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Indicative feedback

The running of the course enables my learning and an appropriate class climate
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Remarks
[ 3 remarque(s) ]

« During the exercise sessions, it feels bad when the whole class is getting bottlenecked by a single person's PC. Maybe we could make more people do more simulations so we have enough data to continue and finish in time. Very pleasant class otherwise.
« Good course
+ The workload for this class is not adapted to its credits weight. Having homework, tests, projects, presentations is a bit too much, even if they are supposed to be small. Apart from that, the class is very interesting and the lectures are good.
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Sustainable simulations

Simulations aren’t free!

How much does the electricity to run a simulation for, say, |
hour, cost?

What about | day? | week? | month!?
s it possible to reduce the energy consumption?

Yes, by thinking ahead about what simulations to do.

Go here
\ https://epfl-lmnn.github.io/index.html

(divide the time by 109)
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Core Concepts
Simulations share a common skeleton (initialisation,
interactions, evolution, boundary conditions, observables)
Different length scales need different methods for efficiency
Different scales - different compute resources required
Coarse-graining - faster simulation but less detail/accuracy

Coarse-graining is art - some things you get right, but others
will be wrong
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Human brain has |
Q. How many water molecules in a synapse?

VH Ryan and N Fawzi, Trends Neurosci. 42:693 (2019)  TrendsinNeurosciences

~1011 neurons vol. ~ (0.5 micron)3
~104 synapses/neuron
water molecule ~ 0.3 nm

1015 synapses
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What are coarse-grained simulations!? cPrL

Setting up a simulation requires asking questions about what exactly is “the system” we want to
study, what are its fundamental entities, what do we want to learn, and how accurate do we need
the results (most accurate is not always desirable):

relativistic qu dyn

~

quantum dynamics

Brownian dynamics We do not simulate a real system,
but only a model of a real system;
we first construct a model (particles
+ forces) and, second, solve it on a
computer.

atomic qu dyn mesoscopic dynamics

7~

molecular dynamics

reactive fluid dynamics

fluid dynamics

Fig.4 Hierarchy of models for simulation,'” ranging from very detailed (white background) to
very coarse-grained (black background). Each level has its own description of the reduced
system and its own simulation method. Each higher level loses some details of the preceding

level.
ove H.]J. C. Berendsen Faraday Discussions 144:467 (2010)
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Why coarse-grained simulations?

If Molecular Dynamics is so good, why do anything else?

Physical reasons: don’t know the force fields, system is too large or too slow, our
experiment is not at atomic scale; we don’t need picosecond accuracy, or we'’re interested in
general chemical trends not specific chemicals

Computational reasons: it would be nice to simulate | billion Lennard-Jones particles,
interacting via a realistic force field, for 10 minutes of real time, however...

For a given problem, we choose an accuracy we can live with and see how to attain it.

Very cheap computationally
Very forgiving of non-equilibrium initial states and force law details

Large system sizes (microns) and long times (milliseconds) accessible whilst retaining
near-molecular resolution

Provides insight into dynamics on scales far beyond molecular, e.g., long wavelength
membrane fluctuations, easy to visualize
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Coarse-grained simulation types

All based integrating some form of Newtonian equations of motion

m.dv/dt = F MD T
m.dv/dt = FC + FD + FR DPD Finer
m.dv/dt = FC - my.v + V(2myksT).((t) Langevin ~ Coarser
0=FC-vy.v+o.((t) Brownian

The difference lies in what constitutes a “particle” and how complex the forces are.

In MD, the particles are atoms but in coarse-grained techniques, the particles are groups of
atoms, molecular groups, even molecules.

In these cases, once the particles are defined (mass, radius), and the forces are given (bonds,
non-bonded, electrostatics), we integrate Newton’s 2nd law as in MD.

Allen, MP, and Tildesley, DJ, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987
Frenkel, D and Smit, B, Understanding Molecular Simulation, Academic Press, 2002
Berendsen, HJC, Faraday Discussions 144:467 (2010)
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How to coarse-grain atoms and molecules EPFL

Molecular Dynamics is accurate at atomic length scales, but sometimes we want to simulate far
above this scale, e.g., membranes, vesicles, nanoparticles.

