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Core Concepts

We never simulate a real system.... only a model.

Simulations generate possible futures: we compare

observables averaged in the simulation with experiments to
see if the simulation is good or not.

Simulations abstract the world into movies to give us insight.
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Types of simulation

Imagining scenarios where you negotiate a pay rise in a job
Playing computer poker

Trying to calculate a share price or stock market move in advance
Integrating stochastic differential equations (Langevin equation)
Molecular Dynamics

Dissipative Particle Dynamics

Monte Carlo simulations
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What is a simulation? =Pr-L

A simulation is not;

* analytically solving a differential equation or pde - e.g., ballistics versus weather

e quadratures - e.g., calculating a Fourier transform of electron density vs. PE. Z({x})

What is a simulation?

“a computer experiment of the behaviour of a model of a physical system in
which matter is replaced by mathematical constructs that interact in ways that
mimic the interactions in the physical system, and where the model’s evolution
generates states corresponding to those of the real system.”

Caveat

We never simulate a real system, but only a model of a real system; we first
have to construct a model and then adapt it for calculation on a computer.
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Why do we do simulations!?

* Experiments are too complicated and theories are too simple

* A computer language allows us to specify a sequence of steps that will
solve a problem

* A model captures what we think are the important properties of an
experiment, and allow us to ignore irrelevant aspects: if we later find the
model is wrong, we can look for the missing important property

* We have almost complete control over all aspects of the simulation;
so we can perform thought experiments like changing atmospheric
pressure, turn electrostatic interactions on or off, etc

* Simulations are relatively cheap and quick compared to experiments
* No ethical concerns with simulating disease states

* We can visualize aspects of a simulation impossible in an experiment

BIOENG-455 Computational Cell Biology 6



Molecular dynamics and Monte Carlo =PrL

In cellular biophysics there are two common types of simulation (but with sub-
divisions and cross-over):

A) Mechanical types - that integrate more-or-less accurate equations of motion
for interacting particles, .e.g., Newton’s laws for Molecular Dynamics, Dissipative
particle dynamics, Brownian dynamics, ...

B) Statistical mechanical types - that calculate observable averages in specific
thermodynamic ensembles: <A> = |/Z Y A({* Vi} )e - BH{x; vi}), e.g., Monte Carlo.

These are mathematically distinct but physically equivalent (where they can both be
applied) ways of calculating properties of a system.

Which is more useful depends on the problem of interest.
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Molecular dynamics

A) Based on integrating some form of Newtonian equations of motion

m.dv/dt = F MD T

m.dv/dt = FC€ + FD + FR DPD Finer
m.dv/dt = FC - my.v + V(2myksT).((t) Langevin ~ oarser
0=FC-vy.v+o.0(t) Brownian

The difference lies in what constitutes a “particle” and how complex the forces are.

In MD, the particles are atoms but in coarse-grained techniques, the particles are groups
of atoms, molecular groups, even groups of molecules.

Once the particles are defined (mass, radius), and the forces are given (bonds, non-
bonded, electrostatics), we integrate Newton’s 2nd law and wait for equilibrium.

Allen, MP, and Tildesley, DJ, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987
Frenkel, D and Smit, B, Understanding Molecular Simulation, Academic Press, 2002
Berendsen, HJC, Faraday Discussions 144:467 (2010)
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Molecular dynamics/DPD cPrL

Shiga toxin binding to Gb3
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Brownian dynamics

ADP actin growing in
steady-state; no treadmilling

ATP actin treadmilling (red =
‘ barbed end, faster growth,

green = pointed end, slower

growth); ends with ATP or

ADP actin have different off
rates

No solvent in these simulations
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Monte Carlo

B) Based on defining the Hamiltonian of a system, and performing phase space
averages using the Metropolis Monte Carlo (MC) method.

<A> = I/Z Y A({%Vi})e - BH(xp vih),

where the Partition Function Z = ) e - BH(x; vj)),

Monte Carlo simulations are generally simpler, faster, and more useful for calculating
general thermodynamic properties of molecular systems than studying the
behaviour of specific molecules.

