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A systematic investigation of the phase-separation dynamics in self-assembled binary fluid vesicles
and open membranes is presented. We use large-scale dissipative particle dynamics to explicitly
account for solvent, thereby allowing for numerical investigation of the effects of hydrodynamics
and area-to-volume constraints. In the case of asymmetric lipid composition, we observed regimes
corresponding to coalescence of flat patches, budding, vesiculation, and coalescence of caps. The
area-to-volume constraint and hydrodynamics have a strong influence on these regimes and the
crossovers between them. In the case of symmetric mixtures, irrespective of the area-to-volume
ratio, we observed a growth regime with an exponent of 1/2. The same exponent is also found in
the case of open membranes with symmetric composition. © 2005 American Institute of Physics.

[DOL: 10.1063/1.2102894]

I. INTRODUCTION

Biomembranes are fascinating self-assembled quasi-two-
dimensional complex fluids composed essentially of phos-
pholipids and cholesterol. The primary roles of biomem-
branes are the separation between the inner and outer
environments of the cell or inner organelles and the support
of an amazing specialized protein-based machinery which is
crucial for a variety of physiological functions, transmem-
brane transport, and structural integrity of the cell.! Many
recent experiments demonstrated that biomembranes of eu-
kariotic cells are laterally organized into small nanoscopic
domains, called rafts, which are rich in sphingomyelin and
cholesterol. The higher content of cholesterol in rafts is due
to the fact that the acyl chains in sphingomyelin are mainly
saturated, thereby promoting their interaction with choles-
terol. Although, it is largely believed that this in-plane orga-
nization is essential for a variety of physiological functions
such as signaling, recruitment of specific proteins and
endocytosis,2 elucidation of the fundamental issues including
the mechanisms leading to the formation of lipid rafts, their
stability, and finite size remains elusive. Clearly, raft forma-
tion in biomembranes is complicated by the presence of
many nonequilibrium mechanisms. In view of this, it is im-
portant to understand the equilibrium phase behavior and the
kinetics of fluid multicomponent lipid membranes before at-
tempts are made to find the effects of more complex mecha-
nisms that may be involved in the formation and stability of
lipid rafts.

The dynamics of in-plane demixing in multicomponent
lipid membranes is richer than their counterparts in Euclid-
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ean three-or two-dimensional systems. This is largely due to
(i) the strong coupling between the lipid composition and the
membrane conformation, (ii) the difference between the vis-
cosities of the lipid bilayer and that of the embedding fluid,
and (iii) the area-to-volume constraint, maintained by a gra-
dient in osmotic pressure across the membrane. As a result,
various growth regimes may be observed in multicomponent
lipid membranes.

Phase-separation dynamics in multicomponent vesicles
following a quench from a single homogeneous phase to the
two-phase liquid-liquid coexistence region of the phase dia-
gram has previously been considered by means of a general-
ized time-dependent Ginzburg-Landau model on a non-
Euclidean closed surface.* Limitations imposed by the
parametrization of surface deformations did not allow for
budding in this study. More recent simulations using a dy-
namic triangulation Monte Carlo model,s_7 predicted dynam-
ics which are much more complex than that in Euclidean
surfaces. In particular, these simulations showed that for
symmetric composition of binary mixtures, at intermediate
times, the dynamics is characterized by the presence of the
familiar labyrinthlike spinodal pattern. At later times, in the
presence of curvature-composition coupling, these patterns
break up leading to isolated islands. At still later times, and
in the case of tensionless membranes, these domains reshape
into buds connected to the parent membrane by very narrow
necks. Further domain growth proceeds via the Brownian
diffusion of these buds and their coalescence. It is important
to remark that both the generalized time-dependent
Ginzburg-Landau model and the Monte Carlo dynamic trian-
gulation model (1) do not account for the solvent, and are
therefore purely dissipative, (2) cannot account for the con-
straint on the volume enclosed by the vesicle, (3) conserve
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the topology of the membrane throughout the simulation, and
therefore do not account for fission or fusion processes. A
model that accounts for these effects is clearly warranted in
order to compare with experiments. In order to achieve this
we used a model based on the dissipative particle dynamics
(DPD) approach.®

On the experimental side, recent studies using advanced
techniques such as two-photon fluorescence and confocal mi-
croscopy, performed on giant unilamellar vesicles (GUVs)
composed of dioleoylphosphatidylcholine, sphingomyelin,
and cholesterol, showed the existence of lipid domains.’
More recent experiments on ternary mixtures composed of
saturated and unsaturated phosphatidylcholine and
cholesterol'”'? saw the existence of liquid-liquid coexist-
ence over a wide range of compositions, an indication that
liquid-liquid coexistence in lipid membranes is ubiquitous to
a wide variety of ternary lipid mixtures. It must be noted,
however, that domains observed in these experiments are
comparable to the size of the vesicle (micron scale), orders
of magnitudes larger than rafts in biomembranes. Some of
these experiments reported structures with many, more or
less, curved domains. But these are more akin to caps than
fully developed buds. Two important questions that arise out
of these studies are the following: (1) What role does the
solvent hydrodynamics and the volume constraints play dur-
ing coarsening in multicomponent fluid vesicles? (2) Does
the topology change drastically alter the kinetic pathway pre-
dicted by previous simulations that do not allow for topology
changes?