The process of replacing atoms by groups of atoms
particles is called coarse-graining. It has two advantages:

|) Several atoms = one bead so fewer d.o.f to integrate

2) Lennard-Jones forces = softer forces so larger At

This means cheaper, faster simulations!

Figure 1. Mapping between the chemical structure and the coarse
grained model for DPPC, cholesterol, and benzene. The coarse grained

H bead types which determine their relative hydrophilicity are indicated.
POPU Iar Coarse-gral ni ng SChemeS The prefix “S” denotes a special class of CG sites introduced to model
(in order of decreasing resolution) are: rings.
Marrink, S. J. J. Phys. Chem. B 111:7812 (2007)
United atom - include H atoms in definition of C atoms, etc.

Coarse-grained MD - replace methyl group by a C3 particle, etc

Dissipative Particle Dynamics - lump atomic groups into fluid particles that carry momentum
Implicit solvent MD - replace water molecules by special potentials that mimic hydrophobic effect
Brownian Dynamics - particles of interest are much larger than water, so replace water molecules
by an implicit representation in the force field

For coarse-graining lipids, a good review is: Bennun et al., Chem and Physics of Lipids 159:59-66 (2009)
BIOENG-455 Computational Cell Biology 9



DPD algorithm: Basics
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Particle based: N particles in a box, specify r;(t) and p,(t),i = I...N.

Mesoscopic: Each particle is a small volume of fluid with mass, position and momentum
Newton s Laws:  Particles interact with nearby particles; integrate Newton’s law F = ma

Particles interact via 3 non-bonded forces that are: soft, short-ranged (vanish beyond r,), central,
pairwise-additive, and conserve momentum locally.

Conservative force gives particles an identity, e.g. hydrophobic or hydrophilic
Dissipative force destroys relative momentum between pairs of interacting particles

Random force creates relative momentum between pairs of interacting particles

Particles are connected together to form molecules (or polymers) using bond forces.

(1853 citations) P.J. Hoogerbrugge and J. M.V.A. Koelman, Europhysics Letters 19:155 (1992)
(1366 citations) P. Espagnol and P. B.VWarren Europhysics Letters 30:191 (1995)
(1994 citations) R. D. Groot and P. B.Warren J. Chem. Phys. 107:4423 (1997)
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DPD algorithm: Non-bonded forces

Conservative FCij(rij) = q (I - rij/ro) rij/ ri

Random FRi(ry) = Oyl —ryfro) T/ ry

Note that r; | r;-r;|,v;=| v;- v;| and y; and G; must be related byjo;2 = 2y;kgT

(see Espagnol and Warren Europhysics Letters 30:191 (1995)).
The self-interaction value of 25 was first derived by Groot and Warren for water. Other choices
exist for specific cases, e.g. those above for lipids (Grafmiiller et al. Biophys. |. 96:2658 (2009)).
The random force creates relative momentum between pairs of interacting particles (which is how
it conserves momentum: magnitude is random but the sum is zero):
<[;(©>=0 <[ (t) [(t)> = O(t-t)
3; (1) =a;(t) v =v;(t) Ty(t)=T;(t) which we implementas: [, ~N(O,I)/ Vdt

where N(O, |) is a zero mean, unit variance Gaussian RNG (but we usually use a uniform RNG).

The dissipative and random forces act as a thermostat to keep the average temperature
constant (canonical ensemble). It is independent of the conservative force and is sometimes
used with MD forces - (Soddemann et al., PRE 68:046702 (2003)).
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Setting DPD conservative parameters cPrL

The dissipative and random forces form a thermostat that does not change when simulating
different systems.We’ll ignore them, but see Groot and Warren (1997) for details.

The conservative interaction parameters ajj can be set from thermodynamics.
What is the equation of state of the one-component DPD fluid (= water)?
Recall an ideal gas: PV = NkgT or P = pksT

Van der Waal’s gas: P = pkgT/(1-pb) - ap2

We measure the pressure of the fluid as a function of density
and fix the value of the single parameter aww.