But... the “particles” in MC simulations do not follow Newton’s laws. They evolve
according to a set of (possibly physically unrealistic) moves, in which the relevant
degrees of freedom are continually changed so as to sample all allowed values, and
observables have their values averaged over a large number of such moves.

Binder, K (ed.) Monte Carlo Methods in Statistical Physics,
Topics in Current Physics Vol. 7, Springer Verlag, Berlin, 1986
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Phase Space

Consider a particle moving in a potential

in 1d: x(t), v(t) (SHO blackboard) v {3
As time passes, it moves around and its to

state can be represented as a point in

phase space. Newton’s 2nd law is: t1

F = m dv/dt

and the path in phase space is continuous. X
Now consider N particles in 3d: there are 6N ( Xi(t), Vi(t) ) coordinates, and the
phase space is big.

Now the state of ALL the particles is represented by a point in this 6N-
dimensional space, and as time passes, and all the particles move around, this point
moves along a trajectory in the space.

The purpose of Molecular dynamics, Monte Carlo, and other simulations, is to
calculate a system’s trajectory in phase space and measure the values of

observables along that trajectory to make predictions.
BIOENG-455 Computational Cell Biology |12



Think - Pair - Share
5 mins.

L
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Pair up and discuss what a trajectory for one of the following systems
would look like: identify the relevant degrees of freedom before you draw
the trajectory. Or, invent your own system and its trajectory. 5 mins.

|. A pendulum in a grandfather clock

2. A pendulum swinging in water

3. A car on a circular racing track (at constant speed)

4. A cannonball fired from a cannon at 45 degrees upwards.

5. A single water molecule in a glass at room temperature

6. All molecules in a glass of water at room temperature

7. A water molecule in an ice cube

BIOENG-455 Computational Cell Biology
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Trajectories in phase space

Mechanical simulation techniques: MD, DPD, BD

we integrate F = ma for a set of particles given a force field, and generate a path
through phase space along which we calculate averages of measurable
quantities, e.g., Temp, Press, order parameters, surface tension, etc.

Monte Carlo simulations: MC
we define moves, which are discrete changes in the d.o.f of the system, and
randomly change the coordinates of particles in the system.This also defines a

“trajectory” through the system’s phase space but it is not continuous, and does
not represent an actual motion of the system.

But... when we average over a long enough trajectory, we get the same results as
for MD.

We won’t cover MC any further in this course.

BIOENG-455 Computational Cell Biology



Simulations of a cell =Pr-L

What kinds of cellular dynamics can we simulate?

Protein-protein binding
Microfilament

Protein diffusing in cytosol
lon channel dynamics, pumps gentriole
Membrane potential dynamics
Filament self-assembly and collapse
Actin cytoskeleton dynamics

. Smooth \
Membrane fluctuations e

Vesicle transport el
Vesicle fusion Mitochondrion”
Endo- and exocytosis Rough

endoplasmic

Golgi, ER self-assembly and transport

reticulum

Cell crawling

Golgi apparatus Lysosome

www.daviddarling.info

We focus here on particle-based simulations as they are widely used
for proteins, lipid membranes, macromolecular fluids, etc.

BIOENG-455 Computational Cell Biology 15
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Anatomy of a simulation

Setting up a simulation requires specifying precisely the system and its surroundings

What physical system do | want to simulate
System What do | want to learn about it?

State What length and time scales are important! (nm or mm? km for weather sims)
Boundary conditions VWVhat are the boundary conditions?
Initial conditions
What are the entities of interest? atoms, molecules, etc.
Interactions How do they interact?
Equations of motion How does the simulation evolve?

Observables What accuracy do | want? (larger system/longer run may be better,
but more expensive)

Usually we are interested in the thermodynamic properties of a system, so we connect the simulation
to experiments via thermodynamic coordinates: temperature, pressure, volume, work, heat, electric field,
charge, force, area, length, etc.

We do not simulate a real system, but only a model of a real system;
we first construct the model (particles + forces) and second adapt it
(discretize Newton’s laws) for calculation on a computer.

