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ABSTRACT Experimentally determined diffusion constants are often used to elucidate the size and oligomeric state of
membrane proteins and domains. This approach critically relies on the knowledge of the size-dependence of diffusion. We have
used mesoscopic simulations to thoroughly quantify the size-dependent diffusion properties of membrane inclusions. For small
radii R, we find that the lateral diffusion coefficient D is well described by the Saffman-Delbrück relation, which predicts a
logarithmic decrease of D with R. However, beyond a critical radius Rc ! hhm/(2hc) (h, bilayer thickness; hm/c, viscosity of the
membrane/surrounding solvent) we observe significant deviations and the emergence of an asymptotic scaling D ; 1/R2. The
latter originates from the asymptotic hydrodynamics and the inclusion’s internal degrees of freedom that become particularly
relevant on short timescales. In contrast to the lateral diffusion, the size dependence of the rotational diffusion constant Dr

follows the predicted hydrodynamic scaling Dr ; 1/R2 over the entire range of sizes studied here.

INTRODUCTION

Diffusion is the basic means of transport in membranes, and
the mixing of membrane components via Brownian motion
is often very efficient: a lipid can rotate about its own axis
within,10ms (1) and explores;16mm2within a second (2).
Given that speedy movement, membrane-anchored reaction
partners can meet and align via diffusion and, upon doing so,
create new (active) complexes or trigger signaling events
downstream.
In the spirit of the above, biological membranes for a long

time have been viewed as an unstructured, two-dimensional
fluid into which individual proteins are embedded (‘‘fluid
mosaic model’’ (3)). Yet, more recently this picture was re-
placed by a more structured picture of cellular membranes
(see Engelman (4) and Simons and Ikonen (5) for review).
Several lines of evidence have been given that membrane
domains (‘‘rafts’’), consisting of lipids and/or clusters of
membrane proteins, compartmentalize in particular the
plasma membrane. In fact, the size of raft-like inclusions
in biomembranes has been reported to cover a wide range,
from a few nanometers to some 100 nm (6). Bearing this in
mind, the size-dependent diffusive mobility of membrane
inclusions (from single proteins/lipids to raft-like domains)
becomes a topical and important issue, even more so as
measurements of diffusion coefficients are frequently used to
determine complex formation via extracting the size of the
tracked object.
For globular (i.e., spherical) objects diffusing in bulk

solution, the size-dependent lateral diffusion coefficient is
well described by the famous Einstein-Stokes equation D ¼
kBT/(cphR) (7). Here, kBT is the thermal energy, h the
viscosity of the fluid, and R the hydrodynamic radius of the

diffusing object. The numerical factor c depends on the
boundary conditions at the sphere’s surface and takes on the
values c¼ 6 (c¼ 4) for stick (slip) boundary conditions. The
calculation of the two-dimensional analog, i.e., the diffusion
coefficient of an incompressible, cylindrical inclusion in a
membrane (using no-slip boundary conditions), has been a
challenging problem that was solved in a seminal study by
Saffman and Delbrück (8):

D ¼ kBTðlnfhhm=ðRhcÞg% gÞ
4phmh

: (1)

Here, h is the thickness of the membrane, R is the radius of
the embedded cylinder, g ! 0.5772 is Euler’s constant, and
hm, hc are the viscosities of the membrane and the adjacent
fluid, respectively. In essence, Eq. 1 states that D hardly
varies with the radius of the inclusion, which is in strong
contrast to the Einstein-Stokes equation. Unlike Eq. 1, the
rotational diffusion coefficient was predicted to show a strong
algebraic size dependence (8), i.e.,

Dr ¼
kBT

4phmhR
2: (2)

The latter equation has to be compared to its three-
dimensional counterpart Dr ¼ kBT/(8phR

