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A pandemic creates a challenging situation where governing authorities are faced with the complex
decision of what the appropriate measures are given the existing information. Building on the key
observation that the stochastic evolution of a process such as the spread of infection has a finite
extinction probability even when it is expected to grow exponentially on average, we propose a
strategy of containment that falls in between the relatively mild social distancing measures and
the maximally restrictive lock-down strategies. Our proposed strategy involves partitioning the
population into smaller isolated sub-populations within which, while social distancing is practised
as much as possible to reduce the contact rate, a relatively normal lifestyle is maintained. As a rule
of thumb, the optimal size of the sub-populations can be obtained by dividing the total population
size by the best estimate of the number of infected individuals at the time of the implementation of
this containment strategy.

a. Introduction.— In the midst of the spread of in-
fection by the novel corona-virus, current political efforts
are mainly aimed at reducing the rate of contact-based
infection (by limiting social interactions and quarantin-
ing infected people, thus effectively removing them from
the pool that can infect susceptibles). This is hoped to
lead to an overall smaller peak in the infected fraction of
the population. Typical responses by governments have
started from relatively mild measures in the form of travel
restrictions implemented between whole nations and shut
down of major gatherings, and switched to extreme mea-
sures that limit the mobility of individuals to the confines
of their homes. According to our analysis, which is based
on the effect of fluctuations in the spread of infection, it
is possible to propose an alternative scenario that intro-
duces an intermediate level of restrictions and contains
the spread of infection. Our scenario considers the very
early stages of an epidemic when the spread is expected
to grow exponentially on average. The key idea is that
more stringent isolation of smaller sub-populations could
make use of stochastic effects and increase the likelihood
of a spontaneous end of infection chains in local com-
munities via a process called extinction. We find that
strict isolation at the level of sub-populations also has
the advantage of leading to stochastic desynchronization
of the epidemic bursts, such that not all sub-populations
reach peak at the same time and the total peak number
of infected individuals in the entire population is further
reduced (see Figs. 1a and 1b).

There exists extensive prior work on the spread of in-
fections through populations of various topological struc-
ture; see, e.g., Ref. [1] and the references therein. Data
analysis on the trends of the recent epidemic spread has
revealed heterogeneity in the degree of infectiousness of
the virus [2] and in the phylogeny of the virus across
different regions [3], and has been used to quantify the
effectiveness of the containment measures [4, 5]. Evi-
dence is also emerging on the role of stochasticity in the
effectiveness of containment measures, as can be seen for
example from the case of nearby cities for which imple-

mentation of similar measures led to drastically different
trends [6].

b. Model.— We consider a population of N individ-
uals with SIR (Susceptible S, Infected I, and Removed R
(due to either recovery or death)) dynamics [7]

S + I
b−−→ I + I, (1a)

I
k−−→ R, (1b)

with infectious contact rate b and removal rate k. These
rates are related to the basic reproduction number R0 =
b/k, which is commonly used to quantify the intensity of
an outbreak [1]. The population is subject to the total
constraint N = S + I + R. This simple model has been
used in many studies of disease spreading [1] but more
sophisticated generalizations have also been developed
[8, 9]. All numerical results shown below are obtained
from stochastic simulations of Eq. (1) using the Gillespie
algorithm [10].

c. Deterministic behaviour.— The dynamics results
in the deterministic mean-field equations

dI

dt
=

b

N
S I − k I, (2a)

dS

dt
= − b

N
S I, (2b)

dR

dt
= k I, (2c)

which give rise to two regimes in the dynamics. During
the initial regime I starts off from an initial value I0 and
rises exponentially, ∼ I0e

(b−k)t, and saturates to some
peak value Imax.

Imax = γN, (3)

where the maximum fraction of the infected population,
γ(b, k), is defined. Note that by definition, 0 < γ < 1,
and that it only depends on the ratio of the two rates,
namely γ(b, k) = γ(b/k). In the secondary regime when
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FIG. 1: Desynchronization of sub-populations. (a) Time
course for a population of N = 1,000,000 with I0 = 10 initially
infected individuals for Ns = 1 large population (red) and a
population split into Ns = 10 sub-populations (turquoise).
Shading indicates ±25% confidence intervals across 100 sim-
ulations. Colour-coded sub-populations are shown from one
such simulation for Ns = 10. Only three sub-populations
experience a significant outbreak, and they are desynchro-
nized. (b) Enlarged plot of the initial phase, during which 7
out of 10 sub-populations experience extinction, whereas the
expectation value for both Ns = 1 and Ns = 10 rises expo-
nentially. (c) Distribution of peak times in sub-populations
for Ns = 10. Occurrence fraction indicates the fraction of
sub-populations showing the corresponding peak time across
all 100 simulations from (a). Note that this distribution is
not normalized since a significant fraction of sub-populations
experience extinction of the epidemic and therefore do not
exhibit a peak. Dashed line indicates the analytical approxi-
mation from Eq. (12) with a uniform n = I0/Ns = 1. b = 0.1,
k = 0.07 for all simulations.

