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Core Concepts
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We never simulate a real system…. only a model.

Simulations generate possible futures:  we compare 
observables averaged in the simulation with experiments to 
see if the simulation is good or not.

Simulations abstract the world into movies to give us insight.
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Types of simulation
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• Imagining scenarios where you negotiate a pay rise in a job

• Playing computer poker

• Trying to calculate a share price or stock market move in advance

• Integrating stochastic differential equations (Langevin equation)

• Molecular Dynamics

• Dissipative Particle Dynamics

• Monte Carlo simulations
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What is a simulation?
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A simulation is not:

• analytically solving a differential equation or pde - e.g., ballistics versus weather

• quadratures - e.g., calculating a Fourier transform of electron density vs. P.F.  Z({x})

What is a simulation?

“a computer experiment of the behaviour of a model of a physical system in 
which matter is replaced by mathematical constructs that interact in ways that 
mimic the interactions in the physical system, and where the model’s evolution 
generates states corresponding to those of the real system.”

Caveat

We never simulate a real system, but only a model of a real system;  we first 
have to construct a model and then adapt it for calculation on a computer.
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Why do we do simulations?
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• Experiments are too complicated and theories are too simple

• A computer language allows us to specify a sequence of steps that will 
solve a problem

• A model captures what we think are the important properties of an 
experiment, and allow us to ignore irrelevant aspects:  if we later find the 
model is wrong, we can look for the missing important property

• We have almost complete control over all aspects of the simulation;  
so we can perform thought experiments like changing atmospheric 
pressure,  turn electrostatic interactions on or off, etc

• Simulations are relatively cheap and quick compared to experiments

• No ethical concerns with simulating disease states

• We can visualize aspects of a simulation impossible in an experiment
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Molecular dynamics and Monte Carlo
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In cellular biophysics there are two common types of simulation (but with sub-
divisions and cross-over):

A) Mechanical types  -  that integrate more-or-less accurate equations of motion 
for interacting particles, .e.g., Newton’s laws for Molecular Dynamics, Dissipative 
particle dynamics, Brownian dynamics, …

B) Statistical mechanical types - that calculate observable averages in specific 
thermodynamic ensembles: <A> = 1/Z ∑ A({xi, vi})e - βH({xi, vi}),  e.g., Monte Carlo.

These are mathematically distinct but physically equivalent (where they can both be 
applied) ways of calculating properties of a system. 

Which is more useful depends on the problem of interest.
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Molecular dynamics
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m.dv/dt = F

m.dv/dt = FC + FD + FR

m.dv/dt = FC - mγ.v + √(2mγkBT).ζ(t)

0 = FC - γ.v + σ.ζ(t)

MD

DPD

Langevin

Brownian

  Finer 

Coarser

The difference lies in what constitutes a “particle” and how complex the forces are. 

In MD, the particles are atoms but in coarse-grained techniques, the particles are groups 
of atoms, molecular groups, even groups of molecules.

Once the particles are defined (mass, radius), and the forces are given (bonds, non-
bonded, electrostatics), we integrate Newton’s 2nd law and wait for equilibrium.

Allen, MP, and Tildesley, DJ, Computer Simulation of Liquids, Clarendon Press,  Oxford, 1987 
Frenkel, D and Smit, B, Understanding Molecular Simulation, Academic Press, 2002 
Berendsen, HJC, Faraday Discussions 144:467 (2010)

A) Based on integrating some form of Newtonian equations of motion



BIOENG-455 Computational Cell Biology

Molecular dynamics/DPD
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Shiga toxin binding to Gb3 
lipids in membrane

Entropic ordering of nanoparticles by 
membrane fluctuations

Repulsive curvature-
induced force on 
adsorbed nanoparticles

Solvent present here
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Brownian dynamics
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ADP actin growing in 
steady-state; no treadmilling

ATP actin treadmilling (red = 
barbed end, faster growth, 
green = pointed end, slower 
growth); ends with ATP or 
ADP actin have different off 
rates

No solvent in these simulations
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Monte Carlo
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B) Based on defining the Hamiltonian of a system, and performing phase space 
averages using the Metropolis Monte Carlo (MC) method. 

<A> = 1/Z ∑ A({xi, vi})e - βH({xi, vi}),  

where the Partition Function Z = ∑ e - βH({xi, vi}).

Monte Carlo simulations are generally simpler,  faster, and more useful for calculating 
general thermodynamic properties of molecular systems than studying the 
behaviour of specific molecules. 

