the concentrations and rate constants for
adsorption and desorption for each protein fixed and present results comparing the KMC simulations
to the rate-equation model. For consistency with the literature, we primarily employ the same system
of proteins as in Ref. (18) using the same rate constants and concentrations quoted there as
summarised in Table 1. This system consists of three proteins: HDL, HSA, and fibrinogen (Fib). Of
these, HDL and HSA are globular and so can be reasonably modelled as spherical. Fibrinogen is a
rod-like protein, which can be treated using the analytical model but not in the current implementation
of the CoronaKMC program for side-on orientations. For the purposes of this work, we simply
assume the binding is achieved through an end-on configuration, such that the binding profile is
approximately equivalent to that of a globular protein. The exact identity of these proteins is
immaterial as we are focused on the mathematical treatment rather than attempting to match
experimental results, and we simply require a range of concentrations and binding constants. Thus,
Fib can also be considered to be a large but weakly binding globular protein, with the name used
purely to ensure consistency with Ref. (18). Of the proteins considered here, HDL binds significantly

more strongly than the other two, with a characteristic lifetime 1/ Kk, on the order of about 9 hours
compared to ca. 8 minutes for HSA and Fib. In certain simulations, we also consider two fictional

proteins corresponding to one comparable to Fib but with a higher concentration, and one which is a
slightly larger form of HDL. To enable a comparison between NPs of different sizes and

morphologies, we present all results in terms of the surface coverages S; , using the relation

s; = N, /' n; to convert the numbers of bound proteins observed in KMC simulations to the surface
coverage.

First, we investigate the MF model, with results shown for both the rate-equation model and the KMC
simulations for spherical NPs of radius both 5 and 50 nm in Fig. 5. The agreement between the results
obtained from the rate-equation and KMC simulations is excellent, and it can be seen that the mean
surface fraction is independent of the radius of the NP, with HSA rapidly absorbed and then replaced
by HDL, and with Fib essentially excluded entirely at all times. The exclusion of Fib is due to the

preferential adsorption of the other proteins, since if these are excluded we find S, =0.90 in the



steady-state. Although the mean coverages are independent of the radius of the NP, it can be seen that
the fluctuations around the mean value are larger for the smaller NP. The coverage for single-particle
adsorption on infinite surfaces is known to follow a Poisson distribution (39), for which

JINZY—(N,)? oc /N, , such that fluctuations in the surface coverage scale as /s, / 1, . The true

distribution for multi-component adsorption on finite surfaces is of course likely to be much more
complex, but heuristically we can expect similar scaling of fluctuations, especially when the steady-
state corona consists of essentially only a single protein as in the present case.

Next, we perform simulations for this same set of proteins in the HS model. The results for spherical
NPs of size 5 and 50 nm are shown in Fig. 6. It is immediately apparent that this significantly alters
both the surface coverage and the rate at which the system approaches equilibrium compared to the
MF model. The analytical model using the surface coverage given by Eg. 6 is in good agreement with
the numerical results. It can be seen that, unlike in the MF model, the surface coverage in the steady-
state depends on the radius of the NP. Since we have left the rate constants unchanged, this implies
that this is a purely geometric effect arising solely from the different packing efficiencies of spheres
on curved surfaces. Likewise, in Fig. 7 we present a comparison between the numerical simulations
and the numerically-integrated rate equation treatment for cylinders of radius R =1 and R =5nm,
again finding that the radius of the NP plays a role in defining the evolution of the corona even when
rate constants are not altered. In both cases, the time taken to reach the steady-state is on the order of
several hours despite the relatively quick desorption of individual HSA molecules, which occurs on
the order of minutes. This is most likely caused by the preferential re-adsorption of HSA into the gaps
left by its desorption compared to the adsorption of the larger HDL molecules. As with the MF case,
Fib is essentially excluded from the binding.