the recovery dynamics dominates, I decays to zero expo-
nentially, as the number of susceptibles decreases below
the value necessary to sustain spreading.

d. Small numbers.— Deterministic behaviour only
applies if S and I are both large, particularly only after
the number of infected people I has risen to apprecia-
ble levels. If I is still low, stochastic effects determine
whether I will “take off” and develop exponential be-
haviour, even if b > k. During this phase we can assume
that S ≈ N and that I follows a simple birth-death pro-
cess with rates b for birth and k for death. From the
theory of branching processes, it is well known that even
an exponentially growing population that starts from an
initial condition of I(0) = 1 has a finite extinction prob-
ability of

P0(t) =
k

b
· e(b−k)t − 1

e(b−k)t − k/b
. (4)

which asymptotically approaches k/b at long times [11];
see the derivation in Appendix A. This means that with
probability pext

1 = k/b [12] the dynamics never enters

the exponentially growing deterministic regime, but de-
cays back to zero due to number fluctuations. For two
independent lineages in the same population, the extinc-
tion probability is therefore pext

2 = (k/b)2, and, similarly,
pext
n = (k/b)n, as long as the total population is large

enough so that the lineages do not interfere with each
other. If this assumption does not hold, the theoretical
framework can be readily extended to adapt to the more
general case.

e. Isolated sub-populations.— In a large population
with N individuals, where the number of infected cases
has already left the stochastic regime, the peak number
of infected individuals will be Imax = γN (as defined in
Eq. (3) above). In contrast, if the population is split up
into Ns equal sub-populations, some sub-populations can
experience extinction of the outbreak due to the low num-
ber of initially infected individuals. An example for pop-
ulations of N = 1,000,000 individuals split into Ns = 10
sub-populations is shown in Figs. 1a and 1b, along with
the expected dynamics of a single large population. Note
that, on average, both the undivided large population
and the sum of the smaller sub-populations initially ex-
hibit an exponential growth in the number of infected
individuals (Fig. 1b). The effect of the extinction events
in some sub-populations is only seen later during the sat-
uration phase.

To obtain an estimate for this effect, we add up
the maximum numbers of infected individuals in the
sub-populations. Each of these peaks is approximately
γN/Ns, but only if the infection does not stochastically
become extinct during the initial stages. On average, the
peak number in each case will be

Is,max(n) = γ
N

Ns

(
1− pext

n

)
(5)

where n indicates the number of initial infected individu-
als in the sub-population and pext

n is the probability that
they go extinct without entering deterministic growth as
discussed above. By following this containment strategy,
the total peak number of the infected individuals in all
the sub-populations is then

Icon
max =

∑
n

gnIs,max(n), (6)

where gn is the number of sub-populations with n initially
infected individuals. Note that

Ns =
∑
n

gn. (7)

Combining the above equations, we obtain

Icon
max = γ

N

Ns

∑
n

(
1− pext

n

)
gn = γN

[
1−

∑
n gn(k/b)n∑

n gn

]
.

(8)

The above result manifestly shows that

γcon ≡ Icon
max

N
< γ, (9)
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FIG. 2: Epidemics for different sizes of sub-populations. Time
course (solid line) and 2.5/97.5 percentiles (dashed lines) for
a total population of N = 8,000,000 individuals and 500 ini-
tially infected people. (a) Ns = 1 (20 individual simulations).
(b) Ns = 100 with randomly distributed infected individuals
(200 individual simulations). (c) Ns = 500 with randomly
distributed infected individuals (40 individual simulations).
(d) Distribution of the observed peak percentage of infected
individuals for the same three ways of population splitting.
Occurrence fraction indicates the fraction of simulations ex-
hibiting the corresponding γcon. The dashed vertical lines in-
dicate the value expected from Eq. (8) assuming a uniform dis-
tribution of individuals across sub-populations. Occurrence
fraction indicates the fraction of simulations exhibiting the
corresponding γcon. b = 0.1, k = 0.07 for all simulations.

holds. Note that the simple summation of the individual
maxima neglects the possible desynchronization between
sub-populations (see below for more details and a com-
parison of Eq. (8) with simulations in Figs. 2d and 3b).