3).
Several experimental studies have given support to Eq. 1

and Eq. 2 (e.g., (9,10)), whereas very recent experiments
have indicated strong deviations from Eq. 1 for small and
intermediate radii (11) (see also Discussion). In fact, a
rigorous experimental test of the predicted size-dependences
in Eq. 1 and Eq. 2 was and is very challenging due to a lack
of appropriately sizable inclusions, systematic limitations in
recording the diffusive movement (e.g., problemswith photo-
bleaching protocols (12)), unavoidable membrane undula-
tions, etc., which perturb the measurement and increase the
error bars of the determined diffusive mobility. This level of
uncertainty in experiments underlines the importance of a
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comprehensive test of Eq. 1 (and Eq. 2) by alternative means.
The need for a quantitative test is further highlighted by the
fact that Eq. 1 spuriously predicts negative diffusion co-
efficients for hhm , Rhc. In fact, extensive hydrodynamic
calculations have predicted that Eq. 1 only holds for small
radii whereas for large radii a scaling D ; 1/R should
emerge (13). It is worthwhile to note that the latter predic-
tion as well as the derivation of Eq. 1 are based on incom-
pressible, cylindrical membrane inclusions surrounded by
incompressible fluids and the assumption of no-slip bound-
ary conditions. All of these assumptions, although valid on
the macroscopic scale, may not hold true on the meso- and
nanoscale: water as well as lipid bilayers have a finite com-
pressibility; nanoscopic membrane inclusions and larger,
oligomeric (raft-like) structures can be expected to have
internal degrees of freedom that reduce their lateral mobility;
and finally, evidence has been given that the stick boundary
condition is in general not appropriate on the molecular scale
(14).
Here, we have used mesoscopic simulations of lipid bi-

layers with embedded, transmembrane inclusions to study
the validity of Eq. 1 and Eq. 2 over a wide range of radii. We
find that Eq. 1 gives a good quantitative description of the
lateral diffusion coefficient up to a critical radius Rc ! hhm/
(2hc). Beyond this radius, the numerically determined dif-
fusion coefficients strongly deviate from the Saffman-
Delbrück relation and a new scaling D ; 1/R2 emerges. We
give theoretical arguments that the latter arises due to the
combination of the asymptotic hydrodynamic drag and inter-
nal degrees of freedom that are anticipated to become
relevant for large, raft-like inclusions, especially on short
timescales. The rotational diffusion coefficient on the con-
trary is well described by Eq. 2 over the entire range of tested
radii.

METHODS

Simulation details

In the following, the position and velocity of particle i is denoted by ri and vi,
respectively. Distances are denoted by rij ¼ jrijj ¼j ri % rjj, whereas rr̂rij ¼
rij=rij is the corresponding unit vector pointing from particle j to particle i.

In all simulations, the nonbonded interaction between any two beads i, j
within the interaction range r0 was chosen to be soft-repulsive as in standard
dissipative particle dynamics (DPD) models (15–17), i.e., FC

ij ¼ aij
ð1% rij=r0Þ rr̂rij, and zero for r $ r0. The interaction energy aij (in units of
the thermal energy kBT) was tuned to achieve hydrophilic and hydrophobic

beads. Bonded interactions, e.g., connections within an inclusion or lipid

chain were implemented via a harmonic potential U2ðri; ri11Þ ¼
1
2k2ðjri;i11j% l0Þ2. Stiffening of the chains was achieved by a bending

potentialU3(ri%1, ri, ri11)¼ k3[1% cos(f% f0)], where the bond angle f is

defined via the scalar product cosf ¼ rr̂ri%1;i & rr̂ri;i11. The preferred bond angle

was set to f0 ¼ 0.
In case of the implicit solvent model, an attractive force between any two

hydrophobic beads was chosen in accordance with the approach of Cooke

et al. (18): FA
ij ¼ %rr̂rijpesinðpðr % r0Þ=wÞ=ð2wÞfor r0, r, r01 w and zero

outside this range; e is the attraction energy in units of kBT and w is the
typical length scale of the attraction.

