

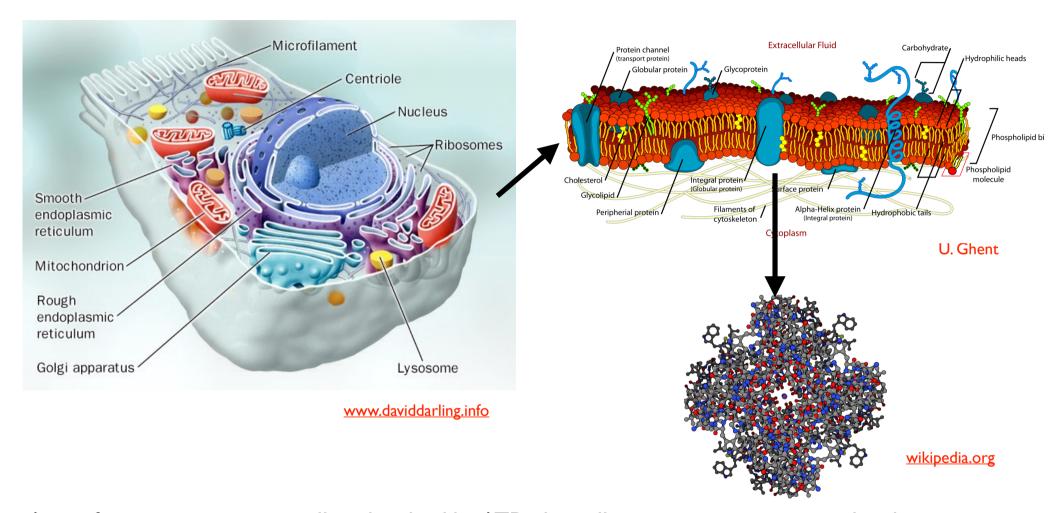
Background Quiz Histogram

Core Concepts

Small/folded molecules are dominated by energy

Polymers are dominated by entropy

Biopolymers (Proteins, lipids, DNA, RNA) are more interesting than manufactured polymers

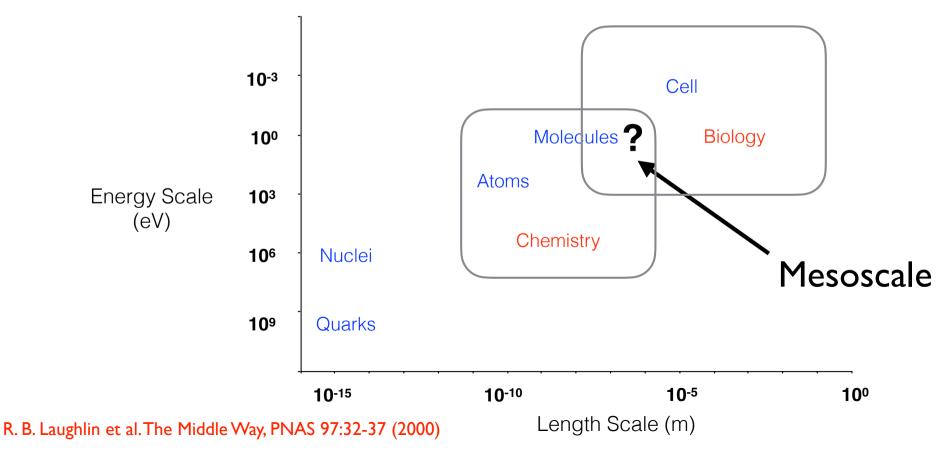

Many small interactions can produce a large force

mentalfloss.com

Macromolecules in the cell

Apart from water, ions, small molecules like ATP, the cell contains many supramolecular structures - membranes, organelles, protein complexes, DNA/chromatin, etc.

Each structure is composed of smaller structures, which are composed of smaller.... down to molecules and atoms in a hierarchy of structural units on different length scales


Hierarchical structure is why science works

Science works because the world appears to be able to be divided into different levels - defined by relevant length and energy scales - in which entities move and interact according to forces that only refer to, and act on, entities in that layer.

Is there something new in the mesoscale between molecules and cells?