In Figure 8, we plot the steady-state surface coverage obtained from the rate-equation treatment for
HDL as a function of the radius of the NP for both spherical and cylindrical cases. It can clearly be
seen that for both the coverage increases as the radius approaches zero due to the increased packing
efficiency of spheres around curved surfaces relative to planar surfaces. For both geometries, the
selectivity of HDL over HSA decreases as the size of the NP increases. In contrast, the MF model is

radius independent and predicts almost complete saturation of the NP in HDL, s, = 0.99. We note

that the total surface coverage also exhibits a slight dependency on the curvature of the NP, but for the
protein set considered here this is a very minor effect and the total coverage falls within the range
0.62—0.65. As a measure of the time taken for the corona to evolve, Figure 8 also shows the time at
which the surface coverage switches from predominantly HSA to HDL as a function of the radius. In
general, it appears that NPs with smaller radii approach this point more rapidly than larger ones,
indicating that the corona evolves faster for these high-curvature NPs. Likewise, the effects are more
strongly pronounced for the spherical geometry in comparison to cylinder of the same radius,
reflecting the higher local curvature of the sphere. Convergence towards the planar limit is very slow
in both cases.

With the geometric effects established, we next consider how varying the binding parameters alters
the outcome. Certain nanomaterials, for example gold, are known to adsorb proteins so strongly that

the binding is essentially irreversible, k,; ~ 0 (11). In this case, we may intuitively expect that the

corona primarily represents the proteins which collide with the NP more frequently than others. The
rate-equation model proposed previously is in principle still valid if we set k, =0 for all proteins,

however, the probability for successful adsorption of a protein in the HS model assumes a fluid-like
phase of bound proteins (28). If proteins cannot desorb, then the bound layer of proteins does not meet
this requirement and so we may expect deviations between the simulations and rate-equation model.
The fluid-like behaviour can also be obtained by allowing bound proteins to diffuse on the surface of
the NP and so we perform simulations including a process based on surface diffusion which enables
the layer of bound proteins to restructure. The results in Figure 9 show a comparison between the
simulations with (points) and without (open circles) surface diffusion for the protein set in the absence
of desorption. Clearly, the rate-equation model remains accurate when surface diffusion is enabled for
irreversible adsorption, but fails to accurately describe the results if the adsorbed proteins are fixed on



the surface. Due to the limitations of computational resources, only a small number of simulations
were performed with restructuring, but these confirm the fact that the corona has effectively reached
its steady state within 360 s. Formally, we expect the rate-equation model in the limit of non-
desorbing proteins to produce inaccurate results after an extreme period of time, as it can

straightforwardly be seen that a steady-state solution with k; ; =0 can only exist when the surface of

the NP is completely covered in proteins. Geometrically, this optimum packing cannot be achieved
for spherical proteins. In practice, however, we find that for the set of proteins considered here the
numerical integration of the rate-equation treatment provides physically realistic results even for
timespans of up to one year, far exceeding experimental timescales.

For small but non-zero desorption rates, we find again that the evolution of the corona is significantly
delayed. Even a relatively minor decrease in the desorption rates by a factor of 10 (with diffusion
disabled) as shown in Fig. 9 results in the steady-state corona taking several days to form in the HS
model. A slightly worse agreement between the KMC and rate-equation models can be observed in
the initial stages of the corona formation. Taking into account the results found for irreversible
adsorption, it is likely that this is due to the inability of the layer of bound proteins to restructure
sufficiently quickly during the initial adsorption to provide the fluid-like properties necessary for the
model to hold. We have performed further simulations of the initial stage of formation including
diffusion and find a better agreement when this is included.