In this paper, we present results from extensive numeri-
cal simulations of self-assembled lipid vesicles and open
membranes using the dissipative particle dynamics approach.
We specifically investigated the phase separation dynamics
in lipid membranes following a quench from the one phase
region to the fluid-fluid coexistence region of the phase dia-
gram. The lipid membrane is composed of self-assembled
lipid particles in an explicit solvent; thus accounting for hy-
drodynamic effects. Furthermore, the parameters of the
model are such that the membrane is impermeable to the
solvent; thus allowing us to investigate the effect of area-to-
volume ratio on the dynamics. We specifically investigated
the effects of (1) area-to-volume ratio, (2) line tension, and
(3) lipids composition on the dynamics. We find that the
path, through which dynamics proceeds, depends on the
area-to-volume ratio and composition. In off-critical
quenches, in particular, the dynamics proceeds via the coa-
lescence of small flat patches at intermediate times, followed
by their budding and vesiculation. At late times, domain
growth proceeds via the coalescence of caps remaining on
the vesicle. Crossovers between these regimes are strongly
affected by the area-to-volume ratio and line tension. In the
case of critical quenches, domain growth proceeds via dy-
namics similar to that in Euclidean two-dimensional fluids.
That is, in this case the effect of the embedding fluid on the
coarsening process seems to be not very obvious. We check
this by also by simulating critical quenches in open mem-
branes with different projected areas.

This article is organized as follows: in Sec. I, the model
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and simulation technique are presented. In Sec. III, the re-
sults of our simulations are presented. Finally, we summarize
and conclude in Sec. IV.

Il. MODEL AND METHOD

In this work, the dynamics of phase demixing of a two-
component lipid mixture in an explicit solvent is investigated
using the DPD approach. DPD was first introduced by
Hoogerbrugge and Koelman more than a decade ago,13 and
was cast in its present form about five years later."*"> DPD is
reminiscent of molecular dynamics, but is more appropriate
for the investigation of generic properties of macromolecular
systems. The use of soft repulsive interactions in DPD allows
for larger integration- time increments than in a typical
molecular-dynamics simulation using Lennard-Jones interac-
tions. Thus time and length scales much larger than those in
atomistic molecular-dynamics simulations can be probed by
the DPD approach. Furthermore, DPD uses pairwise random
and dissipative forces between neighboring particles, which
are interrelated through the fluctuation-dissipation theorem.
The pairwise nature of these forces ensures local conserva-
tion of momentum, a necessary condition for correct long-
range hydrodynamics.16

The system is composed of simple solvent particles (de-
noted as w) and two types of complex lipid particles (A and
B). A lipid particle is modeled as a flexible amphiphilic chain
with one hydrophilic particle, mimicking a lipid head group,
and three hydrophobic particles, mimicking the lipid acyl
group. More complicated lipid structures and artifacts due to
the choice of simulation parameters have been investigated
by other groups.”_19 These details are not expected to affect
the qualitative nature of the results reported here.

The heads of the A and B lipids are denoted by &, and hp
and their respective tails are denoted by 74 and 7z. For sim-
plicity, we focus in this study on the case where the interac-
tions are symmetric under the exchange between the A and B
lipids. Thus this model does not contain any explicit cou-
pling between curvature and composition. The time evolu-
tion of the position and velocity of each DPD particle i,
denoted by (r;,v;), are governed by Hamilton’s equations of
motion. The three pairwise forces are given by

Fff) = aijw(rij)nij» (1)
Fl('jD) = %’jwz(”ij)(Dij ’ Vij)nij, (2)
Fgf) = a-ij(At)Uzw(rU) 6;m;;, (3)

where r;j=r;—r;, n;=r;/r;, and v;=v;=v,. 6; is a symmet-
ric random variable satisfying

(6,(1)) =0, (4)

(6,(1) (1)) = (6 5y + 6y0) &t —1'), (5)

with i #j and k#[. In Eq. (3), Az is the iteration time step.
The weight factor is chosen as
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) 1-r/r, forr=r, ©)
w= 0 for r>r,,

where r, is the interaction cutoff radius. The choice of w in
Eq. (6) ensures that the interactions are all soft and repulsive.
The equations of motion of particle i are given by

dr(t) = v,(t)dt, (7)