P = 3 - 10 beads/volume

N = 3000 - 10000 beads
a,w = 25

BIOENG-455 Computational Cell Biology 12



Equation of state for DPD fluid

F

=

P

Plot the excess pressure (P - pk,T), scaled by the conservative repulsion parameter, a_,,,and

density squared.

0.1100

0.0938

0.0775

0.0613

(P-pkBT)/awwp2

0.0450

>
>
>
>
(2

aww = 15
® aww=25
aww = 35

0.0 2.5 3.0 7.5 10.0

Density p = N/V

From the simulated DPD equation of state, we find numerically as the density increases:

P = pkgT + aayy P2

where a=0.10 £ 0.0l

BIOENG-455 Computational Cell Biology
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How to choose the conservative parameter =P~L

Kt =-1/V (3VIOP )

The dimensionless isothermal compressibility of water is defined as:
K!'=1/(p ksT Kr) = (dp/dp)7/ keT ~ 15.9835 at room temperature, and this fixes a,,, for a
single-component fluid if we want it to have the compressibility of water.

If we differentiate the EOS for the DPD fluid, we get

K-l =1+ 2aap/keT ~ 16

giving ay\w = 75 kgT/ p. Most DPD simulations use a (dimensionless) bead density of p = 3
SO apy = 25 kT

So, the density of a single-component DPD fluid is a free parameter as long as the beads are
dense enough to interact and not have “holes” in the fluid.

Higher densities mean more interactions, so we choose the lowest value that is consistent with
the assumed EOS.

But what if we have a mixture of fluids - how do we choose the off-diagonal parameters a;?
BIOENG-455 Computational Cell Biology 14



Off-diagonal conservative forces in DPD

Every bead type interacts with all others (e.g., lipids with head beads
H, tail beads T, immersed in water W - see table)

The off-diagonal elements of the force matrix set the repulsion or
attraction between fluid elements of different types

These elements are related to their mutual solubility

Note that all DPD forces are repulsive: the self interactions are
repulsive because they represent the compressibility (resistance to
being compressed) of a pure fluid, and the off-diagonal elements are
repulsive because they represent the solubility of mixtures which are
usually less cohesive than the pure fluid.

This is the price paid for having no hard core repulsion - you cannot
have purely attractive forces or the fluid will collapse on itself.

In Lecture |3, we’ll cover the theory of how to fix the off-diagonal force parameters

(Flory-Huggins theory)

BIOENG-455 Computational Cell Biology
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DPD algorithm: Bond forces cPrL

-
H OO0

o0 |
W ' |

Beads are connected by bonds

F(ris) = -kao(| iy | = Lio) Tyt /] Tyt

Hookean spring parameters: ko = 128, ljo = 0.5, so Va(r) = 0.5.ka(rij - ljo)?

These parameters were chosen to keep the lipid tail length on average at the desired value: so a physical
measurement was used to constraint their value. In principle, parameters can vary for all bead types, but
this is not common.

Adjacent bonds can have an angle constraint
V(ijk) = k(I - cos(dy - b))
Chain bending stiffness parameters: k3 = 15, ¢, = 0 was chosen to ensure lipids don’t interdigitate.

Each parameter needs a distinct physical measurement to fix its value.
Shillcock, J. C. and Lipowsky, R. ). Chem. Phys. 1 17:5048 (2002)

BIOENG-455 Computational Cell Biology 16



Bead

Bead

=Pi-L

H  Bead name
9.5 Radius ( = 1/2 range of non-bonded forces)

30 Conservative force parameter
4.5 Dissipative force parameter
-
0.5
35 10
4.5 4.5 Beads at each
end of bond (symmetric)  Spring constant /
W \ unstretched length
0.5 Bond HH 128 0.5
3 75 25 Bond HT 128 0.5
4.5 4.5 4.5 Bond TT 128 0.5

BondPair H T T 15.0 0.0
0.0

BondPair T T T 15.90
—

Bead triple defining a
bending potentital bonad

Energy / preferred angle
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DPD algorithm: Integration cPrL

Most common: velocity-Verlet scheme of Groot and Warren - |. Chem. Phys. 107:4423 (1997).