The adsorption rate constants listed in Table 1 are quite low, corresponding to (on average) less than
one potential adsorption event per second for Fib interacting with an NP of radius 10 nm, and even the
highly abundant HSA undergoes less than one hundred events per second. It is of interest to
investigate how the predicted corona content varies if these adsorption rates are varied, in particular to
see if increased adsorption rates alter the steady-state corona composition. Although in principle we

may simply scale the values of k_ ., it is more physically reasonable (and mathematically equivalent)

to instead scale the concentrations of each protein by a global factor while keeping their relative
abundances fixed, representing adding more or less solvent during the preparation of the protein
solution. The results of numerically integrating? the rate equations for both the HS and MF models
with the protein concentrations increased by a factor of 1000 are shown in Fig. 10. In the MF model
for high scale factors, there is essentially no effect on the evolution of the corona compared to the
results obtained using the original rate constants beyond it reaching the peak coverage of HSA more
rapidly. In contrast, however, we observe a significant difference in the HS model in this high
concentration regime: the steady state corona is now primarily composed of the more abundant HSA
rather than the more strongly binding HDL. Furthermore, the corona still takes a significantly long
time to reach this steady state, with equilibrium not reached after 12 hours, although only minor
changes take place after this point. Although the underlying model is less physically realistic at such
high concentrations, it nonetheless demonstrates that there is a significant change in the corona
content caused by this scaling. To further investigate this, we calculate the corona composition at 24
hours for a range of concentration scaling factors, as shown in Fig. 10. The surface coverage of HDL
can be seen to vary with this scaling factor in a non-trivial way. At concentrations somewhat lower

than the initial set, S, Iis increased, while lowering the concentration even further then causes S5,

to decrease. Even over the wide range of concentrations considered, Fib. does not appear to
meaningfully bind to the NP. We have performed equivalent calculations in the MF model and find
almost no changes in the steady-state coverages, which we discuss further later.

a,i !

As a further test of the model, we add two additional proteins to the set originally considered and re-
calculate the expected corona composition. The first of these two proteins, FP1, is simply the original
set of parameters for Fib with the concentration increased to be equal to that of HSA, while the second
additional protein FP2 is equivalent to HDL but with a slightly greater radius R, =5.5 nmiin

comparison to the original radius of 5 nm. Results are plotted in Fig. 11 for both HS and MF models.
In the HS model, it can be seen that even significantly increasing the concentration of Fib is not

“Due to the high rate of adsorption, simulating the corona using the KMC method for the timespans required to
reach steady-state for systems with a high concentration of proteins is impractical, even with diffusion disabled.



sufficient to cause it to be expressed in the long-term corona, as although it is initially adsorbed it is
rapidly replaced by more strongly adsorbing proteins (HDL, FP2) or those with similar adsorption
characteristics but a smaller size (HSA). Indeed, although both HSA and FP1 have nearly identical

values of k,[C] and K, , it is notable that of the two only HSA is exhibited in the steady-state corona.

Meanwhile, FP2 has adsorption kinetics quite similar to that of the original protein HDL, but due to
its increased size is less strongly expressed in the corona. Conversely, in the MF model, HDL and FP2
have identical surface coverages as a result of the fact in this model these coverages are independent
of the radius of the protein. Thus, the difference in surface coverage observed in the HS model is due
to the radius-dependent insertion probabilities. Likewise, in the MF treatment HSA and FP1 exhibit
very similar profiles, in contrast to the size effects observed in the HS model.

DISCUSSION

From the results shown in the previous section, it is clear that the timescale for the formation of the
corona — both the initial adhesion of proteins to the surface of the NP and the formation of the steady
state — varies significantly with the model used to describe how the rate of binding is reduced by pre-
existing proteins. At one extreme, if proteins are allowed to move freely around the surface and
deform to an effectively arbitrary degree as in the mean field model, the corona approaches
equilibrium rapidly. At the other extreme in which the proteins are rigid and fixed in place, the time
taken for the corona to reach equilibrium is dramatically increased for the set of proteins considered
here. In both cases, the results of the KMC simulations can be adequately explained using analytical
models of the adsorption process. Strictly speaking, the model of Ref. (28) used for the HS approach
is valid for an equilibrium state, but appears sufficiently accurate for the dynamical states observed
here, even taking into account the lack of diffusion in the majority of the simulations. Indeed, in Ref.
(28) the adsorption probability is shown to be relatively accurate even in the absence of desorption.
Thus, although strictly speaking the processes with and without diffusion are physically different and
are expected to show different physics, we find that including either diffusion or desorption in the
KMC simulations produces a sufficiently good agreement between these and the rate-equation model
to allow their cross-validation.