For example, for the ideal case where each sub-
population only contains at most one infected individual,
we will have

Icon
max = γ

N

Ns

(
1− k

b

)
I0, (10)

where g1 = I0 is the total number of initially infected in-
dividuals in the large population (for this to make sense,
Ns ≥ I0 is required). Comparing this with the peak
value in Eq. (3), which corresponds to the case where
the population was not split up, we find that the peak
number of infected (and thus proportionally the hospital
beds required) can be reduced by a factor of

Icon
max

Imax
=
γcon

γ
=

I0
Ns

(
1− k

b

)
, (11)
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FIG. 3: Uniform distribution of infected individuals. (a) Time
course (solid line) and 2.5/97.5 percentiles (dashed lines) for a
total population of N = 8,000,000 individuals, Ns = 500 sub-
populations and 500 initially infected people (40 individual
simulations). Instead of randomly distributing the 500 in-
fected individuals across the sub-populations as in Fig. 2, ex-
actly one infected was placed in each sub-population. (b) Dis-
tribution of the observed peak percentage of infected individ-
uals. Occurrence fraction indicates the fraction of simulations
exhibiting the corresponding γcon. The dashed vertical line
indicates the value expected from Eq. (8) assuming the same
uniform distribution of individuals across sub-populations.
b = 0.1, k = 0.07.

in the optimal case, which can be decreased by increasing
the number of sub-populations Ns and bringing b closer
to k. Note that this is in addition to the decrease in the
deterministic peak fraction γ of infected, which naturally
results when b becomes closer to k.

The independent summation of maxima in different
sub-populations is a conservative estimate, since fluctu-
ations can lead to stochastic desynchronization and thus
to a further reduction of the peak value. The distribu-
tion of peak times in the sub-populations from the pre-
vious example is shown in Fig. 1c. The temporal shift
between the different sub-populations can be attributed
entirely to stochastic fluctuations in the initial phase of
the dynamics. Assuming that this time shift accumulates
while the dynamics can still be modeled as a pure birth-
death process without saturation effects, we can derive
the probability distribution for the deviation from the
mean peak time ∆tpeak ≡ tpeak − 〈tpeak〉 as

P (∆tpeak) = k(1− k/b)[1− (k/b)n]

× exp

(
−(b− k) (τ̄ + ∆tpeak)− k

b
e−(b−k)(τ̄+∆tpeak)

)
,

(12)

where n is the initial number of infected individuals in
the population and τ̄ = ln (γk/b) /(b − k) with γ being
the exponential of the Euler constant (see Appendix B
for details). This result is in excellent agreement with
the measured distributions (see dashed lines in Fig. 1c
and Fig. 4).

f. Discussion.— Standard strategies to contain epi-
demic spreads are typically aimed at reducing b (by lim-
iting social interactions and quarantining infected peo-
ple), which leads to an overall decrease in γ. While
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travel restrictions implemented between whole nations
(and also between individual federal states) are the first
large scale methods used for containment, according to
the above analysis more stringent isolation of smaller sub-
populations could make use of stochastic effects and in-
crease the likelihood of a spontaneous end of infection
chains in local communities. This would reduce the over-
all peak number of infected people (and therefore strain
on the healthcare system) by an additional factor of up to
I0/Ns · (1−k/b) when I0/Ns < 1, even if efforts of reduc-
ing b below k are not effective and b > k remains. One
contribution comes from the communities which have no
initially infected people and are now protected (I0/Ns),
while another contribution comes from the possibility
that an infection chain in the local community stochas-
tically ends due to fluctuations (k/b). Stochastic desyn-
chronization would further reduce the peak, since not all
sub-populations reach peak values at the same time.

We consider as an example a region with a popu-
lation of about 8,000,000 and 500 infected individuals
(I0/N ∼ 6 · 10−5). Parameter estimates for the uncon-
strained evolution of the recent epidemic outbreak vary
widely [2, 4, 5]. We assume initial parameters of b = 0.3
and k = 0.07, corresponding to a basic reproduction
number of R0 = b/k ≈ 4.3 and a removal time of
1/k ≈ 14 days, which are on the same order as estimates
for other simple epidemiological models [2, 4] and yield
a realistic growth factor of eb−k = 1.26 per day in the
early stages of the epidemic. Let us further assume
that drastic measures, but without explicit confinement
to homes, can improve the parameters of the epidemic
to b = 0.1 and k = 0.07, but not enough to reduce
b below k, which would prevent spreading altogether.
If this population is allowed to mix homogeneously,
the dynamics will evolve according the deterministic
prediction with a peak around 5% (400,000 people)
infected individuals (Figs. 2a and 2d).