1. Update positions of all particles: r(t+dt) = r(t) + p(t).dt + 0.5.F(t).dt2

2. Calculate intermediate velocities: p’(t+dt) = p(t) +A.F(t).dt

3. Update forces on all particles :  F(t+dt) = F(r(t+dt), p’(t+dt))

4. Update momenta of all particles : p(t+dt) = p(t) + 0.5*dt*(F(t) + F(t+dt))
Because we set m = |, velocity (v) = momentum (p).

Note that A is a heuristic parameter, typically ~0.5, to take the stochastic force into
account (see dmpci file). It is used to account for time-varying force over the course of a
time-step. It is needed no matter how small the time-step, because the random force
necessarily changes during the step, i.e., the stochastic force is not constant as the
discretized equations of motion assume.

Because of the stochastic force, we have to use special integration schemes for the
equations of motion, e.g., the velocity-Verlet scheme above.These are not needed for MD.

BIOENG-455 Computational Cell Biology



How do you coarse-grain a lipid? cPrL

As an example: consider a dimyristoylphosphatidyl choline (DMPC) lipid bilayer and measure its
material properties.This is a (very simplified) model of the plasma membrane.

N- NH
I — o
?E ’2', }, 1 = Head particle
; 2 = Chain of talil

particles

H3(T4)2

For DMPC and lipids that differ only in tail length (lauryl, myristoyl, palmitoyl, stearoyl, ...). We find
the relation that each DPD tail bead represents 3-4 methyl groups. So cgDMPC has ~I | beads.
Ambiguity comes from the fact that a DPD bead is a rather fuzzy concept, based on a volume of
material, and may not divide neatly into a hydrocarbon chain’s number of monomers.

Groot and Warren, J. Chem. Phys. 107:4423 (1997) and Marrink et al. J. Phys. Chem.B [ 11:7812 (2007)

Headgroup must be large enough to balance the cross-sectional area of the tails
(Israelachvili’s packing param.~ |): 3 or 4 head beads is sufficient for a tail of length 4 - 6. The two
monolayers should not inter-penetrate each other, which requires bending stiffness of tails.

Shillcock, JC, and Lipowsky, R, J. Chem. Phys. | 17:5048 (2002)
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Coarse-graining a lipid membrane cPrL

—————

¥
&~ |

y AR 3 1 [ 1 )y
o i AR RS e

Real lipid cg lipid o
Lipid bilayer
Headgroup area ~ | nm? Bead size ro ~ | nm
Tail length ~ 0.154 + 0.126*n nm How many CH per tail bead?
where n = # carbons in tail - not known a priori, but we can  Bqy size ~ 32 1o
guess ~ 2-5.
o How many lipids?
We need M’ L’T |:1 would be atomistic - not known a priori
All:2 would be a dimer H-T trial and error from simulations
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Experimental lipid bilayer properties

Fully hydrated lipid bilayer areas, thicknesses and K;’s, June 2009

L
ml

Lipid Temp. Area £ 0.5 Hydrophobic Bending Modulus
(°C) (A2) Length, 2D, (A) K¢ (x10-20J)
DPPC 50 62.9(+1.3)2,64.0°,64.3°,63.19* 29.2a,28.5b 27.9°,28.49* 6.7(x0.7)°
DHPC 48 65.1¢ 27.6¢8 4.2(x0.7)°
DLPE 35 51.2° 25.8 -
DMPC 30 59.7%,60.69 26.2,25.49 6.99
DLPC 30 63.29 20.99 5.5¢9
DOPC 30 72.2h,72.50,72.11,72.4ik 67 .49  27.2h,27.1°, 27.21,26.81 28.84* 8.0',7.6(+0.5)«
(15) 69.1k 27.7x 8.5(+0.5)k
(45) 75.5k 26.2¢ 7.2(+0.5)
DOPS 30 65.3! 30.2! - FLUID PHASE
EggPC 30 69.41p 27.21,27.1b -
POPC 30 68.3(+1.5) 27 1i 8.5i
SOPC 30 67.0(x0.9)™ 29.2(+0.4)" 9.0(x1.2)"
diC22:1PC 30 69.3i 34.4i 12.7i
18:0-22:5PC 24 68.7" 30.5" 11.0(x0.2),10.7£0.8*
18:0-22:6PC 24 68.2" 30.5" 12.0(+0.2)", 7.9+0.5**
DMPC 10 47.2° 30.3(x0.2)°
DiC16PC,18,20,22,24 20 47.5pa 34.45,37.19,40.79,44.09,48.04
DMPS 20 40.8 36.0'
DLPE 20 41.0° 30.00 GEL PHASE
DHPC-Interdig. 20 77.2¢ 20.3¢
DHPC-gel 20 46.9¢ 34.6