HS and MF models predict qualitatively similar behaviour for the evolution of the corona — a sharp
initial rise in HSA followed by a slow replacement by HDL until the steady-state is reached, although
on significantly different timescales. This is in agreement with typical experimental results
demonstrating the VVroman effect, in which small, weakly-binding proteins adsorb first and are later
replaced by larger proteins which bind more strongly but collide less frequently with the NP (9). We
observe an enhancement of this effect for highly curved NPs, i.e., those with small radii, and a
stronger effect for spheres than for cylinders. With the set of rate constants used here, the NP corona
in the HS model takes several hours to reach equilibrium as a consequence of the decreased rate of
adsorption at higher coverages. Experimentally, it has been observed that the corona continues to
develop for a period of several hours and so this is not an unreasonable estimate of the equilibriation
time (16). The difference in timescale for the HS approach compared to the MF approach arises from
two main factors. Firstly, the adsorption probabilities in the HS model are in general lower than that
of the MF model, and so the rate of adsorption is slowed down. Secondly, the two models behave
differently when the corona is close to saturation with proteins. In the rate-equation MF model,

adsorption of the larger HDL can essentially always take place as the total coverage S = Zsi never

I
reaches unity and the adsorption or desorption of a fraction of a molecule is permitted. Thus, the
amount of HDL in the corona can continuously increase and gradually replace HSA. In the KMC
implementation of the MF model, adsorption of proteins is only blocked completely when S >1. The
desorption of a single HSA molecule is usually sufficient to restore S <1, enabling the subsequent
adsorption of the larger HDL even if strictly speaking there is not sufficient room on the surface for it,
enabling a stepwise replacement of HSA by HDL. In the HS model, however, adsorption of HDL in
the KMC simulations frequently requires the sequential desorption of multiple HSA molecules in
order to free up sufficient room on the surface for it to bind. The time scale for the evolution of the
corona is therefore set by the rate at which a sufficient amount of HSA can desorb without



replacement by more HSA to permit the adsorption of HDL, which is accurately captured by the HS
rate equations. We have tested a form of the MF KMC algorithm in which adsorption of proteins is
allowed only if this does not lead to over-saturation and found this leads to a decrease in the rate at
which the corona evolves, supporting this interpretation.

The above effect explains the observation that increasing the protein concentrations globally by a
factor of up to one thousand (see Fig. 10) both slows the rate at which the corona approaches the
steady-state and alters the steady-state corona composition. Increasing the concentration of proteins
leads to a significantly faster adsorption of HSA such that desorption of HSA is likely followed by re-
adsorption of this rather than adsorption of HDL. Conversely, decreasing the overall concentration of
proteins initially favours the adsorption of HDL, as it results in a decrease in the amount of adsorbed
HSA while maintaining a sufficiently high rate of incoming HDL to take advantage of this increase in
available binding area. As the concentration decreases further, there is no longer a high enough flux of

HDL to maintain a high surface coverage, and so S, reaches a maximum and then decreases. We
next consider the corresponding effects in the MF model, for which we may obtain analytical results.
From Eq. 4, if we apply a scaling factor « to each concentration such that [C,]= o[C, ,] then the

equilibrium surface coverages are given by,
aKeq,i[Ci,O]
S, =
1+aziKeq,i[Ci,O]

where we have defined K, ; =k, ; /k; ;. The ratio of two surface coverages, s, /s;, in the MF model
is given by:

K [C.
Si /Sj — eq,|[ |,0] (19)
Keq,j[Cj,o]

