BIOENG 455 Practise Test 1

I) The virial expansion of a gas is an expansion of pressure in powers of the number density $\rho = N/V$:

$$P = \rho k_B T (I + B_2 \rho + B_3 \rho^2 + ...)$$

where the B_2 , B_3 , ... are virial coefficients, and may be functions of temperature but not density. What are the dimensions (M, L, T) of B_2 and B_3 ? (I point)

- 2) If the potential difference across a cell's plasma membrane is 80 mV, what is the magnitude of the electric field across it? (include units) (I point)
- 3) Consider a real polymer as a linearly-connected chain of **N** spherical monomers of diameter **a:**
- a) If the polymer consists of N = 20,000 monomers of diameter a = 1 nm and has a Kuhn length of $I_k = 3$ nm, how many Kuhn lengths are there in the equivalent phantom chain? (2 points)
- b) What is the average end-to-end length ($\sqrt{\langle Ree^2 \rangle}$) of the polymer? (2 points)
- 4) State the Equipartition theorem (making clear the key assumptions) (3 points)
- 5) Write down the full expression for $< R_{ee}^2 >$ of a real polymer before making the freely-jointed chain assumption? What property of the polymer does the second term represent? (2 points)
- 6) The two strands of DNA are held together by H-bonds that have an energy ~ 5 kBT per base pair and the base pairs are ~ 0.3 nm apart along the strands. If the DNA is 10^6 base pairs long and has a Kuhn length of 300 nm, what is its average end-to-end distance? And what is the total energy of all the H-bonds (4 points)
- 7) Consider an intrinsically disordered protein as a phantom chain of \mathbb{N} monomers that are spheres of radius \mathbf{a} . What is the ratio of the volume of all the monomers to the volume occupied by the fluctuating chain? What is the actual value if $\mathbb{N} = 200$, $\mathbb{a} = \mathbb{I}$ nm (2 points)