Microscopy and simulations are both exploring this regime (nm < mesoscale < micron)

Polymers and Macromolecules

Industrial polymers have been in use since ~ 1945, and consist of simple repeated units:

Polyethylene $(C_2H_4)n$ Polyethyleneglycol (PEG) $(CH_2-CH_2-O)_n$

Industrial polymers are important, but dull: plastic bags, door knobs,

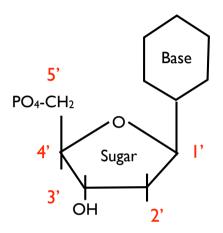
Biological Polymers

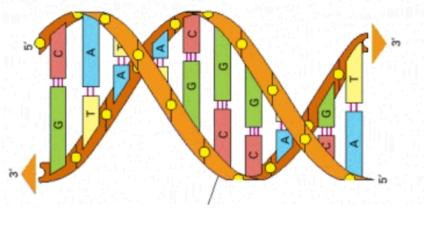
DNA/RNA - linear chain of nucleotides

Lipids - approx. 2 - 4 nm - membranes

Sugars - 2 dim. networks

Proteins - linear chains of amino acids


Filament	Monomer	Location	Diameter	Mass
DNA	A, C, G,T Base	Nucleus	2 nm	0.65 kDa
Actin	Actin monomer	cytoplasm	7 nm	43 kDa
Intermediate filaments	α-helical rod	cytoplasm	I0 nm	70 - 200 kDa
Microtubules	Tubulin monomer	cytoplasm	25 nm	50 kDa


Small, folded proteins can also self-assemble into polymers, e.g., actin filaments, microtubules Why are biological polymers so much more interesting than industrial polymers?

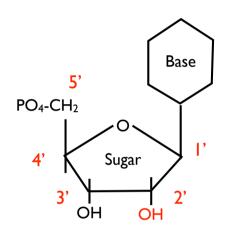
DNA

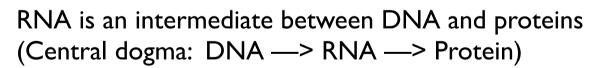
Double-stranded helix of nucleotides connected in linear chains

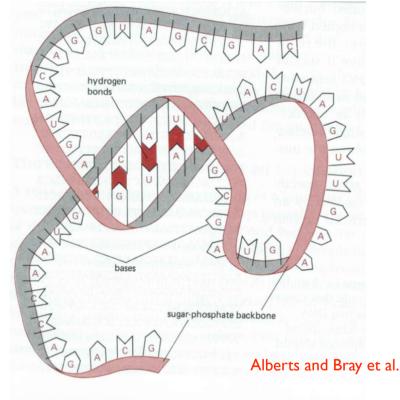
Alberts and Bray et al.

Nucleotide = 5-carbon sugar with an attached base (A, C, G,T) on the I' carbon, and a phosphate group on the 5' carbon.

Base = N-containing ring compound, either purine or pyrimidine


Chain is formed by phosphodiester bonds at 3' and 5' carbons, so the polymer has a direction or *polarity*


First reason biopolymers are interesting: the monomers have structure that carries information (industrial polymers are usually one monomer, e.g., CH₂, repeated)


RNA

Single-stranded linear chain of nucleotides - only difference in the nucleotide to DNA is the OH group on 2' carbon - and T is replaced by U

But RNA is also a structural part of cellular machines like Ribosomes, it can catalyse reactions, and has some complementary binding.

Proteins

Linear polymers of amino acids directionally connected by peptide bonds from the amine end (N terminus) to the carboxylic acid end (C terminus):