BIOENG-455 Computational Cell Biology 16
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Physical System

The System is a physical experiment that we want to reproduce in a computer:

Argon gas in a box

Lipid molecules in a membrane
Ferromagnetic atoms on a lattice

Rodlike liquid crystal molecules in solvent

It must be in a measurable State with specified Initial Conditions and Boundary
Conditions:

0.05 Mole Argon gas in a closed | litre glass bottle at 300 K
0.6 gm DMPC in | ml of water at STP

The physical entities must Interact in some way with each other and with the container;
typically, the system has constant mass that is ensured by a closed container:

lipids in water can diffuse around, aggregate and separate, but are
constrained by the walls of the container so that their number is constant

We need an Equation of Motion for the entities, usually Newton’s laws or some
artificially-chosen EOM. And we must be able to measure something, viz, Observables.

BIOENG-455 Computational Cell Biology |7
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Mathematical System

We represent physical entities as mathematical objects in well-defined states
Argon atoms in a box = point particles with mass, position, velocity and force field
Lipid molecules in membrane = ball-and-spring model, Lennard-Jones potential (6-12)
Ferromagnetic atoms on a lattice = Ising spins with 2 states: up or down

Rodlike liquid crystal molecules = rigid ellipsoids with non-spherically symmetric potential

Finally: what accuracy is required. Is it enough that atoms are billiard balls? Do we
need charge! How many atoms? Do we want to see a phase transition?

NB. more accurate = slow and hard, less accurate = fast and easy.

Summary

A simulation = a physical system + a model + a mathematical algorithm for generating
states of the model + observables that correspond to physical properties that can be
measured.

BIOENG-455 Computational Cell Biology 18
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Units

Physical quantities have units (Mass, Length, Time) that define scales of interest in a system.

keT =4.14 10-2! | ~0.026 eV ~ 1/40 eV
4 pN.nm ~ | kgT

P ° | Mole / litre ~ 0.6 molecules/nm3
mass of e~ 0.51 1 MeV

mass of CH4 ~ 16 gm/mol ~ 2.6 e23 gm

Computers know nothing of units; all quantities are dimensionless; all equations are discrete;
all numbers are integers even when they're real, the same program run on different platforms
(Windows, Linux, Mac) will produce different results.

This means that in a simulation we are explicitly (or implicitly) converting all dimensional
quantities into dimensionless ones by multiplying/dividing by some standard M, L, T scales.

Implicit because if you forget the units, or get them wrong, the simulation will often happily
continue, and produce rubbish, but it won’t tell you.

BIOENG-455 Computational Cell Biology 19
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Reduced units

In MD (and, in fact, all particle-based simulations), once we have values for a mass mo (e.g., one
atom), length ro (e.g., diameter of one atom) and energy (or temperature kgT), we can make
all other physical quantities dimensionless:

Reduced quantity = function of physical quantities

Mass m = M/mo

Time t =Tlto

Length | = L/ro

Area a =A/re?

Volume v = (L/ro)3

Density p = Density.ro3/mo =N/ I3
Diffusion constant D’ = (D. to/ro?2)
Area per lipid aLipid = A/(N. ro?)

The benefit of this is that we reduce the range of physical quantities (imagine simulating H
with a mass 1.67 10-27 Kg) and can represent many physical systems by one simulation.

BIOENG-455 Computational Cell Biology 20



System, State, Boundary Conditions =PrL
Suppose our system is a fluid, a state is defined by giving each particle a mass, x(t), v(t), F(t),
... in a fixed volume.
But what happens at the walls? We need boundary conditions

We would like to simulate a macroscopic system (1022 particles) so we can apply
thermodynamics, but we only have ~ 10¢ - |08 particles in a typical particle-based simulation.

There are two choices for the boundaries:
Hard boundaries - isolated system, large influence of walls on bulk

Periodic boundaries - infinitely periodic system, no walls at all!

@ El
. . ° ®
For hard walls, particles just bounce off and have their normal P 0000
velocity reversed. Easy to implement, but leads to artifacts due ° ° o

to finite system size.

BIOENG-455 Computational Cell Biology 21



Periodic boundary conditions cPrL

For periodic boundary conditions (PBC), there are no walls, and particles that leave the
simulation volume by crossing a face are removed and replaced at the opposite face.

