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Liquid–liquid demixing or phase separation of protein with RNA

is now recognized to be a key part of the mechanism for

assembly of ribonucleoprotein granules. Cellular signaling also

appears to employ phase separation as a mechanism for

amplification or control of signal transduction both within the

cytoplasm and at the membrane. The concept of receptor

clustering, identified more than 3 decades ago, is now being

examined through the lens of phase separation leading to new

insights. Intrinsically disordered proteins or regions are central

to these processes owing to their flexibility and accessibility for

dynamic protein–protein interactions and post-translational

modifications. We review some recent examples, examine the

mechanisms driving phase separation and delineate the

implications for signal transduction systems.
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Introduction
Assembly of multi-component protein complexes is ac-

cepted as an important process for signal transduction [1–
3]. More recently some signaling complexes have been

demonstrated to be highly dynamic with the properties of

a separate protein-rich liquid phase. Liquid–liquid

demixing or phase separation of proteins has been iden-

tified as a mechanism for formation of membraneless

compartments, especially ribonucleoprotein granules

[4,5��,6,7,8�], but is also emerging as an important concept

in signaling. Examples include phase separation of Di-

shevelled (Dvl) in the Wnt signaling pathway [9–11],

which is important in development, and phase separation

of nephrin/Nck/N-WASP proteins[12��,13��], which

function in the assembly of actin filaments [14,15]. Phase
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separation has been demonstrated to rely on multivalent

protein interactions [12��,13��] and often involves intrin-

sically disordered proteins (IDPs) or proteins that contain

intrinsically disordered regions (IDRs). The frequent

occurrence of multiple modular domains in signaling

proteins [2] and IDRs in signaling hubs [16–20] makes

it likely that these phase-separation mechanisms are

common in signaling. Three-dimensional membraneless

compartments in the cytoplasm are also called membra-

neless organelles, puncta or droplets, alluding to their

characteristics. Membraneless refers to these droplets not

being membrane delimited or contained. However, the

phase-separated proteins can be linked to a membrane

through a membrane-bound protein component, leading

to a pseudo two-dimensional phase separation at the

membrane surface. Such two-dimensional phase separa-

tion at the membrane is closely tied to and may be the

driving force behind receptor clustering. Phase separation

allows for the creation of a microenvironment with emer-

gent properties that may be useful for sequestering sub-

strates or enzymes or creating specialized reaction

environments [5��,21�,22,23]. Phase separation also pro-

vides an added layer of control in cell signaling and a

mechanism for switch-like behavior and for integrating

multiple inputs [11,12��].

Dvl: an early example of phase separation in
signal transduction
Dvl is an intracellular protein that transmits Wnt signals

to cytoplasmic targets in response to binding of extracel-

lular Wnt by the Frizzled receptor [10,24]. Dvl or Dvl2, a

mammalian form of Dvl, either overexpressed or endog-

enous, can form cellular puncta [25–27]. These puncta

were initially assumed to represent Dvl protein associated

with cytoplasmic membrane-bound vesicles. However,

extensive testing of this hypothesis demonstrated that

Dvl2 puncta were not associated with a membrane

[10,28], but were in fact composed almost entirely of

Dvl2-GFP fusion protein (estimated at 500–2500 mg/ml).

Puncta, which form when a critical threshold protein

concentration is reached, behave as a separate liquid

phase within the cytoplasm. Fluorescence recovery after

photobleaching (FRAP) experiments indicated a rapid

exchange of Dvl2 protein between the protein-rich

puncta and the more diffuse Dvl2 protein in the cyto-

plasm (Figure 1a), providing evidence of the highly

dynamic nature of the puncta. Studies on an increasing

number of phase-separating proteins indicates that their

viscosity in the phase-separated state can range from 103
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(a) At the critical threshold, phase-separating proteins in the

cytoplasm (green) spontaneously self-associate to form a separate

protein-rich liquid phase (bright green circles), leading to depletion of

the phase-separating protein in the cytoplasm (darker green). Proteins

within the phase-separated state diffuse within the droplets, although

the viscosity within the droplets is generally higher than the viscosity

of the cytoplasm. There is also exchange of the protein between the

protein-rich droplets and the much lower concentration of protein in

the cytoplasm. Droplets disperse when the conditions drop below the

critical threshold (change of protein or binding partner concentration

or solvent condition). (b) When a protein involved in phase separation

is membrane-bound, phase separation occurs at the membrane

leading to clustering. The phase-separated droplets can enrich certain

factors and exclude others. In this example, kinases that

phosphorylate the receptor are enriched, whereas phosphatases are

excluded.
to 106 times the viscosity of water (1–103 Pa s) [22]. The

size of the puncta varied between 0.2 and 2 mm depend-

ing on Dvl2 concentrations. Consistent with a liquid state,

smaller puncta could be observed fusing to form larger

particles.