(18)

and is independent of «. By differentiation of Eq. 18 with respect to ¢, it can also be shown that s; is

a monotonic function of «. Taken together, these two points imply that much of the dependency of s,

on « observed for the HS case cannot be replicated in the MF case: it is not possible for the relative
abundances of two proteins to change by making the medium more concentrated or dilute, nor can the

coverage of a given protein exhibit a maximum as a function of «. Indeed, for aZKeq,i[Ci,O] >1 the

term of unity in the denominator of Eq.18 can be neglected, such that s; in the MF model is
[Ci,]1~16000, and so «

practically independent of «. For the present system of proteins, ZKeq'i
i

must be extremely small for any effect to be noticeable. These observations provide a means by which
the MF and HS models can be distinguished experimentally: diluting the protein solution will lead to
changes of the relative abundance of adsorbed proteins in the HS model but not in the MF model,
provided that the concentration of proteins remains much larger than the concentration of NPs to
ensure that the model considered here remains valid.

In contrast to the MF model, the HS model predicts that the size of the NP relative to the size of the
proteins significantly alters the evolution of the corona. This is especially apparent in the results
shown in Fig. 11, where simply increasing the radius of a protein by 0.5 nm significantly reduces the
extent to which it features in the corona. Likewise, keeping protein sizes fixed and varying the size of
the NP produces a variation in the coverages of specific proteins and the time taken to reach
equilibrium as shown in Fig. 8, while the MF model is radius-independent. Over the range of radii
considered, there does not appear to be a point at which the two models completely converge for the
set of proteins used here. Qualitatively, for spherical NPs of very small radii the HS model predicts
results which are somewhat closer to the MF model than obtained for larger radii. For these cases, the

crossover point at which S, =S54 is reached at around 0.3 hours, comparable to the result



obtained for the MF model of 0.25 hours, and likewise for small NPs in the HS model the steady-state
corona consists almost entirely of HDL, as it does in the MF model. However, the actual value of the
surface coverage still remains significantly lower at around 0.65 rather than the MF values of close to

1, and we find analytically that the insertion probability in the limit R, — O does not reduce to the

simple form used in the MF model. From Fig. 1, we can predict that the MF and HS models are likely
to agree completely only when all proteins present have either an extremely small concentration or
bind exceedingly weakly to the NP to ensure the total coverage is on the order 0.1—0.2 at most. A
further difference between the two models is that in the MF model the more strongly-binding protein
essentially entirely excludes a weaker-binding one, whereas in the HS model a weakly-binding but
small protein may co-exist in the steady-state corona with a larger, more strongly binding protein. The
question therefore remains as to which model — MF or HS — is more appropriate to describe the
formation of protein coronas under biological conditions. In reality, proteins are neither completely
deformable as assumed for the MF approach, nor completely rigid as in the HS model, and so we may
expect that the actual timescales are not as slow as predicted in the HS model.

A key limitation of the analytical approach — whether MF or HS — is the fact that obtaining the
solution to the set of differential equations rapidly becomes difficult as the number of proteins
considered increases. For the results shown here, we have included a set of only three to five proteins,
for which the equations may be numerically integrated using e.g. Mathematica. Realistic systems,
however, may consist of a much greater number of proteins, each of which may bind through multiple
orientations. For the MF model at fixed concentrations of unbound proteins as considered here, an
analytical time-dependent solution can be straightforwardly obtained using matrix methods, producing

solutions which are sums of exponential functions. For a total of N; types of protein, this requires
the diagonalisation of an N; x N; matrix. The computational cost of the numerical integration of the

rate equations, meanwhile, scales as O(NTZ) for the spherical case, since for each protein we must
evaluate a sum over all types of protein to obtain P, (N) In the cylindrical case, the scaling is of
order O(Nf) due to the presence of the double sum in Eq. 12. The KMC simulations, in contrast, are

limited instead by the total number of proteins bound N, due to the requirement to check an

incoming protein for collisions with each pre-existing protein. The number of proteins bound is

proportional to R,f,P , and so overall the computational time can be expected to scale as O ( Rﬁp ) . The

task becomes significantly more challenging with surface diffusion enabled, since the collision tests
there require that every existing protein is tested against every other protein, thus scaling as O ( sz) ,

ie, O ( Rf,,, ) . This is manageable for small NPs, but for larger NPs it may be necessary to instead rely
on numerical integration with a limited selection of proteins present.