I
dvi(t) = ;(E FOdi+ 3 FPdr+ 3, F,(.f)(dt)l”), (8)
J J J

where m is the mass of a single DPD particle. Here, for
simplicity, masses of all types of DPD particles are supposed
to be equal. Assuming that the system is in a heat bath at a
temperature 7, the parameters v;; and o;; in Egs. (2) and (3)
are related to each other by the fluctuation-dissipation theo-

rem,
¥, = 07/2kT. 9)

The parameters a;; of the conservative forces are specifically
chosen as
hy t, w hg tp
hy 25 200 25 aup 200
el 1, 200 25 200 200 aup
Pyl w 25 200 25 25 200 |
hg asp 200 25 25 200
tg 200 ayp 200 200 25

(10)

where € and the cutoff radius r. set the energy and length
scales, respectively. The effect of line tension is studied by
varying the parameter a,z. The integrity of a lipid particle is
ensured via an additional simple harmonic interaction, be-
tween consecutive particles, whose force is given by

Ffill =-C(1- ri,i+l/b)ni,i+l > (1)

where we set, for the spring constant and the preferred bond
length, values C=100€ and 5=0.45r,, respectively.

In our simulations, we used 0'=3.0(e3m/rf)”4. Most of
the simulations were performed at kzT=e€ and a fluid density
p=3.0r:,3. The iteration time was chosen to be Ar=0.057,"
with the time scale of 7= (mrz/ €)'2. The equations of motion
are integrated using the velocity-Verlet algorithm.21 The total
number of lipid particles used was 16 000 and both cases of
closed vesicles and open membranes were simulated. In the
case of a closed vesicle, the box size is (80 X 80 X 80)r3 cor-
responding to a total number of 1 536 000 DPD particles. In
the case of open membranes, we consider box sizes of L,
=L,> L., with L,=40r, such that the fluid density is equal to
that in the case of closed vesicles. Open membranes with
different tensions are simulated by varying L, such that the
number of lipid particles and fluid density are kept constant.
Note that L,=40r, is still much larger than the thickness of
the bilayer. Periodic boundary conditions are applied in all
directions for both cases of closed and open membranes.

Previous simulations based on DPD models have shown
that open bilayers and closed vesicles can be
self-assembled.'®?*?* These studies, however, were per-
formed on smaller systems than those in the present study. In
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order to save computer time, we prepare our vesicles starting
from an almost closed configuration, composed of a single
type of lipid. This approach allows for the equilibration of
the lipid surface coverage in both leaflets through the diffu-
sion of the lipids via the rim of the open vesicle. We find that
the vesicle typically closes within about 50 000 DPD time
steps. Once the vesicle is closed, we also found that within
our parameters, the number of solvent particles inside the
vesicle and the numbers of lipid particles in the inner and
outer leaflets remain constant throughout the simulation. A
vesicle composed of 16 000 lipid chains, prepared as indi-
cated above, is found to be nearly spherical and contain
about 138 500 solvent particles inside it. Vesicles with excess
area (high area-to-volume ratio) are then prepared by trans-
ferring solvent particles from the core of the vesicles, pre-
pared as indicated above, to the outer region, such that the
fluid density is kept constant.

An open membrane is prepared by placing a bilayer par-
allel to the xy plane at z=L /2. The membrane is let to
equilibrate until fluctuations of its height attain saturation.
After equilibration of the closed vesicle or the open mem-
brane, the phase-separation process is triggered through an
instantaneous change of a fraction of the A lipids to B lipids
such that their composition is equal to ¢p. This mimics a
quench from a homogeneous state to the two-phase region.

We have performed systematic simulations in which the
following parameters were varied:

(1) The strength of the repulsive interaction between A
and B lipids, a,p, in order to infer the effect of line
tension A between A and B domains. This parameter
was varied for both open and closed membranes.

(ii)  The compositions of the two lipids, ¢, and ¢g=1
—¢,. We considered the cases of ¢,=0.5 and 0.3.
This parameter was varied for both closed and open
membranes.

(iii) The area-to-volume ratio v in the case of closed
vesicles, defined here as v=(Nyeuq+Npit)/N,,» Where
Npeads Niail are the total numbers of head and tail DPD
particles, respectively, and N,, is the total number of
solvent particles inside the vesicle. In the case of open
membranes, the projected area effectively plays the
role of area-to-volume ratio in a closed vesicle.