R can be: Acidic, Basic, Uncharged polar, Non-polar

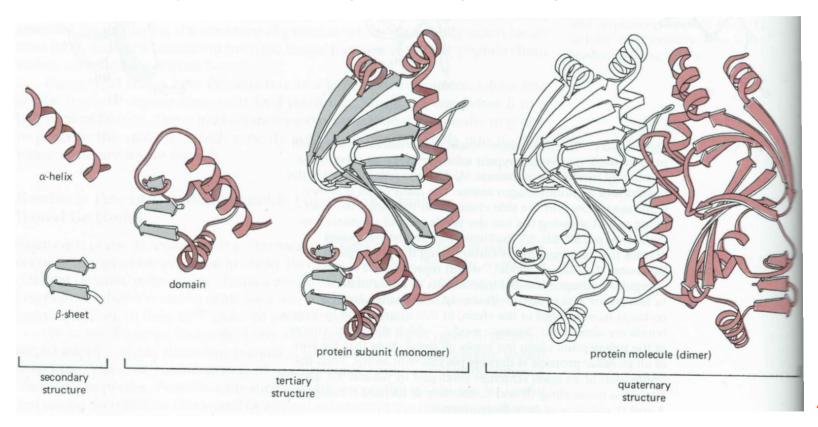
Proteins fold into 3D shapes that minimise their energy by arranging charged polar/acidic/basic side-chains to cover the surface and shield non-polar side-chains from water.

Folded state is not covalently bonded, there must be many weak non-covalent interactions to stabilise the folded state agains thermal fluctuations.

Proteins can de-nature if the solvent conditions change (pH, temperature, other proteins, ...)

Name	Symbol	Туре	
Alanine	Α	Non-polar	
Cysteine	С	Non-polar	
Aspartic acid	D	Acidic	
Glutamic acid	E	Acidic	
Phenylalanine	F	Non-polar	
Glycine	G	Non-polar	
Histidine	Н	Basic	
Isoleucine	I	Non-polar	
Lysine	K	Basic	
Leucine	L	Non-polar	
Methionine	M	Non-polar	
Asparagine	N	Uncharged polar	
Proline	Р	Non-polar	
Glutamine	Q	Uncharged polar	
Arginine	R	Basic	
Serine	S	Uncharged polar	
Threonine	Т	Uncharged polar	
Valine	٧	Non-polar	
Tryptophan	W	Non-polar	
Tyrosine	Y	Uncharged polar	

3D structure of proteins



Primary structure = sequence of amino acids

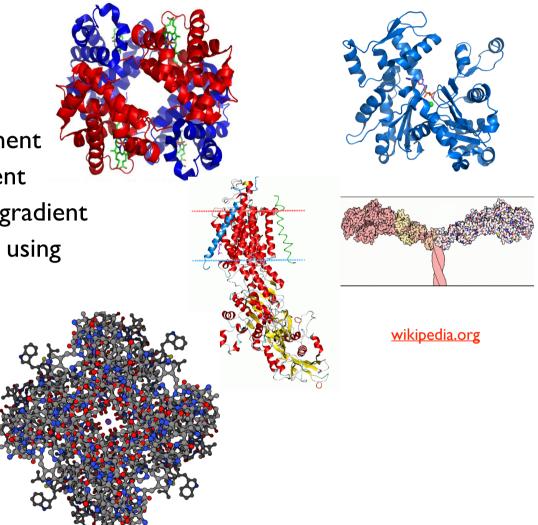
Secondary structure = H-bonding of contiguous aa's into α helices and β sheets

Tertiary structure = domains of globular units

Protein complexes = assembly of several proteins by non-covalent bonds

Alberts and Bray et al.

Second reason: biological polymers fold into shapes to perform functions (not just random flapping about)


Many proteins are molecular machines

What are some common proteins?

- Haemoglobin binds oxygen
- Actin forms filaments, cytoskeleton
- Myosin motor pulls cargo along a filament
- Na-K ATPase pump ions against gradient
- Ion channels allow ions to flow down gradient
- Respiratory chain proteins makes ATP using energy of e- transport

Machines because they are precisely arranged (mutate one aa and it can destroy the protein) and they operate relatively independently of other proteins

Proteins fold into precise, unique, lowest-energy states that are known from crystal structures: but is this true of all proteins?

Think-Pair-Share - 3 minutes

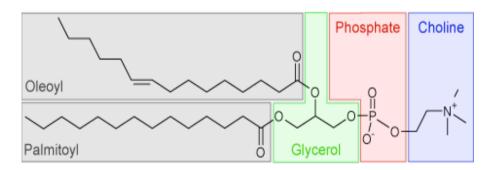
One person argue for, one against, and then discuss which you most agree with.

Proteins are coded for by genes, and genes evolve by random mutations, which may influence the proteins' structure and function; but if the function is critical for life, the protein is generally conserved across species.