If x(t + dt) > L then x(t +dt) =x(t +dt)-L

else if x(t + dt) <0 then x(t + dt) = x(t +dt) + L

and for y(t), z(t) eeqe

This works because Newton’s laws have translational invariance for central forces:
F(x+L) = m d?(x+L)/dt2 = m dZx/dt? = F(x)

But we must only calculate the force between two particles once for the nearest pair
(minimum image convention).

PBCs can lead to spurious effects if the range of F(x) is comparable to the box size, or
there is periodic motion that spans the whole box.

BIOENG-455 Computational Cell Biology
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Ensembles in simulations =Pr-L

Common ensembles are those familiar from classical thermodynamics because we can apply the
formulae of TD to the simulation: ensemble = set of observables that are constant over trajectory

Microcanonical - N, V, E constant

Atomistic Molecular Dynamics simulations are usually done here - a fixed number of particles
moving in a box of constant volume, and constant total energy. In practise, the integration scheme is
not perfect, and the energy drifts over time and must be corrected.

Typically, atoms are placed in suitable positions subject to physical constraints (i.e., bonded atoms in
a molecule should be separated by less than their bond length and not overlap); they are given a
velocity drawn randomly from a Maxwell-Boltzmann distribution.

Canonical - N, V, T constant

DPD, BD, MC and most coarse-grained simulations are done here as they involve random forces or
noise, so the energy cannot be constant but the average energy, i.e., temperature, is constant.

Grand Canonical - 4, V, T const

Uncommon because it is hard to change the particle number in a dense fluid, but sometimes useful.

BIOENG-455 Computational Cell Biology 23
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Initial conditions

The simulation also has to start somewhere - we must specify initial conditions.

We must set up the computer experiment correctly, otherwise our measurements are
meaningless (compare doing an experiment on a cell and the room temperature changes
unpredictably during the experiment.)

What properties are constant during the simulation?

Is the total mass constant (i.e., number of particles)?
Constant volume or pressure!?

Constant temperature or energy!

The set of constant properties defines the thermodynamic Ensemble of the simulation.

BIOENG-455 Computational Cell Biology 24



L
U
ml
=

Types of initial condition

Particles in any ensemble must be assigned initial values of position, velocity, etc.

Can be assigned randomly or in a specific configuration:

 random initial state can be followed to see the appearance of an ordered state
- an initially ordered state can be followed as it relaxes to its equilibrium state

If we are interested in equilibrium, the simulation must be run for a time to forget the
influence of the non-equilibrium initial state before we can start to sample observables.

This time must be determined for each system - it cannot usually be predicted in advance.

But sometimes, the initial phase of relaxation to equilibrium is also of interest.

See DPD user guide for examples of initial states

BIOENG-455 Computational Cell Biology 25
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Artifacts of initial conditions

Whatever ensemble we choose, a system may be unable to relax to equilibrium, or it
relaxes very slowly, because of:

A) Conservation of some quantity - if total momentum is non-zero, Newton’s laws

will result in it remaining constant so the whole system may translate for ever.

B) Energy barriers between states - if the initial configuration is badly chosen,

particles may be stuck in a region of phase space and unable to move.

C) Influence of the (artificial) boundary conditions - if we choose a cubic box, we

cannot see an hexagonal packing of particles.

BIOENG-455 Computational Cell Biology 26



Interactions =Pr-L

Interactions are defined by a force field that specifies the force between any two particles as a
function of their position (and, sometimes, velocity)

Force fields can have many different terms depending on the interactions between the particles
and the length and time scale of the simulation. In terms of their complexity, we have:

all-atom MD > coarse-grained MD >> DPD ~ Brownian Dynamics > MC

Hard spheres = billiard balls

Ising spin model of ferromagnet

Ball and spring model of a membrane
Lennard-Jones particles

Bond forces within polymers

¢

Bending potential

Torsion potential

Hydrogen bonds, polarization, dipolar forces, ..