In the presentation and discussion of our results, we use
the following labels to indicate the parameters used for dif-
ferent simulated systems:

System v Aup bp
A0 0.462 100 0.3
Ai“’m 0.567 100 0.3
A0 0.567 86 0.3
AL 0.567 68 0.3
AES‘” 0.567 50 0.3
100 0.462 100 0.5
ci“)‘” 0.567 50 0.5
0 0.567 50 0.5
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FIG. 1. Snapshots of a phase-separating vesicle with low excess area,
system A" at () 1=1007, (b) 5007, (c) 10007, (d) 20007, (¢) 30007, and
(f) 40007.

The interaction parameters of the present model are se-
lected such that the membrane is impermeable to solvent
particles. This implies that the number of solvent particles
inside closed vesicles is constant, thereby allowing us to ef-
fectively investigate the effect of area-to-volume ratio. In
experiments, this parameter is controlled via the osmotic
pressure.

lll. RESULTS AND DISCUSSION

For the parameter values mentioned above, our model
membrane does not show any flip-flop motion of the lipids,
i.e., throughout the simulation time the number of lipids in
the upper and lower membranes are the same. We also find
that the coupling between the compositions of the two leaf-
lets is found to be very strong. This is not surprising, con-
sidering the fact that we have chosen Ay 1y =y, =y

A. Case of closed vesicles with ¢5=0.3

In Fig. 1, snapshots of closed vesicle configurations in
the case of ¢pp=0.3 and with small area-to-volume ratio cor-
responding to system Agloo) are shown. This figure shows
that the phase-separation process after a quench to the two-
phase region proceeds in a manner similar to that in Euclid-

FIG. 2. Snapshots of a phase-separating vesicle in system A(ZIOU). The time
sequence of the snapshots is the same as in Fig. 1.

ean systems, i.e., through the formation of small domains
and their coalescence in time. During the early stages of the
dynamics, domains have average curvatures that are equal to
the surrounding majority component, an indication that dur-
ing the early stages of the phase-separation process the cur-
vature is decoupled from the c:omposition.24 This is due to
the fact that the compositions in the two leaflets are equal,
and the A and B lipids have identical architectures, leading to
a decoupling between curvature and composition. As time
evolves, the interface tension starts to assert and the domains
curve very slightly from the majority component, while the
vesicle becomes more spherical, an implication that an in-
crease in tension has occurred.

In Fig. 2, snapshots corresponding to ¢=0.3, but with a
high excess area parameter, A;loo), are shown. The high ex-
cess area is obtained by removing 25 610 solvent particles
from the core of the vesicle and putting them in the outer
region such that the fluid density is maintained. Notice, here
again, that during the early stages domains have the same
curvature as the majority component, implying the decou-
pling between curvature and composition during these
stages. At about 4007, B domains start to curve away from
the average vesicle’s curvature.

Domain growth is monitored through both the net inter-
face length L(z) and the average domain size R(z) as calcu-
lated from the cluster size distribution. In order to see how
the interfacial length can be used as a measure of domain

Downloaded 10 Dec 2007 to 130.226.87.177. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



224902-5 Domain growth, budding, and fission
400_ ' T lf‘.um .ll ™ ‘II. .
= roe0s L 21 |

= = swemf g -
S/O 3.50 \\\\S.K\DH(H)‘ = L . 1'()‘ ||5' =
an 4

L o=1/3
3.001 .

|

1 2 3 4

log ¢

FIG. 3. Net interface length as a function of time in case .A(IIOO) (top curve)

and case A(ZIOO) (bottom curve). The dashed line and the solid line have
slopes of 1/3 and 4/9, respectively. The arrow points to the time regime
during which budding and vesiculation occur in case A(ZIOO). In the inset, the
average domain size in case A(lm()), defined as 1/L(¢), is shown vs /3.

coarsening, consider a closed vesicle having N(¢) B domains
at some time ¢, with an average linear size R. Furthermore,
let us consider the case where the domains are circular. The
net interface length is then given by L(f)=27N(t)R(t). Since
the net amount of the B component is conserved, we also
have for the area occupied by the B component Ag
=7N(1)R%(f). We therefore have

L(t) ~ Ag/R(1), (12)
and the number of B domains is therefore given by
N(1) ~ A/R*(1). (13)

In Fig. 3, L(z) versus time is shown for the case of ¢,=0.3
and for low and high area-to-volume parameters. We notice
from this figure that, during intermediate times, i.e., ?
<4007, the interfacial length is independent of the area-to-
volume ratio and has the form

L(r) ~ ¢, (14)

with the growth exponent a= 0.3. The number of domains as
calculated from the cluster size distribution is shown in Fig.
4, which again shows that the number of clusters is indepen-
dent of the area-to-volume ratio at intermediate times and
that

N(t) ~ 1B, (15)

with B~=2a=2/3, in agreement with Eq. (13).