But… the “particles” in MC simulations do not follow Newton’s laws. They evolve 
according to a set of (possibly physically unrealistic) moves, in which the relevant 
degrees of freedom are continually changed so as to sample all allowed values, and 
observables have their values averaged over a large number of such moves.

Binder, K (ed.)  Monte Carlo Methods in Statistical Physics, 

Topics in Current Physics Vol. 7, Springer Verlag,  Berlin, 1986
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Phase Space
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Consider a particle moving in a potential 
in 1d:   x(t),  v(t) (SHO blackboard)
As time passes, it moves around and its
state can be represented as a point in 
phase space.  Newton’s 2nd law is:

F = m dv/dt

and the path in phase space is continuous. X

V

t1

t2
t3

Now consider N particles in 3d:   there are 6N  ( xi(t), vi(t) ) coordinates, and the 
phase space is big.

Now the state of ALL the particles is represented by a point in this 6N-
dimensional space, and as time passes, and all the particles move around, this point 
moves along a trajectory in the space.

The purpose of Molecular dynamics, Monte Carlo, and other simulations, is to 
calculate a system’s trajectory in phase space and measure the values of 
observables along that trajectory to make predictions.
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Pair up and discuss what a trajectory for one of the following systems 
would look like:   identify the relevant degrees of freedom before you draw 
the trajectory.  Or, invent your own system and its trajectory.  5 mins.

1. A pendulum in a grandfather clock

2. A pendulum swinging in water

3. A car on a circular racing track (at constant speed)

4. A cannonball fired from a cannon at 45 degrees upwards.

5. A single water molecule in a glass at room temperature

6. All molecules in a glass of water at room temperature

7. A water molecule in an ice cube

Think - Pair - Share
5 mins.
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Trajectories in phase space
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Mechanical simulation techniques:  MD,  DPD,  BD

we integrate F = ma for a set of particles given a force field, and generate a path 
through phase space along which we calculate averages of measurable 
quantities, e.g., Temp, Press, order parameters, surface tension, etc.

Monte Carlo simulations: MC

we define moves, which are discrete changes in the d.o.f of the system, and 
randomly change the coordinates of particles in the system. This also defines a 
“trajectory” through the system’s phase space but it is not continuous, and does 
not represent an actual motion of the system.

But… when we average over a long enough trajectory, we get the same results as 
for MD.

We won’t cover MC any further in this course.
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Simulations of a cell
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Protein-protein binding
Protein diffusing in cytosol
Ion channel dynamics, pumps
Membrane potential dynamics
Filament self-assembly and collapse
Actin cytoskeleton dynamics
Membrane fluctuations
Vesicle transport
Vesicle fusion
Endo- and exocytosis
Golgi, ER self-assembly and transport
Cell crawling

What kinds of cellular dynamics can we simulate?

www.daviddarling.info

We focus here on particle-based simulations as they are widely used 
for proteins, lipid membranes, macromolecular fluids, etc.

http://www.daviddarling.info
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Anatomy of a simulation
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Setting up a simulation requires specifying precisely the system and its surroundings
What physical system do I want to simulate 
What do I want to learn about it?

What length and time scales are important?  (nm or mm? km for weather sims)
What are the boundary conditions?

What are the entities of interest? atoms, molecules, etc.
How do they interact?
How does the simulation evolve?

What accuracy do I want? (larger system/longer run may be better,  
but more expensive)

Usually we are interested in the thermodynamic properties of a system, so we connect the simulation 
to experiments via thermodynamic coordinates: temperature, pressure, volume, work, heat, electric field, 
charge, force, area, length, etc.

System

State
Boundary conditions
Initial conditions

Interactions 
Equations of motion

Observables

We do not simulate a real system, but only a model of a real system;  
we first construct the model (particles + forces) and second adapt it 
(discretize Newton’s laws) for calculation on a computer.
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Physical System
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The System is a physical experiment that we want to reproduce in a computer:

Argon gas in a box
Lipid molecules in a membrane
Ferromagnetic atoms on a lattice
Rodlike liquid crystal molecules in solvent

It must be in a measurable State with specified Initial Conditions and Boundary 
Conditions:

0.05 Mole Argon gas in a closed 1 litre glass bottle at 300 K
0.6 gm DMPC in 1 ml of water at STP

The physical entities must Interact in some way with each other and with the container; 
typically, the system has constant mass that is ensured by a closed container:

lipids in water can diffuse around, aggregate and separate, but are 
constrained by the walls of the container so that their number is constant