BIOENG-455 Computational Cell Biology 27
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Interactions =Pr-L
Lennard-Jones potential o\ 12 o\6
(non-bonded particles) iy =4e [(?) Bl (?) ]
q192
Electrostatic force between F = ke 2

charged particles _ 9N D Ao
where k, is Coulomb's constant (kg = 8.99 x10° N m= C™),

vn
Epie= 2, k(r—ro’ + 2 k(60— 0>+ 2

General Amber MD force field bonds angles dihedrals

(GAFF) A B

J. Comput. Chem. 25:1157-1174 (2004) _ i By 99,
X [1+ cos(np — y)] + E Riljz R?j + eR,;

i<j

\12 \6 q:9;
e N T
0

Martini coarse-grained MD force field
J. Phys. Chem.B | 11:7812-7824 (2007) 1

Vbond(R) = 5 Kbond(R o Rbond)2 Vld(e) = Kid(e o eid)z

DPD has simpler forces, we’ll cover these later
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MD equations of motion

Molecular Dynamics is a method for solving Newton’s equation of motion F = ma for
a set of interacting particles (usually small spheres) to get their trajectories over time.

Observable properties that are functions of position and velocity O(x, v) are then
calculated by averaging over trajectories.

The differential equation is approximated by a difference equation, which is the Taylor
series for position or velocity:

x(t + dt) ~ x(t) + dx/dt * dt + d2x/dt2 * dt2/2 + d3x/de3 * dt3/6 + ...

Finite difference schemes differ in:

how many terms dt" are kept
how many values of x(t), v(t) are needed
how many times F(x) must be calculated

these affect the accuracy, the computational cost and the memory required.

BIOENG-455 Computational Cell Biology
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Euler algorithm

Simplest method of solving F = ma: a first-order approximation.

Consider the Taylor series for the position x(t) and velocity v(t) of a particle in Id:

x(t + dt) ~ x(t) + dx/dt * dt + d2x/dt2 * dt2/2 + ...
v(t + dt) ~ v(t) + dv/dt * dt + d2v/dt2 * dt2/2 + ...

Now dx/dt = v(t) and dv/dt = a(t) = F(t)/m, and assume the dt? term is so small
compared to the x, dx/dt terms that we can ignore it during the time step dt
(equivalent to velocity being constant during dt):

x(t + dt) ~ x(t) + v(t) *dt + O(dt?) + ...

v(t + dt) ~ v(t) + (F(t)/m) * dt + O(dt?) + ...

Algorithm: given x(t), v(t) at one time use these equations to iterate forwards in time.

BIOENG-455 Computational Cell Biology 30
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Verlet algorithm

Euler’s algorithm has an error of order dt?, because we neglected this term in the
Taylor series. If we keep more terms, we get a more accurate trajectory.

Consider the same Taylor series for x(t) but expand it for x(t + dt) and x(t - dt):
x(t + dt) ~ x(t) + dx/dt * dt + d2x/dt2 * dt2/2 + d3x/dt3 * dt3/6 + O(dt*)
X(t - dt) ~ x(t) - dx/dt * dt + d2x/dt2 * dt?/2 - d3x/dt3 * dt3/6 + O(dt*)

now add them together (and write d2x/dt2 = a(t) = F(t)/m):

X(t + dt) ~ 2 * x(t) - x(t - dt) + (F(t)/m) * dt2 + O(dt?) +...

v(t) ~ ( x(t + dt) - x(t - dt) )/2*dt

Algorithm: this is more accurate than Euler as the truncation error is O(dt#), and given
x(t) at two times we use these equations to iterate forwards in time. Small problem is
that v(t) has error O(dt?), but method does not need v(t) to calculate trajectory.

BIOENG-455 Computational Cell Biology
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Considerations for integration schemes cPrL

- How many times must we evaluate F(x)? Computational cost

- At how many time points must x(t), v(t) be known? Memory cost

* How big can At be? Stability

* How accurate is the integration scheme? Truncation and round-off errors
- Are the forces truncated in space (e.g., electrostatics)?

At must be small enough so that neglected terms in the Taylor series of x(t) are small
compared to the terms kept: for Euler the first neglected term is O(At2) so the local error is
2nd order; for Verlet, the local error is 4th order.