A growth exponent, a=1/3, in Euclidean multicompo-
nent systems is usually attributed to the evaporation-
condensation mechanism as explained by the classical theory

3.0 T I— T

10g]0 N(t)

log, ¢

FIG. 4. Number of clusters on the vesicle as a function of time. The bottom
and top curves correspond to A(IIOO) and Agl 00), respectively. The slope of the
dashed line is 2/3. Note that in the case of high excess area, i.e., A(ZIOO),
clusters that have vesiculated are excluded.

J. Chem. Phys. 123, 224902 (2005)

5 T T T T
4| _
N§34 | ]
L i
57225 3 33

FIG. 5. Mean square of the distance of the A lipids from the center of mass.
The top and bottom curves correspond to cases A(Zlom and A(]]OO), respec-
tively. The arrow points to the time regime during which budding and ve-
siculation occur in case A(ZIOO).

of Lifshitz and Slyozov.25 In a fluid system such as ours,
domain growth can also be the result of the motion of the
entire domains themselves resulting in collision between do-
mains, leading to coalescence, as is shown by the arguments
below.

Two domains coalesce if they travel a distance I(¢) de-
termined by the average area on the membrane occupied by a
domain. This is given by

1(1)> ~ AIN(r). (16)

Moreover, assuming that the domains perform a Brownian
walk before their collision, the collision time should obey
1(£)>~ Dgt. In the case of an isolated two-dimensional fluid,
as can be calculated from the Stoke’s formula for the drag on
a circular domain due to the surrounding fluid, the diffusion
coefficient is independent of the domain size. However, in
our case, the drag experienced by the domains results mainly
from the three-dimensional embedding fluid, leading to Dy
~ 1/R. Using this fact, we have the time dependence of do-
main size as

R(1) ~ '3, (17)
and the number of clusters as
N(t) ~ 123, (18)

in good agreement with our numerical results.

Irrespective of the initial excess area, the very late time
configuration is always that of a tensed vesicle. This can be
seen from the mean square of the positions of the A-lipid
heads from the center of mass of the vesicle, (Ar)2. This is
shown in Fig. 5 for the case of a,z=100€ for systems AEIOO)
and A(Zloo). A large (Ar)? implies a floppy vesicle with a lot
of excess area. Notice that (Ar)? decreases rapidly after
about 4007, eventually reaching a value equal to that without
excess area. The fast decrease in (Ar)? is due to the reshap-
ing of the domains into caps, the budding of some of them,
and their vesiculation. The buds, once formed, are found to
vesiculate within a short period of time, of the order of 107.
We confirm this by performing simulations of a single B
domain occupying 12% of the total area of a vesicle with
excess area. The fission mechanism of a bud itself is a very
interesting phenomenon and has recently been investigated
in detail using DPD simulations.”

As a result of vesiculation, the parent vesicle looses most
of its excess area, causing it to acquire a more spherical
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(a) (b)

FIG. 6. Snapshot sequences for closed vesicles with excess area parameter
v=0.567. (a), (b), and (c) correspond to a,z=100€, 68¢, and 50€, respec-
tively. The snapshots from top to bottom correspond to r=1007, 10007,
20007, and 40007, respectively.

shape as shown in Fig. 2 and implied by Fig. 5. This induced
lateral tension prevents the domains from further capping.
Further domain coarsening may therefore proceed via the
coalescence of these caps.

B. Effect of line tension on the phase separation
in closed vesicles with ¢5=0.3

The effect of line tension on the dynamics of domain
growth in closed vesicles with ¢5=0.3 is investigated by
performing simulations at different values of a,3=100¢, 86¢,
68¢, and 50€ in the presence of a large excess area.

In Fig. 6, snapshots for the cases of a,z=100€, 68€, and
50¢€ are shown for comparison. These snapshots clearly show
that the line tension plays an important role on the dynamics.
Corresponding interfacial lengths as a function of time are
shown in Fig. 7. This figure again shows that budding is
delayed as the line tension is increased. We also notice that
while in the system with a,z=100¢, the budding of domains
is followed by their vesiculation, in the systems with a,p
=86¢€ and 68¢, very few buds vesiculate. No vesiculation was
observed in the case of low line tension (a4z=50€).