aBiophys.J. 70:1419(1996); °Biochim.Biophys.Acta: Reviews on Biomembranes 1469:159(2000); cBiophys.J.:Biophys.Lett 90:L.83(2006);

9Biophys.J. 95:2356(2008); °Chem.Phys.Lipids 160:33(2009); ‘Chem.Phys.Lipids 95:83(1998); 9Biophys.J. 88:2626(2005); "Biophys.J. 75:917(1998);

iPhys.Rev.E 69:040901(2004); iJ.Membr.Biol. 208:193(2005); “Biophys.J. 94:117(2008); 'Biophys.J. 86:1574(2004);
mBiochim.Biophys.Acta 1178:1120(2008); "J.Am.Chem.Soc. 125:6409(2003); °Biophys.J. 83:3324(2002); PBiophys.J. 64:1097(1993);
9Biophys.J. 71:885(1996); *Neutron data; **Upon reanalysis(2009)

BIOENG-455 Computational Cell Biology
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Reduced units for lipid bilayers

Typical lipid tail length is ~ 2 nm for DMPC

Bilayer width ~ 4-5 nm

Area per molecule ~ 0.65 nm?

Assume that the mass of all bead types is the same

So, a simulation box (32.rg)? where ro is the diameter of one lipid bead, and a (dimensionless)
bead density of p=3 contains N = 3.323 = 98304 beads.

For lipid bilayers, we typically use the area per lipid (ag) in nm2 to determine the number of lipid
molecules:

Niipid = 2.( (32 ro nm)2 / ap nm2) molecules

Initially choose ag ~ Tt (ro/2)2 ~ 0.785r0? this gives N ~ 2607 (assumes all lipids are little circles!)
For a lipid bilayer in equilibrium, we expect the surface tension to be zero. We adjust the box
size or number of lipids until the simulation gives zero tension, and then extract the equilibrium
value of aijpid for the bilayer. That is, we obtain aLipia = A/N from the simulation and equate it to
experimental value. If apipia = 1.26 ro2, and the experimental value is ap = 0.6 nm2:

ro =V (0.6 /1.26) ~0.69 nm and Nipia = 1621 in equilibrium

Question. Why does each lipid occupy an area ~ 1.26 ro? instead of 11 (ro/2y2 ~ 0.78 rp2 ?
BIOENG-455 Computational Cell Biology 22



see dmpci.m6 on moodle page for today =PrL
for an equilibrated lipid bilayer simulation

Bead H

0.5

30

4.5
Bead T

0.5

35 10

4.5 4.5
Bead W

0.5

30 75 25

4.5 4.5 4.5
Bond HH 128 0.5
Bond HT 128 0.5
Bond TT 128 0.5
BondPair H T T 15.0 0.0
BondPair T T T 15.0 0.0
Polymer Water 0.9802 " (w) "
Polymer Lipid ©0.0198

"MHHMG((TTTT))HTTTT) "

dmpcas.m6

Bilayer Trapezoidal Surface Tension
-0.032320654 1.3417115

Bilayer Surface Tension
-0.032335754 1.3427113
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A time scale for lipid bilayers? cPrL

An obvious process involving time is the diffusion of the lipids in the membrane. A
dimensionless form of the diffusion constant is:

Dimensionless diffusion constant: D’ = (D. to/ro?)