We must also mention the limitations of the current model. We have assumed for the HS model that
the proteins can be represented by hard disks with diameters calculated from that of the corresponding
hard sphere. It has previously been shown in the RSA model that a true HS model exhibits different
dynamics as a result of the decreased ability of smaller proteins to block larger ones, and, conversely,
the increased ability of smaller proteins to bind in gaps between the NP and larger proteins (32).
However, that work suggests that for proteins a hard disk model is more reasonable, and it is unlikely
that proteins make only a single point contact with the NP as the true hard sphere model would
require. For the system of proteins considered here, the sizes are sufficiently close that there is not
likely to be a significant difference caused by the differences between these two models. A further
complication is that protein shapes may deviate significantly from spherical and deform to improve
their binding ability, with alternate binding profiles shown to result in increased coverage (40). While
not accounted for in the present model, we note that the surface function (Eq. 6) derived from scaled
particle theory is in principle valid for an arbitrary convex binding area. It is therefore likely that more
complex protein shapes can be modelled by finding the area and perimeter of the projection of the
protein onto the surface of the NP, treating different orientations as being effectively different



proteins. This would further allow for a differentiation between different binding profiles, e.g. head-
on vs. side-on for ellipsoidal proteins. Here, we do not investigate this further, but the CoronakKMC
tool provided in the UnitedAtom package supports proteins with multiple binding profiles by
representing these as hard spheres of varying size (38). For rod-like proteins or those with more
complex shapes, it will likely be necessary to update this software to be able to detect overlaps
between arbitrary projections on the surface of the NP. This, together with testing the analytical
approach for these non-globular proteins, is an ideal topic for further research.

The concentration of unbound proteins in this work and the rate at which they diffuse to the NP
surface is here assumed to be constant. Previous work in the MF model has indicated that finite rates
of diffusion to the surface of the NP influence the dynamics of the corona formation (41), which could

be represented here by a decrease in the adsorption rate K, . Likewise, it is reasonable to assume that
the dynamics will be altered if the concentration of NPs [NP] is sufficiently high that substantial
protein depletion in the environment occurs, i.e., if [NP]n, is of the same order of magnitude as the

concentration of the protein. The adsorption in this case is governed by the diffusion-limited
aggregation. The protein depletion effect can be accounted for in the rate equation model by replacing

[C.1—[C1(0)—[NP]n;s; (t), and in the KMC simulations by dynamically updating the

concentrations of proteins based on the number currently bound to the NP, i.e. essentially by treating
the system via an NVT ensemble rather than grand-canonical one. In this work, we have simply

assumed that [NP] < [C,] such that these effects can be neglected. We have performed a preliminary

exploration of protein depletion, including the necessary modifications to the KMC simulations, and
found that for a spherical NP of radius 20 nm interacting with the present system of proteins these
effects can be neglected for NP concentrations of less than 0.1.M . A further possible extension

would be to include effects such as three-body interactions in the KMC simulations to produce better
agreement with experiment as in Ref (22). Our model also does not capture more complex
interactions between the proteins and their environment as considered in the dynamic density
functional theory of Angioletti et al. (25, 26), which indicates that for an accurate model of corona
formation it may be necessary to compute more realistic models of the protein density distribution
near a NP, especially for NPs surrounded by a permeable gel. In the present case, however, we
operate under the assumption that the NP and proteins in solution are sufficiently mobile that no
significant concentration gradients develop.