Q. If a protein with a given number of residues appears in many species and performs the same function, is the sequences of amino acids (largely) conserved?

Lipids

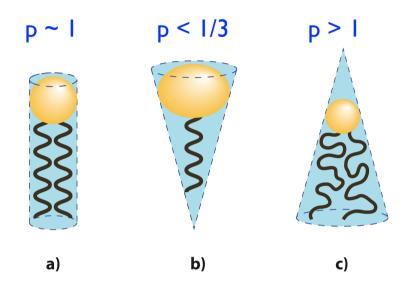
Lipids are fatty acids that are composed of:


Headgroup - soluble in water, may be charged, uncharged, polar, small or bulky

Oily tails - C-C chains with typical length 8 - 24, saturated or unsaturated, only soluble in organic solvents

Lipids are called:

Amphiphiles = love water and oil - frustrated in either bulk solution

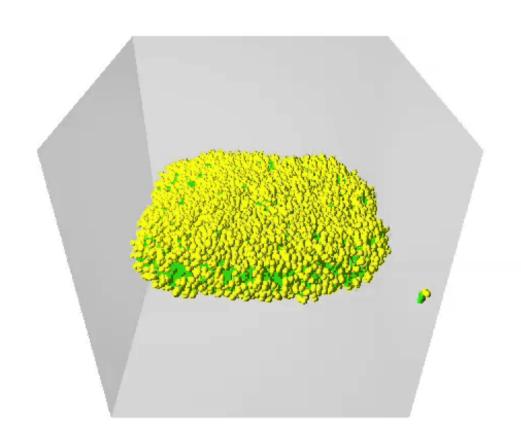

Typical phospholipids look like POPC below: palmitoyl-oleoyl phosphatidylcholine

Lipids do not covalently bond to each other, but self-assemble into distinct 3d structures driven by their frustration: tails want to hide from water, headgroups want to be solvated.

Lipids have a shape controlled by relative size/interactions of their headgroup and tails

J. C. Shillcock, Fig. 3, Ch. 26 in Biomolecular Simulations, ed. L. Monticelli and E. Salonen, Methods in Mol. Biol. 924, Humana Press 2012

If the headgroup has the same "cross-sectional area" as the tails, the molecule is like a cylinder; otherwise the molecule is like a cone.


Israelachvili devised a packing parameter to quantify the "shape" of lipids in the fluid phase:

$$p = v / a_0 I_c$$

v = equilibrium volume of the molecule (depends on environment, temperature, etc!) a_0 = equilibrium cross-sectional area of the molecule (""") I_c = maximum extension of the hydrocarbon chains (see Table I in Lecture I)

Lipids have many phases

DPD simulation of 3428 lipids in a planar disk: the lipids on the edge have tails exposed to water; the patch bends so that it can close off its edge and forms a vesicle (water is invisible).

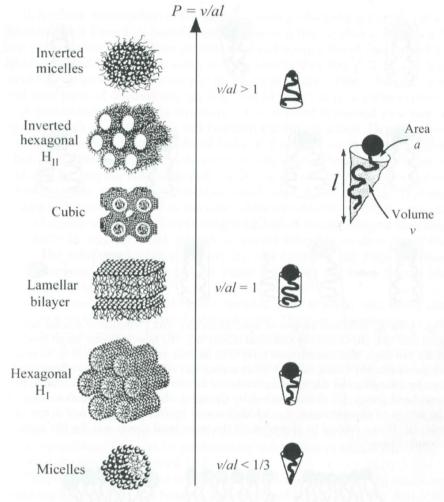


Fig. 4.4. Schematic illustration of lamellar and non-lamellar lipid aggregates formed in water. The different structures have different curvature and are arranged in accordance with the value of packing parameter P=v/al

Third/fourth reasons: biopolymers non-covalently form aggregates that can respond to their environment by changing shape or structure.

Life as a Matter of Fat, O. G. Mouritsen, Springer, Berlin 2005

What's special about lipids?

Lipids are often viewed as just providing a bounding membrane around cells that separates interior from exterior and is a solvent for proteins.