In order to gain further insight into the effect of line
tension on domains capping, let us consider a circular do-
main of B phase with area a, surrounded by a sea of A phase,
on a tensionless membrane. Let ¢ be the absolute value of the
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FIG. 7. Net interface length vs time for the case of closed vesicles with
excess area parameter, v=0.567, for different values of line tension. The
curves from top to bottom correspond to A(ZSO), A(ZGS), and A(ZIOO),
respectively.

mean curvature of this domain which is assumed to be uni-
form. The free energy of the domain is therefore given by

E,=2kac® + \l, (19)

where « and A are the bending modulus and line tension,
respectively, and [ is the perimeter of the domains, given by

a\12 act\ 12
[=2m| — 1-— . (20)
T dar

The free energy is then rewritten as

5:877;{5% )‘2 (1—52)”2}, (21)

max
where a=4m/c%_ and €=c/ ¢y, The free energy in Eq. (21)
has a minimum at ¢=0. This minimum is absolute if the area
of the domain is smaller than ay=4m(x/ M2, Otherwise, the
free energy is lower for ¢>0. These calculations imply that
for a given /A, the onset of domain capping occurs when
their average radius exceeds Ry=2«/N\, in qualitative agree-
ment with our simulation results.

In order to verify the arguments above, the bending
modulus and line tension for the cases of a,3=50 and 100e
are extracted numerically. Details of the numerical approach
used to derive these quantities are described in Appendixes A
and B. We obtain a bending modulus of k= 8.4¢€ and line
tensions of A=7.1€/r, and 5.4€/r.. The number of domains
at the onset of capping is calculated as

Avd’B

N,.= : 22
e (22)

where A, is the vesicle area. In the following table, the num-
ber of domains at the onset of capping, N,, obtained using
Eq. (22) and that obtained from the simulations are shown:

50

A;OO A(2 )

N, [from Eq. (22)] 91 54
N, (from simulation) 71 38

It is interesting to note that our numerical results are in fairly
good agreement with the theoretical values. The discrepancy
is reasonable considering the fact that in Eq. (21) only lowest
order terms, in curvature, are accounted for. In the simula-
tion, however, a cap is not uniformly curved.
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. ! : l
0 2000 4000
!

FIG. 8. The mean square of the distance of the A lipid heads from the center

of mass (Ar)? vs time. The curves from top to bottom correspond to systems
(50)  4(68)  4(100) (100)

A7, AP, AT, and AT

Since the domain growth prior to capping is governed by
a ' law, the onset time of domain capping should be 7,
~(k/N\)3. In the simulation, this time scale is found to be
approximately 4007 and 10007 for systems A(2100) and A(250)’
respectively. The ratio between these two times is very close
to the ratio of line tensions given by ()\A(ZSO)/ 7\A5100>)3’~“«O.45.

In Fig. 8, the mean square of the distance of A-lipid
heads from the vesicle’s center of mass, (Ar)?, is plotted for
systems A(2100)’ A(268), and A(;O) together with the case with
small excess area A(lloo). This figure clearly illustrates that
domain capping is shifted towards later times as the line
tension is decreased.

C. Late time dynamics of closed vesicles with excess
area and ¢5=0.3

The dynamics in systems A(lloo) and A(;OO) departs from
each other after about r=4007, as shown in Fig. 3. The dy-
namics of domain growth in the case of high excess area
speeds up at late times, as compared to the case with low
excess area. As shown in Fig. 3, most domains of the minor-
ity component in the case with low excess area remain flat
with a curvature equal to that of the majority component.
Capping, in this case, is suppressed due to the lateral tension
induced by volume constraint and low excess area. In con-
trast, in the case where excess area is high, domains reshape
into caps, allowing the interfacial length to decrease rapidly.
The presence of excess area allows some of the caps to fur-
ther reshape into buds as shown in Fig. 2, which then vesicu-
late, since the line tension is relatively high in this case. Bud
vesiculation occurs over a relatively short period of time, as
indicated in Fig. 9. We confirm this by performing simula-
tions of a vesicle composed of two coexisting domains and
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FIG. 9. The number of vesiculated buds vs time for system A(ZIOO). The
arrow points to the onset of vesiculation.
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with high excess area. We found that once the bud is formed,
it vesiculates within a time period of about 107.

The vesiculation of some B domains results in a marked
decrease of excess area, leading the vesicle with the remain-
ing B domains to acquire a much more spherical shape. Once
all excess area have been released, domain growth crosses
over to a regime characterized by L(¢) ~¢ %, with a=0.4, as
shown in Fig. 3. Figure 4 demonstrates that the number of
domains remaining on the vesicle decreases with time as
Ny~ with a growth exponent S=2/3.