More recent in vitro studies support the idea that liquid–
liquid protein phase separation creates the matrix of cellular

puncta and other membraneless bodies. A study of Ddx4

[5��] showed that the formation of protein-rich phase-

separated droplets in live cells by a Ddx4-GFP fusion could

be reproduced in vitro, demonstrating that these membra-

neless compartments can assemble spontaneously from

solutions of highly purified protein. Purified hnRNPA1

and LAF-1 have also been demonstrated to form pro-

tein-rich phase-separated droplets in vitro [8,29��]. These

in vitro studies suggest that protein concentration thresh-

olds for phase separation are in the 10�4 to 10�6 M range

[5��,8�,12��]. The difference in concentration between the

protein dense and depleted phases is approximately

100 fold ([12��] and JP Brady et al. personal communica-

tion). FRAP studies on multiple systems indicate that
www.sciencedirect.com 
recovery of fluorescence following whole droplet bleaching

occurs on a timescale of seconds to minutes, pointing to

rapid exchange between the protein dense and depleted

phase [8�,10,13��]. Thus, phase separation by Dvl exem-

plifies a pattern that is observed for other phase-separating

proteins and likely drives formation of cellular bodies and

puncta.

The signaling activity of Dvl mutants is strongly corre-

lated with the ability of these mutants to form puncta

[10,28,30]. In fact, overexpression of Dvl, which promotes

puncta formation, can result in Wnt-independent signal-

ing (see references in [9]). While the possibility that

signaling-active Dvl polymers are smaller than the puncta

observed in cells cannot be fully discounted [9], the

evidence suggests that Dvl puncta mediate Wnt signal-

ing. Notably, the spontaneous and rapid nature of initial

puncta formation introduces switch-like behavior into

Dvl signals resulting in rapid shifting between the on

and off states [11].

The role of multivalency, affinity and
concentration in phase separation
What properties enable some proteins to form separate

liquid phases? The first requirement is likely an ability to

engage in multiple interactions. Mechanistic studies

employing pairs of synthetic constructs, with one member

of the pair containing a variable number of SH3 domains

and the other member a variable number of proline-rich

motifs (PRM), support a requirement for multivalent

interactions [12��,13��]. The ability of these protein pairs

to phase separate was shown to depend strongly on the

number of SH3 domains and PRM repeats in the con-

struct pairs. High-affinity monovalent ligands could block

phase separation by effectively reducing the degree of

valency. When five SH3 domains are present in one

partner and 5 PRM repeats are present in the second

partner, phase separation occurs with both proteins in the

low mm range. By contrast, with three SH3 domains and

three PRM repeats phase separation was not observed

even when both constituents were present at 500 mm.

Droplets ranged in size from �1 mm to >50 mm and also

exhibit liquid characteristics like diffusion of droplet

components and coalescence of smaller droplets into

larger droplets. Notably, the affinity of a single SH31/

PRM1 pair used in these studies was quite low with a KD

of 350 mM. While higher affinity interactions may reduce

the critical concentration for phase separation they also

likely reduce the dynamics of the phase-separated mate-

rial as measured by the rate of fluorescence recovery

[13��]. By contrast to amyloid fiber formation, liquid–
liquid phase separation likely relies on (non-covalent)

polymerization through relatively weak multivalent inter-

actions, which are constantly being broken and reformed

resulting in fluid like properties and exchange of proteins

between the protein-enriched and depleted phases. The

interplay between multivalency, affinity and concentration
Current Opinion in Structural Biology 2016, 41:180–186
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in formation of the phase-separated droplets can be mod-

elled using phase separation principles from polymer

chemistry [5��,11,12��,31,32].