If instead, the population is split up into 100 sub-
populations of 80,000 people and the 500 infected
people are distributed randomly across those 100 sub-
populations, the peak of infected population decreases
to around 3% (260,000 people) on average (Figs. 2b
and 2d). Isolating even smaller communities from their
surroundings (500 sub-populations of 16,000 people)
leads to a further reduction of the peak to around 1%
(85,000 people) on average (Figs. 2c and 2d). This is
comparable (or even slightly lower) than the case where
the 500 infected individuals are not distributed randomly
across the 500 sub-populations, but each sub-population
contains exactly one infected individual. In this case
(Fig. 3), there are no sub-populations with initially zero
infected individuals. This implies that the reduction
in peak value compared to the large homogeneous
population is strictly due to extinction, which also
means that the remaining deviation from the prediction
of Eq. (8) is probably due to desynchronization. The
desynchronization for the three different ways of splitting
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FIG. 4: Peak and termination time distributions. (a) Distri-
bution of peak times for the three cases shown in Fig. 2, with
a total population of N = 8,000,000 individuals and differ-
ent Ns with 500 initially infected people. Occurrence fraction
indicates the fraction of sub-populations showing the corre-
sponding peak time across all simulations for the correspond-
ing parameters. Note that these distributions are not nor-
malized since a significant fraction of sub-populations experi-
ence extinction of the epidemic and therefore do not exhibit
a peak. Inset provides an enlarged view of the two smaller
distributions. Dashed lines indicate the analytical approx-
imation from Eq. (12), assuming a uniform n = I0/Ns for
each case. (b) Distribution of termination times for the same
three cases. Termination time is defined as the time when the
number of infected individuals drops below the initial number
in the total population.

up the population shown in Fig. 2 is quantified in Fig. 4a,
which shows a broadening of the peak time distribution
owing to increased stochasticity. Note that there is
also a subtle, non-monotonic effect on the termination
time of the epidemic, whose distribution also tends to
become broader when the population is split up (Fig. 4b).

In summary, even without complete lock-down and
without achieving b < k, isolating smaller communities
can significantly reduce the peak number of infected in-
dividuals of an epidemic outbreak. While this is obvious
even from a deterministic standpoint in the case where
many regions initially contain no infected individuals,
our analysis shows that this advantage persists due to
stochastic extinction events even if this is not the case,
as long as I0/Ns ∼ 1. Due to the exponential depen-
dence of the extinction probability on n (see Eq. (8)) it
is important to obtain a conservative estimate for I0, for
example by adjusting the number of reported cases by
an appropriate factor related to the detection probabil-
ity. Naturally, such isolation will also automatically lead
to a further reduction in b, so that the reduction will
be even greater in practice. In addition, given the avail-
able data about the geographic distribution of infections,
it should be possible to isolate the “right” communities
and adjust their size much more intelligently than we
have done here (where the infected individuals were dis-
tributed randomly or uniformly across sub-populations).
This should further increase the likelihood of stochastic
termination of the epidemic in many small communities
(even if there are undetected cases), and should also allow
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for practical considerations and compromises regarding
access restrictions to certain areas. Note that the addi-
tional desynchronization effect would also allow non-peak
regions to provide medical support and hospital space to
peak regions, further improving the management of the
epidemic. Of course, this approach does not preclude the
activation of more drastic individual confinement mea-
sures as a last resort in regions beginning to show de-
terministic exponential behaviour, while still sparing the
majority of regions from them.
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Appendix A: Exact solution of the birth-death
process

Consider a population of the infected individuals I that
can undergo the following two processes:

I
b−→ I + I, I

k−→ ∅, (A1)

i.e., each I can give birth to another I with rate b, or, it
can die with rate k, at any time. Ignoring the stochastic-
ity, the average behaviour of the system is described by
exponential birth and death. The population n̄(t) can be
determined as follows:

dn̄(t)

dt
= (b− k)n̄(t) ⇒ n̄(t) = e(b−k)t, (A2)

where we have assumed that the initial size of the popula-
tion is one. As this is a one-step process, the probability
of finding n copies of I in the sample at time t satisfies
the following Master equation

dPn(t)

dt
= k(n+1) Pn+1(t)+b(n−1) Pn−1(t)−(k + b)nPn(t),

(A3)
The factor of n is needed because the birth or death could
happen to anyone. Equation (A3) can be solved by an
ansatz of the form Pn ∼ fn for n ≥ 1, which together
with the initial condition Pn(0) = δn,1 gives us the solu-
tion as