Dissipative and random forces between any two beads i and j in the

thermostat within the interaction range r0 were given by FD
ij ¼ %gij

ð1% rij=r0Þ2 ðrr̂rij & vijÞrr̂rij and FR
ij ¼ sijð1% rij=r0Þzijrr̂rij, respectively; both

vanished for r $ r0. Here, zij is a random variable with zero mean and unit
variance that is uncorrelated for different pairs (ij) of beads and different

time steps. The noise strength sij is related to the dissipation strength gij via
the fluctuation-dissipation relation s2

ij ¼ 2gij kBT (16). The cutoff length r0
for the repulsive forces was thus the same as for all forces within the
thermostat.

We have set the interaction cutoff of the thermostat r0, the bead mass m
(all beads were assumed to have the same mass), and the thermostat tem-
perature kBT to unity and used these parameters as basic units.We further have

chosen the dissipation and noise parameters for all beads to besij¼s¼ 3 and

gij¼ g¼ 9/2. For the explicit solvent model, we have chosenN¼ 4 beads per

lipid chain, and the remaining interaction constants were chosen in
accordance with Laradji and Kumar (19) (indices W, H, T ¼ water,

hydrophilic, hydrophobic bead): aHH¼ aWW¼ aTT¼ aHW¼ 25 kBT, aHT¼
aWT¼ 200 kBT, k2 ¼ 100 kBT=r20 , l0 ¼ 0.45 r0. The interaction constants for
the implicit solvent model were: aHH¼ aHT¼ 48 kBT, aTT¼ 96 kBT, w¼ r0,
e¼ 1.4 kBT, k2 ¼ 120 kBT=r20 , k3¼ 20 kBT, l0¼ 0.6 r0. For small inclusions,

the linear size of the simulation box in the plane of the bilayer was chosen as

L¼ 40 r0; for large inclusions,Lwas chosen to be at least fourfold bigger than
the inclusion’s diameter. In all cases, the height of the simulation box was

fixed to 16 r0, which is about fourfold bigger than the membrane thickness.

We have integrated the equations of motion with a velocity Verlet

scheme (20) (time increment Dt ¼ 0.01) and imposed periodic boundary
conditions. During the initial relaxation of the membrane, we used a barostat

that has been adapted for the use with DPD (21) to achieve a tensionless

membrane. In all simulations, we first relaxed the membrane with a single

inclusion for at least 1.5&104 time steps. During this time, the barostat was
used to achieve a tensionless bilayer. From the final state, we iterated 106

time steps during which we tracked the center-of-mass position of the in-

clusion and its orientation (see arrow in Fig. 1 b).

Conversion to SI units

For the implicit solvent approach, we related our data to SI units by choosing

the length scale as r041 nm, which yielded a bilayer thickness h ! 3.3 nm
similar to synthetic membranes (22). This value was obtained by averaging

the distance of all hydrophilic lipid head beads in the opposing leaflets of the

bilayer (‘‘phosphate-to-phosphate distance’’). The internal timescale was

determined by comparing the numerically obtained diffusion coefficient of a
single lipid with experimentally measured values (2)D ! 3 & 10%244mm2/s

(see also (23)). A single time step (Dt ¼ 0.01) corresponded to a real time of

;80 ps, i.e., the total time simulated was in all cases 80 ms, whereas the
typical membrane patch was ;80 nm 3 80 nm. In the explicit solvent case,
r0 and Dt ¼ 0.01 corresponded to 1.1 nm and 97 ps, respectively. Using the

mentioned conversion to SI units, we determined here also the viscosity hc

of the pure solvent by monitoring the diffusion coefficient of differently
sized cylinders with hexagonal cross section (diameter 2 k1 1 beads; length

2 k beads; bead-bead distance l0 ¼ 0.45 r0) in a ‘‘water box’’ with particle

density . ¼ 3=r30 . For a single solvent bead, a radius R0 ¼ ð1=.Þ1=3 was

assumed and the hydrodynamic radii of the diffusing cylinders were set to
Rh ¼ kl0 1 R0/2, which was ;15% larger than the radius of gyration. From

the Einstein-Stokes equation (modified with the contribution by internal

modes, see Results and Discussion), we determined the viscosity of the

solvent to be hc ! 0.03 Pa s. Bearing in mind the somewhat vaguely defined
radii Rh (due to the use of soft-core potentials) and the uncertainty if stick or

slip boundary conditions are more appropriate, the value for hc may be

slightly higher or lower.