We believe that the higher growth exponent at late times,
a=0.4, is the result of coalescence of well formed caps fol-
lowing their Brownian motion. Indeed, as Fig. 1 shows do-
mains of the minority component are more akin to hemi-
spherical caps at late times. Assuming that the curvature of
these caps are determined by the competition between the
bending energy and the line tension at the interface between
A and B lipids, we can write the average interfacial length /.
of a single cap as

1/3
I~ (K)f) . (23)

Domain growth proceeds via the Brownian motion of
domains, leading to their coalescence as they collide. There-
fore, the mean square of the distance traveled by a single
domain is given by

&> ~ Dt, (24)

where D~a:_”2 and d*>~ A,/N,, A, being the area of the
vesicle. Using as well the fact that the net area of the B
domains is a constant of time, i.e., Nclifvconst, one then
obtains

1
NCNZQ?’ (25)

and the net interfacial length L.=N_l. is then given by
L.~ (26)

in excellent agreement with our numerical results.

D. Case of closed and open membranes with ¢5=0.5

We now focus on the dynamics of phase separation of
multicomponent closed vesicles with symmetric volume
fractions of the two components. In Fig. 10, snapshots cor-
responding to the case with high excess area and with high
line tension are shown. The corresponding interface length
versus time is shown in Fig. 11. This figure shows that the
characteristic domain size in the case of ¢=0.5 is much
more pronounced than that with an asymmetric composition.
Furthermore, the growth exponent at intermediate times is
a=1/2, larger than that for the case of ¢z=0.3.

We must note that in the case of ¢z=0.3, where the lipid
domain structure is circular, two measures where used to
characterize domain growth. These correspond to the inter-
face length and the average cluster size. In the case of ¢p
=0.5, only the interface length was so far presented. In order
to investigate the robustness of the corresponding growth
exponent, a=1/2, we also performed simulations of open
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FIG. 10. Snapshot sequences of closed vesicles with ¢5z=0.5. (I), (I), and
(IT) correspond to systems C(lmo), C(2100)’ and ngo), respectively. The snap-
shots from top to bottom correspond to r=1007, 2007, 4007, and 7007,
respectively.

membranes extending along the xy plane. These simulations
allow us to extract another length scale from the composition
structure factor, S(q.0)=(|¢y()[*)/L,L,, as R(1)=2m/q,,
where

(t)__<quq25(q,t))”2
2N rdgS(qny )

The effect of tension, and thus the influence of bending
modes on phase separation, can also be investigated through
varying the projected area, L,L,.

In Fig. 12, sequences of snapshots of open membranes
with ¢=0.5 and projected areas L,L,=(80X 80)r2 and (78
X 78)r are displayed. Corresponding interface length L(f)

(27)

log, ¢

FIG. 11. Net interface length vs time for the case of closed vesicles with
¢5=0.5. The top and bottom curves correspond to C(ZIOO) and C(ZSO), respec-
tively. The slope of the dotted line is 0.5.
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@) )

FIG. 12. Snapshot sequences for open membranes with ¢z=0.5, with a,p
=50. (I) and (II) correspond to projected areas of L, X L,=86r,X86r, and
78r.X78r,, respectively. The snapshots from top to bottom correspond to
t=507, 2007, 4007, and 8007, respectively.

and the square root of the second moment, ¢,(7), are pre-
sented in Fig. 13. It is clear from this figure that both lengths
scale as 1* with a=1/2.

The exact mechanism leading to this exponent is not
clear at present. A growth exponent, =1, has been predicted
in the case of two-component fluids with interconnected
structures in three dimensions and is the result of the insta-
bility of the tubular domains against the peristaltic modes.”®
Such instability does not exist in pure two-dimensional
fluids.”” On the other hand, several simulations on purely
two-dimensional fluids based on molecular dynamics,28
model H,” and lattice gas30 have seen a growth exponent,
a=1/2. A theoretical argument for this exponent is, however,
lacking. The lipid bilayer, being a two-dimensional fluid em-
bedded in a three-dimensional solvent, is clearly more com-
plicated than a purely two-or three-dimensional fluid.

IV. SUMMARY

In summary, we presented a detailed study of the phase-
separation dynamics of self-assembled bilayer fluid mem-
branes, with hydrodynamic effects, using dissipative particle
dynamics. We considered both open and closed membranes
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FIG. 13. Interfacial length (bold curves) and the square root of the second
moment (thin curves) vs time for open membranes with ¢5=0.5, with a,p
=50. The top and bottom curves (at late times) correspond to a projected
area of L, X L,=86r,X86r. and 78r.X78r,, respectively. The slope of the
dotted line is —1/2.

and investigated the effect of composition, line tension, and
surface tension. In all cases, hydrodynamics is found to af-
fect the coarsening dynamics at all time scales. In the case of
closed vesicles with off-critical quenches, rich dynamics was
observed, with crossovers depending strongly on line tension
and area-to-volume ratio. The early dynamics, in this case, is
governed by the coalescence of small flat patches. In the
presence of excess area, the later dynamics is characterized
by the coalescence of caps. The crossover between the two
regimes depends strongly on line tension and includes an
intermediate vesiculation regime for high enough line ten-
sion. In the case of tensed vesicles, no crossover is observed
in the dynamics. In the case of critical quenches, the growth
dynamics is qualitatively different and no crossovers were
observed.
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APPENDIX A: NUMERICAL EXTRACTION
OF THE BENDING MODULUS