Two-dimensional phase separation or
clustering
The multivalent interactions in the preceding example

are derived from the cytoplasmic proteins Nck and N-

WASP, which promote assembly of actin filaments to-

gether with the membrane-bound adhesion receptor

nephrin and the Arp2/3 complex [13��,33]. Nephrin has

three tyrosines on a long disordered tail; upon phosphor-

ylation these can bind to Nck’s single SH2 domain [14].

Nck also has three SH3 domains that bind to PRMs in N-

WASP (Figure 2). The multivalent interactions between

nephrin, Nck and N-WASP bring nephrin into a phase-

separated state. However, since nephrin is membrane-

bound, the phase separation occurs in an approximate

two-dimensional plane near to the membrane and results

in clustering of nephrin in the membrane. Clustering of

nephrin then promotes actin filament assembly by the

Arp2/3 complex. Formation of clusters is highly coopera-

tive, resulting in a sharp phase transition. Clusters are

fluid-like and micron-sized and can coalesce into larger

clusters. Notably, two-dimensional clustering has a much

lower concentration threshold (can occur at 10�7 M) than

formation of three-dimensional droplets in solution. Mul-

tivalency was again shown to be important, with efficient

clustering requiring all three nephrin phosphorylated

tyrosines and all three SH3 domains.
Figure 2
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within the membrane.
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Similar clustering is observed for the T cell receptor

complex protein LAT (linker for activation of T cells),

again involving adapter proteins with multiple SH3

domains and a SH2 domain and multiple phosphotyrosine

residues on LAT [21�,34]. Notably, these phase-separat-

ed LAT clusters act as a selective solvent for other

proteins, enriching for the LAT kinase, ZAP70, and

excluding the CD45 tyrosine phosphatase. This likely

enhances LAT phosphorylation and amplifies signals

from the T cell receptor, thus providing an example of

how phase separation may enable signal transduction

(Figure 1b).

Membrane clustering appears to be a common mecha-

nism in cellular signaling, which may serve to stabilize

active conformations, amplify signals or introduce switch-

like behavior. It has been observed for many signaling

receptors including EGF [35], Fas/FasL [36] and Eph

[37,38]. Other membrane proteins for which clustering

has been observed include cadherins [39], GPI anchored

proteins [40] and the cystic fibrosis transmembrane con-

ductance regulator (CFTR) [41–45]. Interestingly, clus-

tering of CFTR and the GPI-anchored folate-receptor

appear to be cholesterol dependent, implying that clus-

tering in these cases may depend on both membrane

phase separation and interactions among multivalent

protein interaction regions. In the case of CFTR, mem-

brane clustering may rely on the multivalent protein

interactions of critical disordered regions including a long

regulatory region (R region) and the C-terminus, which

act as hubs to integrate signals from diverse inputs in-

cluding protein kinase A, protein kinase C, adenosine
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orylated. These phosphotyrosines interact with the SH2 domains of

SP (red). These multivalent interactions lead to clustering of nephrin
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monophosphate-stimulated kinase, several phosphatases,

the NHERF-ezrin-actin cytoskeleton complex, the 14-3-

3 adapter protein, the SCL26A3/6 transporter, calmodulin

and the potassium channels KCa3.1 and ROMK2

[46,47,48�,49]. Recently, a subset of CFTR was shown

to cluster with KCa3.1 in response to elevated Ca2+ [49].

Notably, both CFTR and KCa3.1 have calmodulin bind-

ing regions and the calmodulin binding region of KCa3.1

has been implicated in the KCa3.1 association with

CFTR [46,49]. CFTR has been demonstrated to bind

to calmodulin in a Ca2+ dependent manner, through its

disordered R region; furthermore, CFTR channel activity

is promoted by high intracellular concentrations of Ca2+

[46]. Collectively, these data indicate a role for Ca2+

signaling in clustering of CFTR and KCa3.1 channels

and activation of the CFTR channel and hint at a link

between clustering and CFTR activation.