Data evaluation

We briefly derive Eq. 3. Starting with a particle at r ¼ 0 at time t ¼ 0, one
obtains from the two-dimensional diffusion equation the probability of
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finding the particle in an infinitesimal area element dA ¼ 2 prdr around the

locus r at time t as p(r)dA ¼ 2 exp(%jrj2/(4Dt))/(4Dt)rdr. Changing vari-
ables to the quadratic distance j¼ r2, one obtains the differential distribution
of squared increments as p(j) ¼ exp(%j/(4Dt))/(4Dt)dj. For the purpose of
fitting, the integrated distribution PðDx2Þ ¼

R Dx2

0 pðjÞdj (Eq. 3) is more

convenient as it does not suffer from the choice of the bin size. This approach
has also been applied successfully in single-particle tracking studies (24).

RESULTS AND DISCUSSION

To study the diffusion of large inclusions in a self-
assembling lipid bilayer, we have used efficient mesoscopic
simulations. We used two related coarse-grained molecular
dynamics simulation methods that belong to the class of
DPD schemes (15–17) (see Methods for simulation details):
an explicit solvent model (‘‘standard DPD’’) and an implicit
solvent approach. The latter has recently been studied in
some detail (18,25,26) and yields a very efficient way to simu-
late large membranes that are virtually untractable by
standard DPD. In the remainder, we will thus concentrate on
the implicit-solvent model as this approach allowed us to
investigate much larger inclusions than with an explicit sol-
vent approach. We will however compare the results to those
obtained with the explicit solvent whenever possible.
In the simulations, individual lipids were considered as

chains of N ¼ 3 beads connected by Hookean springs with

each bead representing a number of atoms (e.g., several
methyl groups). The first bead represented the hydrophilic
headgroup, the N % 1 consecutive beads represented the
hydrophobic tail (cf. Fig. 1 a). The chain was given a bend-
ing rigidity, i.e., a straight chain was energetically preferred.
Inclusions were modeled by cylinders with a length of 2 N
beads and a hexagonal cross section (cf. Fig. 1 b). The first
and last bead in each chain were taken to be hydrophilic, the
remaining N % 2 were taken to be hydrophobic. In corre-
spondence with the lipids, the beads in each chain were
connected by Hookean springs and the chain was given a
bending rigidity. These 2 N bead chains were positioned on
all inner vertices of a plane hexagon with edge length K 1 1
and were connected layerwise by Hookean springs. In total,
the inclusion consisted of 2 Nf3 K(K 1 1) 1 1g beads.
All beads interacted via a pairwise soft-repulsive potential,

where the strength of repulsion was tuned to be stronger be-
tween hydrophobic-hydrophilic pairs. All beads were further
subject to a Galilean-invariant, momentum-conserving DPD
thermostat that included dissipative and random forces (see
Methods). The solvent-induced attraction of the lipids was
mimicked by an attractive pairwise potential among the hy-
drophobic beads in agreement with Cooke et al. (18). For
comparison with Eq. 1 and Eq. 2, we have transferred the
simulation units to SI units (see Methods).
We first confirmed that the chosen lipid model allowed for

a self-assembling bilayer with the correct membrane fluctu-
ations (data not shown) and an approximate thickness of h !
3.3 nm (see Methods). We also inspected the integrity of the
membrane during and after the simulation with and without
inclusions. In all cases, the membrane was intact over the en-
tire simulation period; a representative snapshot at the end
of a simulation with a medium-sized inclusion is shown in
Fig. 1 c. To quantify the lateral diffusion coefficients D, we
recorded the position of the inclusion and calculated from
this the integrated distribution of squared distances Dx2

traveled in a period t within the plane of the membrane,
which should coincide with (see Methods)