We need an Equation of Motion for the entities, usually Newton’s laws or some 
artificially-chosen EOM.  And we must be able to measure something, viz, Observables.
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Mathematical System
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We represent physical entities as mathematical objects in well-defined states

Argon atoms in a box ⟹ point particles with mass, position, velocity and force field

Lipid molecules in membrane ⟹ ball-and-spring model, Lennard-Jones potential (6-12)

Ferromagnetic atoms on a lattice ⟹ Ising spins with 2 states: up or down

Rodlike liquid crystal molecules ⟹ rigid ellipsoids with non-spherically symmetric potential

Finally:  what accuracy is required. Is it enough that atoms are billiard balls? Do we 
need charge? How many atoms? Do we want to see a phase transition? 

NB. more accurate = slow and hard,   less accurate = fast and easy.

Summary

A simulation = a physical system + a model + a mathematical algorithm for generating 
states of the model + observables that correspond to physical properties that can be 
measured.
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Units
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Physical quantities have units (Mass, Length, Time) that define scales of interest in a system.

kBT = 4.14 10-21 J ~ 0.026 eV ~ 1/40 eV

4 pN.nm ~ 1 kBT

mass of e- ~ 0.511 MeV

mass of CH4 ~ 16 gm/mol ~ 2.6 e-23 gm

1 Mole / litre ~ 0.6 molecules/nm3 

Computers know nothing of units;  all quantities are dimensionless;  all equations are discrete;  
all numbers are integers even when they’re real,  the same program run on different platforms 
(Windows, Linux, Mac) will produce different results.

This means that in a simulation we are explicitly (or implicitly) converting all dimensional 
quantities into dimensionless ones by multiplying/dividing by some standard M, L, T scales. 

Implicit because if you forget the units, or get them wrong, the simulation will often happily 
continue, and produce rubbish, but it won’t tell you. 
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Reduced units
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In MD (and, in fact, all particle-based simulations), once we have values for a mass m0 (e.g., one 
atom), length r0 (e.g., diameter of one atom) and energy (or temperature kBT), we can make 
all other physical quantities dimensionless:

Reduced quantity = function of physical quantities

Mass    m = M/m0

Time    t  = T/t0

Length  l  = L/r0

Area     a = A/r02 
Volume v = (L/r0)3

Density ρ = Density.r03/m0 = N / l3
Diffusion constant D’ = (D. t0/r02)
Area per lipid       aLipid = A/(N. r02)

The benefit of this is that we reduce the range of physical quantities (imagine simulating H 
with a mass 1.67 10-27 Kg) and can represent many physical systems by one simulation.



BIOENG-455 Computational Cell Biology

System, State, Boundary Conditions
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Suppose our system is a fluid,  a state is defined by giving each particle a mass, x(t), v(t), F(t), 
… in a fixed volume. 

But what happens at the walls?  We need boundary conditions

We would like to simulate a macroscopic system (1022 particles) so we can apply  
thermodynamics,  but we only have ~ 106 - 108 particles in a typical particle-based simulation. 

There are two choices for the boundaries:

Hard boundaries      - isolated system,  large influence of walls on bulk

Periodic boundaries - infinitely periodic system,  no walls at all!

For hard walls, particles just bounce off and have their normal 
velocity reversed. Easy to implement, but leads to artifacts due 
to finite system size.
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Periodic boundary conditions
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For periodic boundary conditions (PBC), there are no walls, and particles that leave the 
simulation volume by crossing a face are removed and replaced at the opposite face.

This works because Newton’s laws have translational invariance for central forces:

F(x+L) = m d2(x+L)/dt2 = m d2x/dt2   = F(x)

But we must only calculate the force between two particles once for the nearest pair 
(minimum image convention).

PBCs can lead to spurious effects if the range of F(x) is comparable to the box size, or 
there is periodic motion that spans the whole box.

If x(t + dt) > L then x(t + dt)  = x(t + dt) - L

else if x(t + dt) < 0 then x(t + dt) = x(t + dt) + L

and for y(t), z(t)
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Ensembles in simulations
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Common ensembles are those familiar from classical thermodynamics because we can apply the 
formulae of TD to the simulation: ensemble = set of observables that are constant over trajectory

Microcanonical - N, V, E constant
Atomistic Molecular Dynamics simulations are usually done here - a fixed number of particles 
moving in a box of constant volume, and constant total energy. In practise, the integration scheme is 
not perfect, and the energy drifts over time and must be corrected.