A role for intrinsically disordered proteins in
phase separation
Disordered regions are very common in proteins that

phase separate or cluster near membranes [22]. Examples

include the disordered regions of CFTR (R region and C-

terminus), Ddx4 [5��], Fus [50], the carboxy terminal

domain of RNA polymerase II [50,51], TAF15 [52],

DYRK3 [53], hnRNPA1 [8], LAF-1 [29], the nephrin tail

and the N-WASP PRM containing regions [54]. The

majority of these proteins have disordered regions of

greater than 100 residues in length. Disordered proteins

have characteristics that make them amenable to phase

separation. Disorder allows recognition motifs, such as the

phosphotyrosines in the nephrin tail, to remain exposed

to the modular binding domains as well as the modifying

enzymes that add post-translational modifications [55].

Disorder provides the conformational flexibility that is

required for the phase-separated droplets to remain fluid.

It also enables binding events to remain uncoupled [22],

which may be another requirement for keeping droplets

fluid. IDRs are very common in signaling proteins, but the

role of IDRs in phase separation of proteins involved in

signaling from membrane receptors remains largely un-

explored. However, the roles of IDRs in proteins such as

Ddx4 and Fus, that participate in formation of ribonu-

cleoprotein (RNP) granules, provide insights that likely

apply to receptor-mediated signaling puncta. The RNA

processing (including transcription, splicing and transla-

tion) that occurs in RNP granules is in fact a key compo-

nent of signaling downstream from receptors, so these

proteins can also be viewed as ‘signaling’ proteins.

What is the mechanistic basis for phase separation of

these IDPs/IDRs? Phase separation of Ddx4, involved in

the pi RNA pathway and forming the matrix of germ

granules [56], depends on a disordered segment of the

protein. Within the low complexity, N-terminal disor-

dered region of Ddx4 [57], which can phase separate on its

own, are alternating blocks of positively and negatively
www.sciencedirect.com 
charged regions [5��]. Scrambling of these charges inhi-

bits phase separation, pointing to electrostatic interac-

tions between charge blocks. In addition to these

electrostatic forces, the many phenylalanine residues in

Ddx4 have also shown to be crucial. The phenylalanine

residues and a large number of RG and GR amino acid

pairs suggest that cation–pi [58,59] interactions play a role

in phase separation. Thus, multiple electrostatic interac-

tions and multiple cation–pi and/or pi-pi interactions

contribute to phase separation of Ddx4. Interestingly,

Ddx4 droplets have a lower dielectric constant than bulk

water [5��] based on the lower water content in this

protein-dense phase, reinforcing the electrostatic cohe-

sion of the droplets.

The disordered N-terminal low complexity (LC) region

of the phase-separating protein Fus is highly enriched in

G, S, T, P, Q and Y amino acids [50], but devoid of R or K

residues or negatively charged residues. There are how-

ever many R residues in the C-terminal RGG repeats,

suggesting possible formation of cation–pi interactions in

phase separation of the full-length Fus [52]. Notably, the

LC region is able to phase separate on its own albeit at a

higher protein concentration. By contrast to Ddx4, phase

separation of the Fus LC region is enhanced at high salt

concentrations [50,60], indicating a different driving force

behind phase separation. However, the highly repetitive

nature of the LC region sequence points to the impor-

tance of multivalent interactions in this system as well.

These differences in driving forces may be crucial for

keeping proteins in distinct phase-separated droplets and

may also result in different emergent properties in dis-

tinct droplets. As for Ddx4, NMR experiments showed

that the chemical shifts of the phase-separated LC region

are very similar to shifts observed for the dispersed phase

LC region, indicating that there is a high degree of

flexibility in the phase-separated state, despite having

a much slower rate of diffusion than in the dispersed state.

Just as IDRs play a role in maintaining the fluidity of

phase-separated proteins, flexible linkers between mod-

ular binding domains may have a similar influence in

signaling complexes by allowing the domains to be loose-

ly arranged. Supporting this contention, the precise ar-

rangement of modular binding domains within signaling

clusters/phase-separated droplets appears to be highly

flexible [12��,13��,54,61,62��]. Studies performed in the

yeast mating signaling system, which has not yet been

demonstrated to phase separate, indicate that signaling

can often be maintained even when domains are swapped

from one protein to another within the system, providing

robustness in the face of genetic recombination events

[61,62��]. This domain arrangement flexibility provides

evidence that, within the yeast mating system, geometric

constraints are weak and the proteins are not arranged in a

highly restricted and ordered fashion; instead they form a

more fluid composition suggesting that they also undergo
Current Opinion in Structural Biology 2016, 41:180–186
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liquid–liquid phase separation. We speculate that flexible

linkers or intrinsically disordered regions may be required

for maintaining the fluidity of phase-separated droplets.