PðDx2Þ ¼ 1% expð%Dx2=ð4DtÞÞ: (3)

A similar approach was used to obtain Dr by virtue of
tracking the orientation of the inclusion (see arrow in
Fig. 1 b).
In Fig. 2, the numerically obtained data for two represen-

tative inclusions (K¼ 2, 19) are shown together with the best
fit according to Eq. 3. A clear shift to smaller quadratic
distances Dx2 is visible for the larger inclusion, highlighting
the reduced diffusive mobility. We next determined system-
atically the lateral diffusion coefficient D for inclusions of
various sizes. For comparison with Eq. 1, we assigned each
hexagon a radius R ¼ l0(K 1 1) ¼ (K 1 1)&0.6 nm (cf.
Methods). The dependence of D on R is shown in Fig. 3
together with the best fit according to Eq. 1, from which we
obtain the viscosity hm ! 0.25 Pa s of the bilayer (via h !
3.3 nm, Methods). This value is in good agreement with

FIGURE 1 (a) Model lipid as used in the simulations with implicit solvent
(green, hydrophilic; red, hydrophobic). Hookean spring connections are

indicated by cylindrical bonds. (b) Hexagonal membrane inclusion with

edge length (K 1 1)l0 (K ¼ 3). Dark/light gray corresponds to hydrophilic/

hydrophobic beads; for clarity, Hookean connections are not shown. The red
arrow highlights the orientation vector of the inclusion that was used to

determine the rotational diffusion. (c) Snapshot of a membrane with an

embedded inclusion (K ¼ 7) after simulation of ;80 ms real time.
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typical data from the literature (22). For the simulations with
explicit solvent, we also find a very good agreement with Eq.
1 for small radii (Fig. 3, inset) and the determined parameters
(h ! 3.5 nm, hm ! 0.19 Pa s) agree well with those obtained
for the implicit solvent approach. From the fit, we further
obtain via hhm/hc ! 14.7 nm the effective viscosity hc !
0.056 Pa s of the surrounding (explicit solvent: hc ! 0.039
Pa s). Both values for hc correspond well to the indepen-
dently determined viscosity of the solvent (see Methods)
albeit hc is not a well-defined quantity in the implicit-solvent
approach (see Discussion).

Although for small radii the Saffman-Delbrück relation
yields a very good description, strong deviations are visible
beyond a critical radius Rc ! hhm/(2hc) ! 7.4 nm. (Fitting
the entire numerical data with Eq. 1 alone results in a very
bad description (data not shown.)) We would like to note
that the critical radius Rc emerges naturally here when
comparing the flux of energy dissipated by the bilayer and
the solvent, respectively: whereas the former is Jm} 2pRhhm,
the latter is given by Jc } 2 pR2hc, i.e., a crossover is ex-
pected at R ¼ 2 Rc beyond which the friction due to the
solvent-facing area dominates. For R ' Rc, the problem can
thus be reduced to the edgewise motion of a thin disk in a
fluid of viscosity hc for which one finds (with appropriate
prefactors) D ¼ kBT/(16 Rhc) (13).
However, inspecting our numerical data, the lateral

diffusion coefficient seems to decrease faster than linear
with the radius of the inclusion. How can we rationalize this
observation? We recall that all hydrodynamic calculations
have used incompressible cylinders as a model for the mem-
brane inclusion (8,13); in better words, internal degrees of
freedom that are likely to play a role in particular for larger
inclusions/rafts have been neglected, although they are nat-
urally included in our simulations due to the construction of
the inclusion. As the inclusion’s Brownian motion is driven
by the erratic impact of surrounding lipids, we have to take
into account that this impact will be dissipated in part by
internal degrees of freedom of the inclusion via the imposed
thermostat, i.e., only a fraction u of the impact will be used
to move the center of mass. This fraction may be estimated as
follows. By construction, all beads within the inclusion per-
form Brownian motion in a harmonic potential of stiffness k2
(see Methods). The spectral density for each bead is thus
given by pðvÞ ¼ 2v0=½pðv2