« Many other methods exist of higher order or different types (Haile, Sect. 4.4, pp |57 ff)

* Euler/Verlet require only one calculation of force for each particle - this is the best we can do

« Some forces in the “force field” may require much smaller dt than others, making it inefficient
to calculate all forces every time step.

BIOENG-455 Computational Cell Biology 32



Observables =Pr-L

Given the set {Xi(t), i(t)} for all the particles, we calculate observable properties of the system by
integrating over the phase space trajectory of the particles.

e.g. Temperature = kgT ~ < |/2m.v2>

But adjacent states are typically highly correlated so we have to simulate for a long time to get
good statistics, and allow long gaps between samples to have independent measurements.

How do we know if our samples are independent?
We can calculate the auto-correlation function (= 2-point correlation function) of the observable
of interest

Ca(T) = (<O(t + 1).0(1)> - <O(1)>2) / (<O(t)>> - <O(t)>2)
The number of time steps between samples must be at least as large as the longest correlation time
of the observables of interest. Note that different observables can have different correlation times,
SO we cannot measure just one time period and use it for all observables.
Collective properties (CM of a membrane, surface tension) have longer correlation times than

single particle properties (lipid tail length, velocity)

BIOENG-455 Computational Cell Biology 33



Precision, error and truth =Pr-L

Experiments have external influences, e.g., temperature fluctuations, dirt, admixtures, etc.

A simulation has systematic errors and statistical errors

Systematic Errors Statistical Errors

Initial state

Finite system size

Approximations in forces

Truncation error (missing terms in Taylor series)
Round-off error (machine precision, sqrt, order
of calculations)

Random number generator isn’t

Bugs in the code

Too few samples

Samples too close together
Correlations

Stuck in metastable state

Any simulation that does not quantify and discuss the errors due to finite system size, finite
run length, the influence of the initial state, boundary conditions, etc, is useless.

Reproducible # Right.

BIOENG-455 Computational Cell Biology 34
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Simulations are approximations to the truth.
It may be hard to define precisely what is a State or to quantify the effects

of the BCs, and once they are defined it may be hard to represent them
accurately on a computer.

The degree to which our Model corresponds to reality (or, how accurate our
simulation is) follows from how accurately the mathematical properties of our
model represent the behaviour of the real entities; or, how much of the physics of
an experiment is captured in the simulation:

e.g.,a RW captures a coin tossing experiment very well

an MD simulation of a drug molecule binding to a protein is not so accurate.

BIOENG-455 Computational Cell Biology 35



Pros and Cons of Simulations =Pr-L

Advantages

Keeps only “relevant” properties
Exact knowledge of microstates
Equations of motion can be chosen

Effects of each force term can be isolated
and studied

Measurements don’t perturb the system

We can always repeat a simulation with
exactly the same, or carefully-different
conditions

Usually cheaper than experiments

Disadvantages

What is a relevant property?

We lose direct connection to experiments
We see only what we expect to see

One simulation gives one data point, and we

may need many points

Force fields can be hard to choose and not
transferable between similar systems

BIOENG-455 Computational Cell Biology 36
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How do you choose a simulation type for a given
soft matter problem!?

Ask yourself:

* What are the length and time scales? ns and nm or microns or metres!?
Local or global properties!?

* Am | interested in trends or absolute values!?

* Do | need to study a particular molecule? e.g.,, DOPC vs DOPG or a generic “lipid”
* Are H-bonds (or C=C, or aromatic, etc) important!?

* Do | have accurate values for interaction parameters between atoms/molecules?

* Am | interested only in equilibrium states?

* If not, what part of the dynamics do | need to get right?

* What computer resources do | have?

Often, there is not much choice about which technique to use as it is forced on you by the
system you want to study: if the system of interest is large compared to atomic scale, you
have to coarse-grained it.