Pn(t) =
n̄(1− k/b)2

(n̄− 1)(n̄− k/b)

(
n̄− 1

n̄− k/b

)n
. (A4)

The distribution can be used to calculate the first two
moments

〈n(t)〉 =

∞∑
n

nPn(t) = n̄(t) = e(b−k)t, (A5)

∆n2 =
〈

[n− 〈n〉]2
〉

=

(
b+ k

b− k

)
e(b−k)t

[
e(b−k)t − 1

]
,

(A6)

which reveal more interesting features about the system.
First, it is reassuring that the average population size
behaves according to the mean-field description above
that predicted exponential growth or decay. A quantity
of interest is

∆n2

n̄
=

(
b+ k

b− k

)[
e(b−k)t − 1

]
, (A7)

which probes whether number fluctuations follow a char-
acteristic Poisson behaviour. In the long time limit, we
have

∆n2

n̄
=


∞ ; b > k,

k + b

k − b
; b < k,

(A8)
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which shows that while a decaying population that cor-
responds to b < k has a Poisson behaviour, a growing
population corresponding to b > k has giant number fluc-
tuations, which can be characterized via

∆n

n̄
=

√
b+ k

b− k
√

1− e−(b−k)t, (A9)

which leads to

∆n

n̄
=

√
b+ k

b− k
, (A10)

in the long time limit. In other words, the fluctuations
scale with the average population size when b > k, and
with the square root of the average population size when
b < k.

The above solution allows us to calculate the extinction
probability of the population P0(t), which is an absorbing
state. We find

P0(t) = 1−
∞∑
n=1

Pn(t) =
k

b
· e(b−k)t − 1

e(b−k)t − k/b
. (A11)

which is a very interesting result. When k > b, n̄→ 0 at
long times, and we obtain P0 = 1. It is no surprise that
extinction at long times is a certainty when the death
rate is larger than the birth rate. However, when k < b,
n̄ → ∞ at long times, and we obtain P0 = k/b; a result
that is in contradiction with the prediction of the average
behaviour of the system, which is exponential growth.
So, number fluctuations could completely annihilate an
exponentially growing population.

Appendix B: Analytical approximation of the
relative peak time distribution

The fact that the early phase of the dynamics in the
SIR model (when S ≈ N and I is small) corresponds
to a simple birth-death process also allows us to obtain
an analytical estimate for the peak time distributions of
the sub-populations. This can be readily adapted from
a similar calculation performed on an equivalent prob-
lem in evolution, where the dynamics of a small mutant
sub-population with a given selective advantage can like-
wise be understood as a birth-death branching process

[13], for which the transition from the initial stochas-
tic regime where extinction is still possible to the deter-
ministic regime of exponential growth corresponds to the
establishment of the mutation in the population (which
precedes fixation).

We obtain an approximation for the establishment
time distribution of the disease in a sub-population as

P est
SIR(τ) = k (1− k/b) exp

(
−(b− k)τ − k

b
e−(b−k)τ

)
,

(B1)
where we have corrected for an additional minus sign
missing from Ref. [13]. The variation in the timing of the
later deterministic dynamics is due entirely to fluctua-
tions in this initial stochastic phase. To compare this an-
alytical approximation with our simulation results for the
peak time in the main text, we plot the non-normalized,
unconditional distribution

P (tpeak) = [1− (k/b)n]P est
SIR (tpeak + τ̄ − 〈tpeak〉) , (B2)

which is diminished by a factor [1 − (k/b)n] (from Eq.
(B1)) accounting for the probability of extinction in a
population with initially n infected individuals, and has
its mean shifted to the measured mean peak time 〈tpeak〉.
Here

τ̄ ≡ 〈τ〉 =
1

b− k
ln

(
γ
k

b

)
, (B3)

where γ = 1.7810724 · · · is the exponential of Euler’s
constant.

We note that simply shifting the mean of the distribu-
tion is justified because the dynamics is predominantly
identical in different sub-populations once they are in
the deterministic regime, while only lagging by a ran-
dom time span τ . This simple argument depends on the
assumption that stochastic fluctuations can be ignored
before deviations from exponential behaviour (i.e. satu-
ration effects) have to be considered for the deterministic
dynamics. This is true for the scenarios we consider in
the SIR model, since our sub-populations still consist of
thousands of individuals and we are explicitly focusing
on cases where b is not arbitrarily close to k.
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