Collectively, most of the data are consistent with the

proteins within phase-separated states being highly dy-

namic with rapid exchange of binding interactions. How-

ever, some phase-separating proteins including Fus [60],

Whi3 [63�], and the Dvl DIX domain [9,64], are able to

form fibers of varying stability. These fibrous structures

may represent an aging process within the highly con-

centrated phase-separated droplet. For example, dispers-

al of Whi3 droplets by addition of salt leaves behind salt-

resistant fibers in mature droplets, but not newly formed

droplets. However, in some cases these fibers are impli-

cated in function. For example, formation of Dvl2 fibers

via its DIX domain has been implicated in Dvl2 puncta

formation. The DIX domain likely folds into a compact

predominantly b-strand domain structure, which subse-

quently reversibly polymerizes into long fibers, that are

sometimes referred to as signalosomes [9,64]. Mutations

that disrupt the ability to form these fibers also block

puncta formation and Dvl signaling activity. Similar,

filamentous polymers have been observed for other sig-

naling systems involving PB1 (Phox and Bbem1) and

SAM (sterile alpha motif) domains, which also form

signaling polymers or signalosomes by assembling poly-

mers through head-to-tail interactions [64]. Not all of

these filaments are reversible. Some resemble amyloid

fibers in terms of structure and in terms of stability [65].

Going forward, it will be interesting to understand how

these fibers and spherical puncta are related. Phase sepa-

ration may precede fiber formation as a highly concen-

trating step. Although, phase-separated droplets are

predominantly considered to be liquid, there is some

evidence that substructures and fibrous internal struc-

tures can form, particularly in long-lived structures like

the nucleolus [66,67].

Conclusions: implications of phase separation
for signal transduction
Given the importance of phase separation for RNA pro-

cessing bodies [22] and evidence of phase separation in

signaling puncta below activated receptors [21�], we

envision that signals are propagated in various ways in

the cell utilizing phase-separated protein states. Signaling

controls cellular ion concentrations, expression levels of

various proteins and activation of kinases and other

enzymes that can post-translationally modify proteins

forming the matrix of cellular bodies and puncta, all of

which can effect changes in phase-separation behavior

[22]. One of the most important outcomes of phase

separation for signal transduction is that it can enable

switch-like or threshold behavior [11,12��,64] due to the

spontaneous and rapid assembly of phase-separated dro-

plets. The weak affinity of individual protein subunits for

downstream effectors can be greatly enhanced through
Current Opinion in Structural Biology 2016, 41:180–186 
avidity in the highly concentrated milieu of the phase-

separated body. Even interactions with affinities in the

millimolar range can mediate function in a multivalent

context [68�]. Phase separation can also create a micro-

environment separated from the bulk cytoplasm. Thus,

RNP granules concentrate RNA modifying enzymes to

make RNA processing more efficient or to protect RNA

from modification [22,23]. Receptor-mediated signaling

puncta create similar microenvironments, sequestering

specific proteins, like activating kinases, while excluding

others, such as deactivating phosphatases, to amplify or

prolong signals [21�]. Liquid–liquid demixing can also

result in emergent properties, which may influence sig-

naling activity [5��]. Phase-separated material may also

allow for complex regulation of signal transduction by

integrating multiple inputs, similar to integration of mul-

tiple inputs by IDR hubs [47]. Phase separation can be

regulated by tonicity, pH, phosphorylation, arginine

methylation, ubiquitination, and protein expression

levels, including by modulating transcription, translation

or degradation of granule/cluster components

[5��,7,10,24,69,70�]. IDRs likely play a crucial role in

phase separation and membrane clustering due to their

availability for post-translational modifications and the

importance of flexibility for maintaining fluidity in dro-

plets. The frequent occurrence of proteins with multiple

modular domains and IDRs implies that phase separation

may be very common in signal transduction. Studies to

date have already revealed switch-like behavior, the

creation of sequestering microenvironments, and signal

integration capabilities, but the full implications of phase

separation for signal transduction are just beginning to

emerge in this nascent field.
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