Typically, atoms are placed in suitable positions subject to physical constraints (i.e., bonded atoms in 
a molecule should be separated by less than their bond length and not overlap); they are given a 
velocity drawn randomly from a Maxwell-Boltzmann distribution.

Canonical - N, V, T constant
DPD, BD, MC and most coarse-grained simulations are done here as they involve random forces or 
noise, so the energy cannot be constant but the average energy, i.e., temperature,  is constant.

Grand Canonical - μ, V, T const

Uncommon because it is hard to change the particle number in a dense fluid, but sometimes useful.
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Initial conditions
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The simulation also has to start somewhere - we must specify initial conditions.

We must set up the computer experiment correctly, otherwise our measurements are 
meaningless (compare doing an experiment on a cell  and the room temperature changes 
unpredictably during the experiment.)

What properties are constant during the simulation?  

Is the total mass constant (i.e., number of particles)?  

Constant volume or pressure?

Constant temperature or energy? 

The set of constant properties defines the thermodynamic Ensemble of the simulation.
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Types of initial condition
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Particles in any ensemble must be assigned initial values of position, velocity,  etc.  

Can be assigned randomly or in a specific configuration:

• random initial state can be followed to see the appearance of an ordered state 

• an initially ordered state can be followed as it relaxes to its equilibrium state

If we are interested in equilibrium, the simulation must be run for a time to forget the 
influence of the non-equilibrium initial state before we can start to sample observables.  

This time must be determined for each system - it cannot usually be predicted in advance.

But sometimes, the initial phase of relaxation to equilibrium is also of interest.

See DPD user guide for examples of initial states
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Artifacts of initial conditions

26

Whatever ensemble we choose,  a system may be unable to relax to equilibrium, or it 
relaxes very slowly, because of:

A) Conservation of some quantity - if total momentum is non-zero, Newton’s laws 

will result in it remaining constant so the whole system may translate for ever.

B) Energy barriers between states - if the initial configuration is badly chosen, 

particles may be stuck in a region of phase space and unable to move.

C) Influence of the (artificial) boundary conditions - if we choose a cubic box, we 

cannot see an hexagonal packing of particles.
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Interactions
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Interactions are defined by a force field that specifies the force between any two particles as a 
function of their position (and, sometimes, velocity)

Force fields can have many different terms depending on the interactions between the particles 
and the length and time scale of the simulation. In terms of their complexity, we have:

all-atom MD  >  coarse-grained MD  >>  DPD  ~  Brownian Dynamics  >  MC

Hard spheres = billiard balls

Ising spin model of ferromagnet

Ball and spring model of a membrane

Lennard-Jones particles

Bond forces within polymers

Bending potential    “

Torsion potential    “

Hydrogen bonds, polarization, dipolar forces, ..
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Interactions

28

Lennard-Jones potential
(non-bonded particles)

Electrostatic force between  
charged particles

General Amber MD force field
(GAFF)
 J. Comput. Chem. 25:1157-1174 (2004)

Martini coarse-grained MD force field
 J. Phys. Chem. B 111:7812-7824 (2007)

DPD has simpler forces, we’ll cover these later
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MD equations of motion
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Molecular Dynamics is a method for solving Newton’s equation of motion F = ma for 
a set of interacting particles (usually small spheres) to get their trajectories over time. 

Observable properties that are functions of position and velocity O(x, v) are then 
calculated by averaging over trajectories.

The differential equation is approximated by a difference equation, which is the Taylor 
series for position or velocity:

x(t + dt) ~ x(t) + dx/dt * dt + d2x/dt2 * dt2/2 + d3x/dt3 * dt3/6 + …

Finite difference schemes differ in:

• how many terms dtn are kept
• how many values of x(t), v(t) are needed
• how many times F(x) must be calculated

these affect the accuracy, the computational cost and the memory required.
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Euler algorithm
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Simplest method of solving F = ma: a first-order approximation.

Consider the Taylor series for the position x(t) and velocity v(t) of a particle in 1d:

x(t + dt) ~ x(t) + dx/dt * dt + d2x/dt2 * dt2/2 + …

Now dx/dt  = v(t) and dv/dt = a(t) = F(t)/m,  and assume the dt2 term is so small 
compared to the x,  dx/dt terms that we can ignore it during the time step dt 
(equivalent to velocity being constant during dt):

Algorithm: given x(t), v(t) at one time use these equations to iterate forwards in time.

v(t + dt) ~ v(t) + dv/dt * dt + d2v/dt2 * dt2/2 + …

x(t + dt) ~ x(t) + v(t) * dt  + O(dt2) + …

v(t + dt) ~ v(t) + (F(t)/m) * dt  + O(dt2) + …



BIOENG-455 Computational Cell Biology

Verlet algorithm
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Euler’s algorithm has an error of order dt2, because we neglected this term in the 
Taylor series. If we keep more terms, we get a more accurate trajectory.