It is important to note that the HS model, in which the proteins are represented as hard spheres, is
conceptually quite similar to mesoscopic molecular dynamics simulations of the formation of protein
coronas as in (22, 23, 42, 43). In future work, it would be interesting to compare the predictions of
this model to such simulations. However, the timescales predicted for the system to reach equilibrium
are significantly longer compared to the timescales for individual events. Here, we assumed that
proteins collide with the NP at a typical rate on the order of 1/second, and equilibrium takes about
20000 seconds to reach. To get more realistic estimates of the corona equilibriation times, the
collision rates from real protein and NP concentrations should be used. On the other hand, it may
therefore be possible to simulate only the initial stages of formation of the corona using such
simulations and employ the HS model to extrapolate to greater timespans. A similar approach has
been employed in Ref (22), where the MF model has been fitted to the results of the simulation to
extrapolate to greater time periods than can be achieved through MD simulation. Based on the present
work, in which the MF and HS models predict both very different timescales for the corona
equilibration based on the same rate constants and concentrations and differing steady-state corona
compositions, we conclude that extraction of rate constants by fitting to numerical data (obtained
through experiment or simulation) must be done with care to ensure that the correct underlying model
is chosen. That is, attempting to fit the MF model to results obtained in the HS model would result in
significantly different rate constants to the underlying values, and vice versa. Thus, it is vital that
experimental results are interpreted by applying the correct model to obtain physically meaningful
rate constants.



CONCLUSION

Based on the random sequential adsorption and desorption paradigm, we have developed a rate
equation model for the evolution of the NP protein corona for proteins modelled as hard spheres
binding to to spherical and cylindrical NPs. We have demonstrated that the geometry of the NP
directly influences the composition of the corona through altering the efficiency with which proteins
can pack and new proteins can adsorb to the NP, and that this results in geometry-dependent corona
compositions even when the rates at which proteins adsorb or desorb from surface sites are kept fixed.
We have found that these effects can be explained using scaled-particle theory for both spherical and
cylindrical NPs as long as there is either desorption or diffusion of adsorbed proteins to ensure a fluid-
like surface layer. Our results pave the way for an improved understanding of experimental results
and the ab initio prediction of protein corona compositions.
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Figure 1: Left: The average time taken for a new protein to successfully adsorb to a spherical NP
for the HS (blue) and MF (red) models as a function of the occupied area of the NP, for an average
adsorption time of 1 second for a bare NP and assuming all proteins are the same size and have a

circular binding cross-section. Right: The steady-state surface coverage S; of a protein with a circular
binding cross-section on a spherical NP, defined as a function of the binding equilibrium constant
K¢, and bulk protein concentration [C]. Surface coverages are given for the HS (blue solid line) and

MF (red dashed line) models.

Figure 2: The projection of a spherical protein (blue) of radius R, onto an NP (gray) of radius R.

The angle 6, is defined as the angle between the line connecting the centres of the NP and protein

and the line tangent to the protein and passing through the centre of the NP. The area shaded in pale
blue is assumed to be occupied by this protein and unavailable for binding by other proteins, blocking
off a region of the surface of the NP. Under this projection, spherical proteins adsorbed to the NP as
shown in the centre image can be mapped to two-dimensional regions on the surface of the NP as
shown on the right.

Figure 3: A cylinder with multiple adsorbed proteins shown in 3D (top) and the projection of these
proteins onto the 2D ¢z plane (bottom). Positions of the proteins on the cylinder were obtained by
kinetic Monte Carlo simulations and their projections in the plane determined following Ref.(14),
with the periodic boundary conditions shown by included translated protein projections where
necessary.



Figure 4: Probability for a protein of type i to be successfully inserted into the corona of a NP for a
two protein system consisting of a large protein R, =5 nm and small protein R, =2.5 nmasa

function of the surface coverage of the smaller protein s, , taking s, =0 (left) and s, =0.3 (right).