But they have important active roles too:

Signalling - endocannabinoids and steroid hormones

Disease - important lipid-binding proteins: PLAs (inflammation), ApoE (Alzheimer's), alpha synuclein, PUFAs (Parkinson's)

Synaptic dynamics - modify ion channel dynamics, receptor currents

B. Davletov and C. Montecucco, Lipid function at synapses. Curr. Op. Neurobiol. 20:543 (2010)

Why are there so many different types of lipid in the body?

- If all nature needed was a barrier, a few lipid types would be sufficient but there are 10,000s of different types of lipid in cell membranes (cp. 4 bases in DNA and 20 amino acids)
- Membrane is a fluid so all components could diffuse freely but different proteins need distinct environments due to thickness, tension, and their function depends on local lipid composition: membrane is not an ideal mixture

Lipid-related diseases are fatal

1012 Nutritional and Metabolic Disorders

seen. The infantile and juvenile forms are inherited as recessive traits, appearing more often in Jewish families. Patients may show xanthomas, pigmentation, hepatosplend megaly, lymphadenopathy, and mental retardation. Pancytopenia is common. Diagn sis may be made by tissue biopsy and confirmed by enzyme assay. Absence of sphingomyelin-cleaving enzyme can be demonstrated in both biopsy specimens andly are normal. Treatment at present is supported

there is no specific therapy.

FABRY'S DISEASE

(Angiokeratoma Corporis Diffusum Universale; α-Galactosidase Deficiency)

A rare, familial, sex-linked disorder of lipid metabolism in which glycolipid (galactic galactosylglucosyl ceramide) accumulates in many tissues. The metabolic abnormaling due to the absence of the lysosomal enzyme α-galactosidase A needed for the norm catabolism of trihexosyl ceramide. Clinical recognition in males results from charming istic skin lesions (angiokeratomas) over the lower trunk. Principles opacities, febrile episodes, and burning pain in the extren ities. Death results renal failure, or cardiac or cerebral complications of hyper ension or other vani disease. Heterozygous females may exhibit the disorder in an attenuated form and most likely to show corneal opacities. Enzymatic replacement of the deficient envir is being explored and may have potential therapeutic value. Treatment is otherwise supportive, especially during periods of pain and fever.

WOLMAN'S DISEASE

(Acid Cholesteryl Ester Hydrolase Deficiency)

A familial autosomal recessive disease characterized by hepatosplenomegaly, slive rhea, and adrenal calcification manifested in the first weeks of life. Large amount neutral lipids, particularly cholesteryl esters and glycerides, accumulate in the ussues. Denciency of an acid lipase has been described. There is no specific there and death usually occurs by 6 mo of age.

CHOLESTERYL ESTER STORAGE DISEASE

An extremely rare familial autosomal recessive disease characterized by hepatomic and accumulation of cholesteryl esters and triglycerides mainly in lysosomes in the spleen, lymph nodes, and other tissues. Hyperbetalipoproteinemia is common and mature atherosclerosis may be severe. A deficiency in cholesteryl ester hydroland hand Deticate may be asymptomatic. Diagnosis is made by liver live

There is no treatment.

CEREBROTENDINOUS XANTHOMATOSIS

(van Bogaert's Disease)

A rare recessive familial disorder characterized by progressive ataxia, demention racts, and tendon xanthomas. Cholestanol (dihydrocholesterol), which is usually detectable in the body, is found in increased concentrations in the nervous lungs, blood, and xanthomas. The underlying defect involves a deficiency of a limit enzyme that catalyzes the 24S hydroxylation of an intermediate sterol in the lilli synthetic pathway. Though plasma cholesterol levels are usually low or normal ture atherosclerosis also occurs. Disability is progressive, though often not manife until after age 30. Treatment with chenodiol (0.5 to 1.5 gm/day), which inhibited mal bile acid synthesis, reduces plasma cholesterol and may prevent further plasma sion of the disease.

Ch. 86

Amyloidosis 1013

β-Sitosterolemia and Xanthomatosis

A rare recessive familial diease characterized by the accumulation of plant sterols in the blood and tissues and by the occurrence of tendon and tuberous xanthomas, premature utherosclerosis, and abnormal RBCs. Increased intestinal absorption of dietary \(\beta\)-sitosterol has been demonstrated Treatment consists in reducing the intake of foods rich in plant sterols (such as vegetable oils), and administering cholestyramine resin to promote sterol excretion.