We measure D’ in the simulation, so if we know D from experiment and ro, we can derive a
value for to. This gives us a natural time-scale for the motion of lipids in the membrane.

A typical lipid diffusion constant is 0.1 - 10 um2/sec ( H. Gaede and K. Gawrisch, Biophys. J. 85:1734 (2003) )

Suppose in a lipid bilayer simulation we find D’ ~ 0.0] and we have estimated ro = 0.69 nm from
the membrane’s area/lipid.

A typical time-scale for the lipids in the membrane is then (using D ~ | pm?/sec):
to = 0.01.(0.69.10-9)2/ 10-'2~ 5 ns

and, recalling that to is the self-diffusion time, a bead will diffuse its own size in this time. A
typical integration time step will then be 0.01 - 0.02.tp, and you can estimate the real time that
the simulation represents.

NB.There may be other time-scales in the system NOT described by this, e.g., lipid flip-flop

between monolayers and solvent transport across the bilayer: need judgement here.
BIOENG-455 Computational Cell Biology 24



Lipids have a shape cPrL

If the lipid headgroup has the same “size” as the tails the molecule is like a cylinder; if the head
or tail has a smaller volume, the molecule is like a cone. This shape strongly influences their
behaviour.

A B D
N -
;) 0
Lo ho :
" %, Packing parameter ~ v/aolc
\'O %O
7 ° 2 © . "
v = lipid volume
) / ® ao = headgroup area
L. = tail length

Intermolecular and Surface Forces, 2nd edn.
J. Israelachvili, Academic Press, London, 1992.

v

If v/aoLc ~ 1 planar bilayers; <1 curved; < 1/3 micelles; > 1 inverted micelles




DPD is useful for lipid shape changes CPCL

Initially-tensionless
membrane

5538 lipids

40 nm x 40 nm

C0=O 2> >0

I

NB Water is invisible

lllya, G, Lipowsky, R, Shillcock JC, J. Chem. Phys. 122:244901 (2005) ”



What can we use DPD for?
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Recall that which simulation technique to use depends on what you want to know.

DPD is good for:

* soft matter

* complex fluids

* interactions larger than ~ atom/molecule

* averages over many molecules

* interactions that depend on entropy or steric forces not specific ligand binding or ES
* trends not detailed chemistry

In the context of cellular biophysics, potential topics include:

self-assembly of supramolecular structures, droplets, vesicles, membranes, nanoparticles
* membranes - structure and dynamics

nanoparticle interactions with membranes, vesicles, polymers

phase transitions and order

BIOENG-455 Computational Cell Biology 27



Summary cPrL
How do we relate a real system (e.g., membrane) to a coarse-grained simulation?
Compare dimensionless ratios of important quantities for M, L, T
Important = Relevant to the dynamics of interest
Coarse-graining implicitly:
collapses times scales
softens atomistic force field

loses finely-detailed information

But it speeds up simulations, allows much larger systems, reveals long length and
time scale motions inaccessible in atomistic simulations

Coarse-graining is most useful when the important motions are larger/slower than
atomic length/time scales

BIOENG-455 Computational Cell Biology 28



Exercise period

No lecture or exercise period next week

Distribute Take home test 2, due in 2 weeks (30th
October)

Work on homework |
Can run jobs on the helvetios machine?

BIOENG-455 Computational Cell Biology
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Data Management Plans

Funding agencies now expect applications to include a DMP. A DMP specifies what
data you will produce, how you will store it and name files, and how other users
can find it and use it again.

EPFL provides information on preparing DMPs:
https://www.epfl.ch/campus/library/services/services-researchers/rdm-guides-
templates/

A common standard are referred to as the FAIR principles:

https://www.epfl.ch/campus/library/wp-content/uploads/2019/09/
EPFL_Library RDM_FastGuide_All.pdf#page=2

BIOENG-455 Computational Cell Biology 30
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DMP

A DMP is a living document that describes the following aspects of your data:

* What data is produced? e.g., fluorescent microscopy images, simulation files, gene
sequences, etc.