Results for the HS model for a spherical NP of radius 5 nm, HS model on a planar NP, and the MF
model are shown. The MF model predictions are not visible in the scale used in the plot on the right,

likewise, the i =2 planar case overlaps with the results for i =2, R, =5 nm in the plot on the left.

Figure 5: Evolution of the corona in the MF model, showing the surface fraction occupied by
HDL (blue), HSA (red) and Fib (green). The points show the results obtained from the kinetic Monte
Carlo simulations for NPs of radius 5 nm (left, 100 trajectories) and 50 nm (right, 50 trajectories),
with error bars indicating the standard deviation of these results. The solid lines indicate the analytical
prediction obtained by integration of the rate-equation model. The protein Fib. is plotted for
consistency but is essentially non-binding.

Figure 6: Evolution of the corona in the hard sphere model on a spherical NP of radius 5 nm (left)
and 50 nm (right). The points show the mean surface fraction of the adsorbed proteins from the KMC
simulations averaged over 100 runs with the error bars indicating the standard deviation. The solid
lines indicate the predictions of the rate-equation model.

Figure 7: Time-dependent surface coverage of proteins on a cylindrical NP of radius 1 (left) and 5
(right) nm in the hard sphere model. The lengths of the cylinders are set to 100 nm with periodic
boundary conditions applied. Solid lines indicate the numerical integration of the rate-equation model
and points indicate the results of numerical simulations. Error bars indicate = one standard deviation
as obtained from the simulations.

Figure 8: Left: Steady-state (t = 24 hours) surface coverages of HDL as a function of the radius of
the NP in the HS model for the spherical and cylindrical NPs obtained via numerical integration of the

rate equation model. The asymptotic limit for Ry, — o, i.e. a planar NP, is shown as a dashed line.

Right: time-point at which the surface coverage crosses over from consisting mainly of HSA to HDL
as a measure of the time taken for the corona to evolve.

Figure 9: Left: Time-dependent surface coverage of proteins on a spherical NP of radius 20 nm in
the hard sphere model in which the adsorption is taken to be irreversible. Solid lines indicate the rate-
equation HS model, solid points indicate the results of simulations with surface diffusion, and open
symbols indicate the simulations excluding surface diffusion. 10 runs of the simulation are performed
for each case, with error bars indicating the standard deviation and points the mean. Right: As left,
except the desorption is only slowed by a factor of 10 relative to the standard set of proteins, diffusion

is disabled, and R\, =10 nm, with 100 KMC simulations performed.

Figure 10: Left: Time-dependent surface coverage of proteins on a spherical NP of radius 10 nm in
the hard sphere model (solid lines) and mean field model (dashed lines and darker shades) obtained
from the numerical integration of the rate equations. Concentrations for all proteins are increased by a
factor of 1000 compared to the values presented in Table 1. Right: Surface coverages after 24 hours as
a function of a global scaling factor by which the concentration of each protein is multiplied,
calculated for a spherical NP of radius 10 nm.

Figure 11: Time-dependent surface coverage of proteins on a spherical NP of radius 10 nm in the
hard sphere model (left) and mean field model (right), including additional proteins: FP1, a variant of
Fib with a much greater concentration, and FP2, a variant of HDL with the radius increased by 0.5
nm. Lines show the results of numerical integration of the rate equation treatment and points show
mean results from 100 trajectories obtained from the KMC simulations, with error bars indicating the
standard deviation.

Table 1: Summary of the parameters for the three proteins HDL, HSA and Fib used for the
numerical investigation taken from Ref (18). The proteins FP1 and FP2 are fictional proteins based on
modifications of the original three proteins to highlight the effects of varying parameters in the model.



[C1[M] | RInm] | Kk [x10° M ' s7] | k, [ x107° s7*]
HDL | 15 5 30 0.03
HSA | 600 4 2.4 2
Fib |8.8 8.3 2 2
FP1 | 600 8.3 2 2
FP2 |15 5.5 30 0.03
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