Consider the same Taylor series for x(t) but expand it for x(t + dt) and x(t - dt):

x(t + dt) ~ x(t) + dx/dt * dt + d2x/dt2 * dt2/2 + d3x/dt3 * dt3/6 + O(dt4)

now add them together (and write d2x/dt2 = a(t) = F(t)/m):

x(t - dt) ~ x(t) - dx/dt * dt + d2x/dt2 * dt2/2 - d3x/dt3 * dt3/6 + O(dt4)

Algorithm:  this is more accurate than Euler as the truncation error is O(dt4), and given 
x(t) at two times we use these equations to iterate forwards in time.  Small problem is 
that v(t) has error O(dt2), but method does not need v(t) to calculate trajectory.

x(t + dt) ~ 2 * x(t) - x(t - dt) + (F(t)/m) * dt2 + O(dt4) +…

v(t) ~ ( x(t + dt) - x(t - dt) )/2*dt



BIOENG-455 Computational Cell Biology

Considerations for integration schemes
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• How many times must we evaluate F(x)?    Computational cost
• At how many time points must x(t),  v(t) be known?    Memory cost
• How big can Δt be?    Stability
• How accurate is the integration scheme?   Truncation and round-off errors
• Are the forces truncated in space (e.g., electrostatics)?

• Δt must be small enough so that neglected terms in the Taylor series of x(t) are small 
compared to the terms kept: for Euler the first neglected term is O(Δt2) so the local error is 
2nd order;  for Verlet, the local error is 4th order.

• Many other methods exist of higher order or different types (Haile, Sect. 4.4, pp157 ff)

• Euler/Verlet require only one calculation of force for each particle - this is the best we can do

• Some forces in the “force field” may require much smaller dt than others, making it inefficient 
to calculate all forces every time step.
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Observables
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Given the set {xi(t), vi(t)} for all the particles, we calculate observable properties of the system by 
integrating over the phase space trajectory of the particles. 

e.g. Temperature =  kBT ~ < 1/2m.vi2> 

But adjacent states are typically  highly correlated so we have to simulate for a long time to get 
good statistics, and allow long gaps between samples to have independent measurements.

How do we know if our samples are independent?

We can calculate the auto-correlation function (= 2-point correlation function) of the observable 
of interest

C2(τ) = (<O(t + τ).O(t)> - <O(t)>2 ) ∕ (<O(t)2> - <O(t)>2 )

The number of time steps between samples must be at least as large as the longest correlation time 
of the observables of interest.  Note that different observables can have different correlation times, 
so we cannot measure just one time period and use it for all observables.

Collective properties (CM of a membrane, surface tension) have longer correlation times than 
single particle properties (lipid tail length, velocity)
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Precision, error and truth
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Experiments have external influences, e.g., temperature fluctuations, dirt, admixtures, etc.

A simulation has systematic errors and statistical errors

Systematic Errors
Initial state
Finite system size
Approximations in forces
Truncation error (missing terms in Taylor series)
Round-off error (machine precision, sqrt, order 
of calculations)
Random number generator isn’t
Bugs in the code

Statistical Errors

Too few samples
Samples too close together
Correlations
Stuck in metastable state

Any simulation that does not quantify and discuss the errors due to finite system size, finite 
run length, the influence of the initial state, boundary conditions, etc,  is useless. 

Reproducible ≠ Right.
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Truth?
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The degree to which our Model corresponds to reality (or, how accurate our 
simulation is) follows from how accurately the mathematical properties of our 
model represent the behaviour of the real entities; or, how much of the physics of 
an experiment is captured in the simulation:

e.g., a RW captures a coin tossing experiment very well

an MD simulation of a drug molecule binding to a protein is not so accurate.

Simulations are approximations to the truth. 

It may be hard to define precisely what is a State or to quantify the effects 
of the BCs, and once they are defined it may be hard to represent them 
accurately on a computer.
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Pros and Cons of Simulations
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Keeps only “relevant” properties 

Exact knowledge of microstates

Equations of motion can be chosen

Effects of each force term can be isolated
and studied

Measurements don’t perturb the system

We can always repeat a simulation with
exactly the same, or carefully-different
conditions

Usually cheaper than experiments

Advantages

What is a relevant property?