* What formats are used to store it! e.g., tiff, png, bmp, ascii
* What file/directory naming strategy will be used? e.g., /users/shillcock/my data

* (What license it will be released under - not relevant in this course)

etc
Findable - how can a user find the data?
Accessible - how is it licensed and released?
Inter-operable - does user need special software to read data?
Reusable - Long-term storage of data in a repository

Living = continuously updated throughout a project

BIOENG-455 Computational Cell Biology 31
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Ex. | Entropic spring

Simulation of an entropic spring - apply a stretching force to both ends of a
single, long polymer in a DPD simulation and measure the end-end length as a
function of the force (it probably has to be a very small force).

Then invert it to get F(L) and plot it including error bars of the statistical errors.
How do you convert results to physical units?

Now make a fraction of the beads sticky (so that the polymer tends to stick to
itself) and see how this changes the F(L) curve.You will need to vary the number
of sticky beads to find an interesting regime (too few and nothing will happen, too
many and the polymer will just stick together in a tight ball). Interesting means that
the system shows some unusual, non-linear behaviour.

Needs commands in DPD to solve - see Section 8 of the User Guide.
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Bead W

Bead B

25 25

Bead BH
0.5
25 25
4.5 4.5

Bead BT
0.5
25 25
4.5 4.5

Bond BH B 128
Bond BT B 128
Bond B B 128

Polymer Water
Polymer Spring

Box 30
Density 3
Temp 1
RNGSeed -999
Lambda 0.5
Step 0.01
Time 6000
SamplePeriod
AnalysisPeriod
DensityPeriod
DisplayPeriod
RestartPeriod
Grid 1 1

=Pi-L

Input file on moodle page for today:

25
4.5

25 25
4.5 4.5

[ RN R
o o1 o1

0.99995 o(w) "
0.00005 " (BH (14 B) BT) "

15 15 1 1 1

10

2000

6000

100

6000
1

dmpci.exi

BIOENG-455 Computational Cell Biology
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Simulating an entropic spring under tension =PrL

We create command targets for the two ends of a molecule and apply equal and
opposite forces to stretch it.

Command SelectBeadTypeInSimBox 1 head BH
Command SelectBeadTypeInSimBox 1 tail BT

Command Comment 1000 // Apply a constant force to the first and last beads in
the +X and -X directions //

Command ConstantForceOnTarget 1000 head fh
Command ConstantForceOnTarget 1000 tail ft

5.0
-5.0

[
SES!
SES!

Command Comment 5000 // Delete the applied forces //

Command RemoveCommandTargetActivity 5000 th
Command RemoveCommandTargetActivity 5000 ft
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Measuring the strain
To Do:

|. Pick a box size of 30 x |15 x |5;adjust the number fractions to have | polymer of
type (BH (14 B) BT), i.e., distinct head and tail beads so they can be selected.

2. Turn force on at T = 1000 steps. How long should you keep it on?
3. How can you measure the extension!?

4. Next, change the backbone to contain a new bead type that is “sticky”. Try (BH B B
BSSSSBBBBT),and give S the same interactions as B except for its self
interaction that is reduced to make it sticky. Vary the number of S beads until you
find a value that makes an observable difference.

Questions to answer

What is the stress/strain relation F(L) for the “molecular spring”?
Does it have different regimes for F(L) under different tensions? Why?
With sticky beads there are two new parameters: the number of sticky beads and their

self-interaction. How can you reasonably select values for these?
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dmpcas file contains time-averaged observables

Typically there are 2 columns: mean and standard deviation

dmpcas.ex| has <Lee> averaged between 2000 - 4000 steps

Time = 4000

Temperature

1.0017449 0.0051323594 , , , , , , ,
Use the time period while force is applied, which is

Pressure at the end time of the period

23.671181 0.081945563

BB bond length

b 58796170 ©.020986814 This is the mean and std. dev. of polymer end-to-end length

Water EE distance
0 0

Spring EE distance
6.4922776 0.6952996
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"spring-data-2023" usi

Two limits:
F ~ 0, entropic spring

F >> 0, series of Hookean
springs

What are the spring constants?
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