01v2Þ) with v0 ¼ k2/b, where b
is the (local) friction coefficient of the moving bead, which
depends on the dissipation strength of the thermostat. Cou-
pling of the individual beads now leads to a spectrum of
relaxation times, the maximum of which can be estimated by
considering an effective Maxwell element (spring-dashpot in
series) along the diameter of the inclusion. This Maxwell
element consists of 2 K 1 1 springs of stiffness k2 and a
damping dashpot of viscosity hM in series, i.e., in total a
spring with stiffness k2/(2 K 1 1) needs to be considered,
yielding a relaxation time t ¼ (2 K 1 1)hM/k2. Only
frequencies v, 2 p/t are not dissipated within the inclusion
(and thus can move the center of mass), that is,
u ¼

R 2p=t
0 pðvÞdv ¼ 2atanðconst=ð2K11ÞÞ=p. Using R ;

2 K 1 1, it becomes clear that due to the internal dissipation
only a fraction u ¼ 2atan(c/R)/p is available for the center-
of-mass motion. We thus arrive at a scaling

D ¼ kBTatanðc=RÞ
8phcR

;
R'RC 1=R2; (4)

which for c ! 6 nm describes the numerical data very well
when using the previously found viscosity hc ! 0.056 Pa s
(Fig. 3). We would like to emphasize that c; k2/hM, i.e., for

FIGURE 2 Integrated distribution P(Dx2) of squared distances Dx2

traveled within a period t ¼ 0.8 ms for inclusions with K ¼ 2 and K ¼ 19
(solid and shaded lines, respectively). Best fits according to Eq. 3 are shown
as symbols.

FIGURE 3 Lateral diffusion coefficient D as a function of the inclusion

radius R (symbols) is well described by the Saffman-Delbrück relation Eq. 1

(solid line) for small radii. Beyond a critical radius Rc ! hhm/(2hc) (dash-
dotted line), deviations becomevisible and the data are best described byEq. 4
(dashed line). (Inset) The diffusion coefficient as obtained from the explicit-

solvent model (d) is well described by Eq. 1 (solid line) for small radii.
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an incompressible inclusion (k2 / N, hM / 0), the
hydrodynamic scaling D ; 1/R (13) is obtained. We also
would like to note that the critical radius Rc (which is a
hydrodynamic quantity) does not have to be involved to
derive Eq. 4, as the presented thermodynamic considerations
do not rely on the dimensionality or the existence of an
interface. Although Eq. 4 should naturally hold when
quantifying the diffusive motion on short and intermediate
timescales, the contribution of the internal modes can be
expected to subside when monitoring the diffusive mobility
over asymptotically large times (similar to a random-coil
polymer that behaves asymptotically like a diffusing sphere).
In this asymptotic regime, one can expect to obtain the
hydrodynamic result according to Hughes et al. (13) even
when internal modes are present.
We finally monitored the size dependence of the rotational

diffusion coefficient Dr. For all tested inclusion sizes, the
decrease of Dr is well described by Eq. 2 (Fig. 4). The
prefactor of the best fit to the data yields kBT/(4 phmh) !
0.45 mm2/s, which is in excellent agreement with the value
0.41 mm2/s obtained from h and hm as determined by fitting
the lateral diffusion coefficient for small radii. Similarly, we
found good agreement with Eq. 2 for the data obtained with
the explicit-solvent model (Fig. 4, inset).