REFSUM'S SYNDROME

(Phytanic Acid Storage Disease)

A rare recessive familial disorder of phytanic acid metabolism characterized clinically w peripheral neuropathy, cerebellar ataxia, retinitis pigmentosa, and bone and skin thanges. The disorder is due to a deficiency of phytanic acid hydroxylase, an enzyme that metabolizes phytanic acid. It is associated with marked accumulation of phytanic held in the plasma and tissues. (See also TABLE 128-1 in Ch. 128.) A diet deficient in phytanic acid ("chlorophyll free") is beneficial. Serial plasmapheresis may help keep dasma phytanic acid levels down.

OTHER LIPIDOSES

Several rare inheritable lipidoses have been demonstrated using sophisticated techof tissue culture and enzyme analysis. The more common ones are described.

Tay-Sachs disease (G_{M2} gangliosidosis) is characterized by very early onset, progressretardation in development, paralysis, dementia, blindness, cherry red retinal pols, and death by age 3 or 4. This recessive disorder is most common in families of fastern European Jewish origin and is caused by deficiency of the enzyme hexosamini-A, resulting in accumulation of ganglio ides (complex sphyngolipids) in the brain. In infantile diso der often fatal by age 2 is a eneralized (Gm1) gangliosidosis in which the melioside G_{M1} recommulate of the rooms system. In sulfatide lipidosis (metachroleukodystrophy) there is a deficiency of the enzyme cerebroside sulfatase, causing mulachromatic lipids to accumulate in the white matter of the CNS, peripheral nerves, tillney, spleen, and other visceral organs. It is characterized by progressive paralysis dementia usually beginnin before age 2 and fatal by age 10. Galactosyl ceramlipidosis, also known as Kabbe's disease or globoid leukodystrophy, is a fatal infanlisorder characterized by progressive retardation, paralysis, blindness, dearness. met pseudobulbar palsy. This familial condition is secondary to a deficiency of galacmobroside β-galactorides Diguests of these discreters may be made prenatally amniotic flui . No specific therapy is known.

ANOMALIES IN KIDNEY TRANSPOR

See in Chs. 155 and 187)

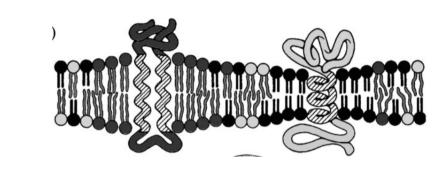
86. AMYLOIDOSIS

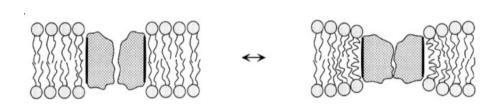
mulation in the tissues of the fibrillar protein amyloid usually in amounts sufficient munit normal function.

Minute viology and Classification

The rause of amyloid production and its deposition in tissues is unknown. Immunoderangements have been implicated—B cell activation, T cell suppression, mac-

Lipids influence membrane material properties

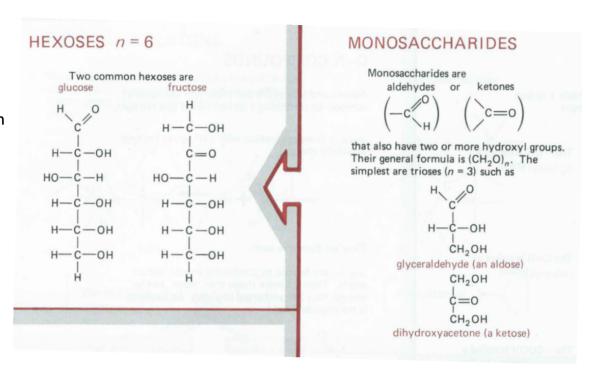

Thickness, bending modulus, stretch modulus, fluidity


Protein hydrophobic region must match the membrane **thickness** (**or pay high energy cost**), hence they prefer to be surrounded by lipids with matching thickness