BIOENG-455 Computational Cell Biology
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Summary

Essentially only two types of simulation in cell biology:
Newtonian type - Molecular dynamics, Brownian dynamics, DPD
Phase space integration - Monte Carlo
You never simulate a real system but only a model of a system
Simulations have artifacts, approximations, errors - any simulation-based
work that does not quantify/estimate the errors (statistical and
systematic) is useless

Reproducible does not mean Right

When done well, simulations give us access to information that is hard or
impossible to get from experiments or theoretical models

BIOENG-455 Computational Cell Biology 38
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|0 mins.
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Exercise Today

|) Entropic spring exercise

2) How to run simulations on the HPC cluster helvetios.epfl.ch. See the folder on the
moodle homepage that contains the executable, script, and instructions.

BIOENG-455 Computational Cell Biology
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Homework Ex. | Entropic spring

Simulation of an entropic spring - apply a stretching force to both ends of a
single, long polymer in a DPD simulation and measure the end-end length as a
function of the force (it probably has to be a very small force).

Then invert it to get F(L) and plot it including error bars of the statistical errors.
How do you convert results to physical units?

Now make a fraction of the beads sticky (so that the polymer tends to stick to
itself) and see how this changes the F(L) curve.You will need to vary the number
of sticky beads to find an interesting regime (too few and nothing will happen, too
many and the polymer will just stick together in a tight ball). Interesting means that
the system shows some unusual, non-linear behaviour.

Needs commands in DPD to solve - see Section 8 of the User Guide.

BIOENG-455 Computational Cell Biology 4]



Bead W

Bead B

25 25

Bead BH
0.5
25 25
4.5 4.5

Bead BT
0.5
25 25
4.5 4.5

Bond BH B 128
Bond BT B 128
Bond B B 128

Polymer Water

Polymer Spring
Box 30
Density 3
Temp 1
RNGSeed -999
Lambda 0.5
Step 0.01
Time 6000
SamplePeriod
AnalysisPeriod
DensityPeriod
DisplayPeriod
RestartPeriod
Grid 1 1

=Pi-L

Input file on moodle page for today:

25
4.5

25 25
4.5 4.5

o0
o o1 O

0.99995 "o(w) "
0.00005 " (BH (14 B) BT) "

15 15 1 1 1

10

2000

6000

100

6000
1

dmpci.exi
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Simulating an entropic spring under tension =PrL

We create command targets for the two ends of a molecule and apply equal and
opposite forces to stretch it.

Command SelectBeadTypeInSimBox 1 head BH
Command SelectBeadTypeInSimBox 1 tail BT

Command Comment 1000 // Apply a constant force to the first and last beads in
the +X and -X directions //

Command ConstantForceOnTarget 1000 head fh
Command ConstantForceOnTarget 1000 tail ft

5.0
-5.0

[
SES!
SES!

Command Comment 5000 // Delete the applied forces //

Command RemoveCommandTargetActivity 5000 th
Command RemoveCommandTargetActivity 5000 ft
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Measuring the strain
To Do:

|. Pick a box size of 30 x |15 x |5;adjust the number fractions to have | polymer of
type (BH (14 B) BT), i.e., distinct head and tail beads so they can be selected.

2. Turn force on at T = 1000 steps. How long should you keep it on?
3. How can you measure the extension!?

4. Next, change the backbone to contain a new bead type that is “sticky”. Try (BH B B
BSSSSBBBBT),and give S the same interactions as B except for its self
interaction that is reduced to make it sticky. Vary the number of S beads until you
find a value that makes an observable difference.

Questions to answer

What is the stress/strain relation F(L) for the “molecular spring”?
Does it have different regimes for F(L) under different tensions? Why?
With sticky beads there are two new parameters: the number of sticky beads and their

self-interaction. How can you reasonably select values for these?
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dmpcas file contains time-averaged observables

Typically there are 2 columns: mean and standard deviation

dmpcas.ex| has <Lee> averaged between 2000 - 4000 steps

Time = 4000

Temperature

1.0017449 0.0051323594 , , , , , , ,
Use the time period while force is applied, which is

Pressure at the end time of the period

23.671181 0.081945563

BB bond length

b 58796170 ©.020986814 This is the mean and std. dev. of polymer end-to-end length

Water EE distance
0 0

Spring EE distance
6.4922776 0.6952996
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