We lose direct connection to experiments

We see only what we expect to see

One simulation gives one data point, and we 
may need many points

Force fields can be hard to choose and not 
transferable between similar systems

Disadvantages
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• What are the length and time scales? ns and nm or microns or metres?  
Local or global properties?

• Am I interested in trends or absolute values?

• Do I need to study a particular molecule?  e.g., DOPC vs DOPG or a generic “lipid”

• Are H-bonds (or C=C, or aromatic, etc) important?

• Do I have accurate values for interaction parameters between atoms/molecules?

• Am I interested only in equilibrium states?

• If not, what part of the dynamics do I need to get right?

• What computer resources do I have?

Ask yourself:

Often, there is not much choice about which technique to use as it is forced on you by the 
system you want to study:  if the system of interest is large compared to atomic scale, you 
have to coarse-grained it.

How do you choose a simulation type for a given  
soft matter problem?
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Summary
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• Essentially only two types of simulation in cell biology:

Newtonian type - Molecular dynamics, Brownian dynamics, DPD

Phase space integration - Monte Carlo

• You never simulate a real system but only a model of a system 

• Simulations have artifacts, approximations, errors - any simulation-based 
work that does not quantify/estimate the errors (statistical and 
systematic) is useless

• Reproducible does not mean Right

• When done well, simulations give us access to information that is hard or 
impossible to get from experiments or theoretical models
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Break
10 mins.

39
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Exercise Today

1) Entropic spring exercise

2) How to run simulations on the HPC cluster helvetios.epfl.ch. See the folder on the 
moodle homepage that contains the executable, script, and instructions.

http://fidis.epfl.ch
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Homework Ex. 1 Entropic spring
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Simulation of an entropic spring - apply a stretching force to both ends of a 
single, long polymer in a DPD simulation and measure the end-end length as a 
function of the force (it probably has to be a very small force). 

Then invert it to get F(L) and plot it including error bars of the statistical errors.  
How do you convert results to physical units? 

Now make a fraction of the beads sticky (so that the polymer tends to stick to 
itself) and see how this changes the F(L) curve. You will need to vary the number 
of sticky beads to find an interesting regime (too few and nothing will happen, too 
many and the polymer will just stick together in a tight ball). Interesting means that 
the system shows some unusual, non-linear behaviour.

 Needs commands in DPD to solve - see Section 8 of the User Guide.



BIOENG-455 Computational Cell Biology 42

Input file on moodle page for today: 
 dmpci.ex1
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Simulating an entropic spring under tension
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Command  SelectBeadTypeInSimBox 1  head  BH 
Command  SelectBeadTypeInSimBox 1  tail  BT 

Command  Comment  1000  // Apply a constant force to the first and last beads in 
the +X and -X directions  // 

Command ConstantForceOnTarget        1000  head  fh   1 0 0   5.0 
Command ConstantForceOnTarget        1000  tail  ft   1 0 0   -5.0 

We create command targets for the two ends of a molecule and apply equal and 
opposite forces to stretch it.

Command  Comment  5000  // Delete the applied forces  // 

Command RemoveCommandTargetActivity  5000   fh  
Command RemoveCommandTargetActivity  5000   ft
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Measuring the strain
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To Do:

1. Pick a box size of 30 x 15 x 15; adjust the number fractions to have 1 polymer of 
type (BH (14 B) BT), i.e., distinct head and tail beads so they can be selected.

2. Turn force on at  T = 1000 steps. How long should you keep it on?

3. How can you measure the extension?

4. Next, change the backbone to contain a new bead type that is “sticky”.  Try (BH B B 
B S S S S B B B BT), and give S the same interactions as B except for its self 
interaction that is reduced to make it sticky.  Vary the number of S beads until you 
find a value that makes an observable difference.

Questions to answer

What is the stress/strain relation F(L) for the “molecular spring”?

Does it have different regimes for F(L) under different tensions? Why?

With sticky beads there are two new parameters: the number of sticky beads and their 

self-interaction. How can you reasonably select values for these?
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dmpcas.ex1 has <Lee> averaged between 2000 - 4000 steps

…

Use the time period while force is applied, which is 
at the end time of the period

This is the mean and std. dev. of polymer end-to-end length

dmpcas file contains time-averaged observables

Typically there are 2 columns:   mean and standard deviation