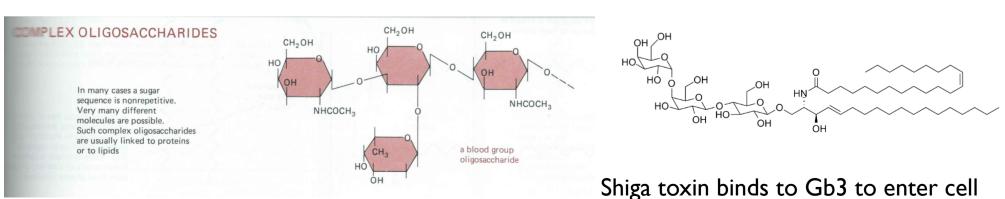
Channel proteins can have their open/closed equilibrium changed by **local membrane** constituents

Membrane **bending stiffness** (or degree of saturation of lipids) controls their shape; flexible lipids can form curved membranes, vesicles, tubes, rigid lipids form flat bilayers;

Stretch modulus is high which maintains surface area constant

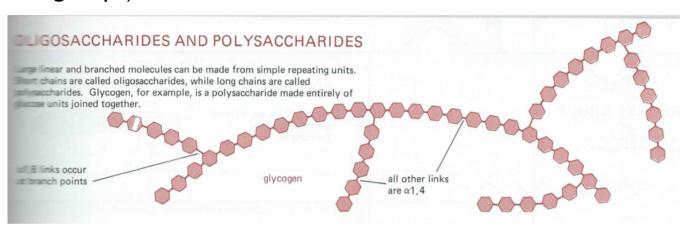

Fluidity of membrane components allows cell to create/remove lipids that associate by diffusion; transient domains can form to aid signalling, tension can be relieved by lipid flow

Sugars



Monosaccharides have formula C_n-H_{2n}-O_n

Glucose is a hexose - C_6 - H_{12} - O_6 Ribose is a pentose - C_5 - H_{10} - O_5


Complex oligosaccharides often bind to proteins or lipids (glycoprotein, glycolipid) to encode information in the immune system, signalling, pathogen entry to cells.

Sugars can be structurally complex

Sugars can be linear or ring-like, and can link to form long linear chains (e.g., glycogen), or branched networks (via OH groups).

(residues). Because each monosaccharide has several free hydroxyl groups that the form a link to another monosaccharide (or to some other compound), the number of possible polysaccharide structures is extremely large. Even a simple disaccharide consisting of two glucose residues can exist in 11 different varieties (Figure 2–4), while three different hexoses ($C_6H_{12}O_6$) can join together to make neveral thousand different trisaccharides. For this reason it is very difficult to determine the structure of any particular polysaccharide; with present methods it takes longer to determine the arrangement of half a dozen linked sugars (for example, those in a glycoprotein) than to determine the nucleotide sequence of a DNA molecule containing many thousands of nucleotides.

Alberts and Bray

The Chemical Components of a Cell

Macromolecules form complex aggregates

DNA/RNA - helical chains, DNA (2 nm) has hierarchical folding of histones (11 nm), packed nucleosomes (30 nm), chromosome (300 nm); RNA makes supramolecular machines with proteins

Proteins - rigid rods, floppy polymers, globular structures, non-covalently bonded aggregates, RNA/protein complexes

Lipids - micelles, membranes, vesicles, lipid-protein aggregates (e.g., LDL, HDL)

Sugars - flexible chains, 2 dim. networks, bonded to proteins/lipids to form glycoproteins/glycolipids

Biopolymers are interesting because:

- monomers carry information
- spontaneously fold into a 3d shape
- non-covalently self-assemble into 1d, 2d, and 3d aggregates
- respond to their environment by changing shape

Are all proteins folded?

Do all proteins fold into lowest-energy states? ~20 years ago answer would have been yes.

Common picture of proteins was precisely-folded molecular *machines* that made lock-and-key binding with ligands or other proteins. Specific sequences of amino acids determined who bonded to whom, and that was it.

Structure-Function relationship dominates this picture.

Very mechanical - very Newtonian - not thermodynamically accurate

There are other types of protein - *intrinsically-disordered proteins (IDP)*- that have no stable structure because of their amino acid sequence, but do exhibit biological activity, and play a fundamental role in organising cellular dynamics: we'll look at them next week and lectures 12/13.