DISCUSSION

In conclusion, we have shown by means of extensive simu-
lations that the rotational diffusion coefficient of membrane
inclusions follows indeed the predicted form, Eq. 2. The
lateral diffusion coefficient, however, does only follow the
Saffman-Delbrück relation, Eq. 1, for small radii, whereas
for large radii we find substantial deviations and an as-
ymptotic scaling according to Eq. 4. The latter takes into
account the internal degrees of freedom of the inclusion,
which should arise naturally as larger inclusions are most
likely loosely associated protein oligomers and/or raft-like

entities. The proposed scaling Eq. 4 is thus expected to be
more realistic than the results derived for large incompress-
ible cylinders. Although the internal modes can be expected
to subside when following the diffusion trajectory over as-
ymptotically long times, they clearly contribute significantly
to the diffusion on small and intermediate timescales and
may thus be accessible experimentally, e.g., by fluorescence
correlation spectroscopy. Small deviations from Eq. 1 are
also expected (and observed, cf. Fig. 3) for radii R , 1 nm,
since in this regime the discrete composition of the mem-
brane from individual lipids must be taken into account
(‘‘free-volume model’’ (27,28)).
It is worthwhile to note that we found similar results by

two simulation approaches (i.e., using an implicit and an
explicit solvent) that also differed in the type of lipids
(implicit solvent N ¼ 3 beads per lipid, explicit solvent N ¼
4). We furthermore have used the approach of Shillcock and
Lipowsky (29) (i.e., a lipid with N ¼ 7) and did find similar
results for the diffusion coefficient (D # 1mm2/s, hm !
0.2 Pa s). We are therefore confident that the lipid model
influences the presented results only weakly, e.g., by slightly
altering the value of hm.
At first glance it is surprising that the implicit-solvent

approach, where hc ¼ 0 by definition, can reproduce hydro-
dynamic relations like Eq. 1 in which a finite value for hc is
needed. The reason for this can be traced back again to the
internal modes of the inclusion and the dissipative forces
imposed by the thermostat. The erratic impact of the sur-
rounding lipids excites shear modes within the inclusion with
a polarization perpendicular to the bilayer normal, and these
modes are dissipated by the action of the thermostat. A
‘‘neutral layer’’ of the inclusion located roughly in the
midplane of the bilayer therefore feels a friction with respect
to the layers that lie above and below in-plane with the
hydrophilic headgroups of the lipids. Hence, these shear
modes mimic an apparent solvent viscosity that should
change, when the dissipation strength g in the thermostat is
altered for the beads within the inclusion. Indeed, we have
observed that a reduction of g within the inclusions leads to
an effective reduction of hc (data not shown). Efforts to
thoroughly quantify the nontrivial connection between the
emergence of an apparent solvent viscosity and the inner
modes beyond this qualitative argument as well as an in-
vestigation that hydrodynamic quantities can be faithfully
reproduced by an implicit-solvent scheme are currently
under way.
In a recent report, strong deviations from Eq. 1 that indicate

a scaling D ; 1/R have been found experimentally (11). In
fact, the authors claim deviations already for radii R ! 1 nm,
which is in contrast to earlier studies (9,10). We would like to
point out here that substantial deviations from Eq. 1 should be
possible only for R # 1 nm (due to the free-volume model,
which also predicts D ; 1/R for sufficiently small R (28)) or
for R . Rc ! 10 nm. Bearing in mind the unavoidable
systematic limitations when experimentally assessing the

FIGURE 4 Rotational diffusion coefficient Drot is well described by Eq. 2

(solid line) in the implicit-solvent case and in the explicit-solventmodel (inset).

Size-Dependent Membrane Diffusion 2397

Biophysical Journal 91(7) 2393–2398



diffusive mobility and given that D ; 1/R can provide a
reasonable fit to Eq. 1 when error bars are big enough, it is
likely that the signatures of Eq. 1 have beenmasked in the data
presented in Gambin et al. (11). Nevertheless, it will be
interesting to revisit the approach of Gambin et al., i.e., i), to
also use a complementary experimental techniques (e.g.,
fluorescence correlation spectroscopy) and ii), to extend the
study to larger radii and higher temporal resolution where
Eq. 4 can be expected to become visible.

We thank R. Bruinsma, T. Liverpool, U. Schwarz, and U. Seifert for helpful
discussions. This work was supported by the Institute for Modeling and

Simulation in the Biosciences (BIOMS) in Heidelberg.
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