The bending modulus is extracted from the power spec-
trum of the long-wavelength out-of-plane fluctuations of an
open-lipid membrane, extending along the xy plane, in a box
with periodic boundary conditions along the three directions.
The Helfrich Hamiltonian of a membrane, in terms of the
principal curvatures ¢,(r) and c¢,(r), is given by

A
7_[(6'1,6'2):J1 da|:0'+§(cl+C2—260)2+EC]C2+ oo |y

(A1)

where o, k, and k are the tension, the bending modulus, and
the Gaussian bending modulus of the membrane, respec-
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FIG. 14. o(q)=2/¢>S,(q) vs ¢* obtained from a simulation of a one-
component open membrane with a projected area of L XL, ,=86r.X 86r,.
The slope of the curve at small wave vectors determines the bending modu-
lus and the intercept with the y axis determines the surface tension of the
membrane.

tively. ¢, is its spontaneous curvature. In the case of a one-
component membrane and if the lipid lateral densities of the
two leaflets are equal, the spontaneous curvature vanishes.
Furthermore, if the membrane conserves its topology, the
integral of the Gaussian term is independent of the mem-
brane conformation. If we assume that the height of the
membrane is represented by a single-valued function Ai(x),
and in the case of small fluctuations, the Hamiltonian can be
rewritten in the Monge representation as

L2
H(h) = f dx{g(vxh)z + g(vih)z 1 ] . (A2)
The structure of the membrane can then be inferred from the

structure factor, defined as the Fourier transform of the
height-height correlation function,

2
; (A3)

- r ,
Sh(q)=é<|hq|2>= ‘ J dxe %p(x)

where q=(q,,q,). If the higher-order powers of / are omitted
in the Hamiltonian and after the equipartition theorem is in-
voked, one finds that the membrane height structure factor is
given by

2y T
oq® + kgt + O(¢%)

Si(q) = (A4)

The membrane position /(x) is defined as the location of the
median point of the hydrophobic region. In Fig. 14, the struc-
ture factor for a one-component open membrane in a box of
dimensions L,=L,=86r, and L,=40r. is shown. The other
parameters are exactly the same as those presented in Sec. II.
The bending modulus and the tension on the membrane are
obtained from examining the structure factor at small wave
vectors. The tension on the membrane is found from the
intercept of the o(g) vs ¢ curve with the y axis where

o(q) =2kpTIg*S;(q). (AS)

The bending modulus is obtained from the slope of o(g), at
small ¢’s, as illustrated in Fig. 14. We obtained a value of
k=~8€ when kzT=€. The value of k in our model is reason-
ably in agreement with the experimental values for lipid bi-
layers.
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APPENDIX B: NUMERICAL EXTRACTION
OF THE LINE TENSION

The in-plane tension of a membrane extending along the
xy plane is calculated from the pressure tensor as

1
U:LZ[PZZ_E(PxX+Pyy):|’ (B1)
where the pressure tensor Pz is calculated using the Irving-
Kirkwood formalism,31
1 1
=— myvv;+ = r,FO ). B2
szilll 2;]2#1111 ()

To calculate the line tension, the membrane is prepared
such that it consists of A and B coexisting phases, separated
by two interfaces which are parallel to the x axis. The tension
of the membrane now contains a two-dimensional bulk com-
ponent plus a one-dimensional contribution due to the inter-
faces between the A and B components. The line tension is
then calculated from the difference between the tension of a
membrane with two interfaces between the A and B compo-
nents and that of a membrane composed with A lipids only,

= LV(O” -0). (B3)
2

o and o’ were calculated on system sizes with dimen-
sions L,=L,=86r, and L,=40r.. We found that N=7.4€/r,
and 5.5€¢/r, for ap, h2=506 and 100€, respectively. If we as-
sume that the lipid bilayer thickness is 4 nm, then our nu-
merically calculated line tensions correspond to 2.3 % 10717
and 1.73X107'7 J um, respectively.

Although there are no experimental data for the line ten-
sion between coexisting lipid phases, a simple estimation can
be given by A=AU/l, where AU=(Uyy—Upgp)/2—-Uyp
~10kgT, U,p are the various lipid pair interactions, and /
~(.8 nm is the lateral length scale associated with a lipid
molecule. One then finds A~ 107!7 J um, in agreement with
our numerical values.*?
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