Examples

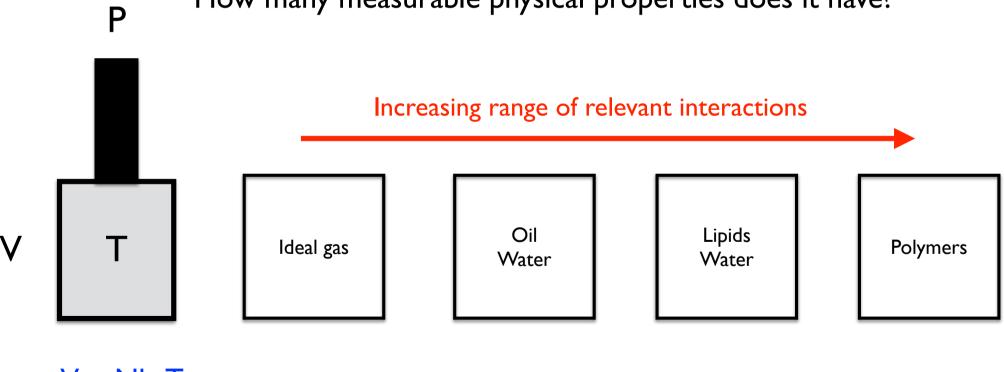
- · Casein in milk, disordered structure makes digestion easier
- Calcineurin activates immune T cells on Ca binding, needs accessible binding sites, and surrounds its binding partner
- PSD-95, scaffold protein in neuronal spines

Some references on intrinsically-disordered proteins (including a controversy ...)

- R. van der Lee et al., Chemical Reviews 114:6589-6631 (2014) (see here for nonconserved sequences with the same elastic properties)
- C. J. Oldfield and A. K. Dunker, Ann. Rev. Biochem. 83:553-584 (2014)
- H-X Zhou et al., Trends Biochem. Sci. 43:499-516 (2018)
- V. Marx, Nature Methods 17:567-570 (2020)
- J. Z. Zhang et al. Trends Pharma. Sci. 42:845-856 (2021)
- A. Musacchio, EMBO Journal 41:e109952 (2022) very interesting review that summarises a current debate about the relevance of in vitro studies to in vivo.

compartments. Here, I discuss the molecular underpinnings of the phase separation paradigm and demonstrate that validating its assumptions is much more challenging than hitherto appreciated. I also discuss that highly specific interactions, rather than unspecific ones, appear to be the main driver of biogenesis of subcellular compartments,

What is it made of?


How do its molecules interact?

How many degrees of freedom does it have?

How many d.o.f are uncorrelated?

What is the density of the d.o.f in space?

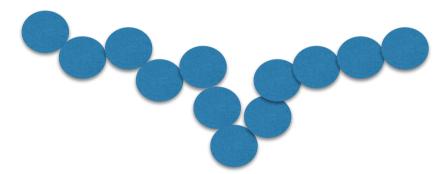
How many measurable physical properties does it have?

Blackboard derivations

During the course, I derive some results on the blackboard.

These are typically fundamental results that are useful in building models in cell biology

The results may appear in the tests


Q. Why don't I just put the equations on the slides?

Simple model of flexible polymers

Recall from last week that the total energy of a cellular system is shared among all its atoms and molecules (Equipartition theorem); here we seen a consequence of that:

- Continual thermal motion of all monomers in a polymer $(k_BT > 0)$
- Impossibility of completely isolating one part from another (unlike a car)

Consider a polymer as a chain of (identical) monomers bonded together in a linear chain

Monomers move around freely (subject to remaining connected) with no energy cost, so there are an enormous number of configurations available to the molecule

Huge conformation space means entropy dominates polymers' behaviour, and the identity of the monomers is relatively unimportant beyond a few nm (i.e., monomer diameters); explains why stretches of aa sequence in IDPs are not conserved: they do not control their function

Freely-jointed chain polymer

Polymer is a chain of N+1 identical monomers connected in a linear chain by bonds of fixed length **a** that are free to point in any direction independently of all others (aka *ideal* chain, *phantom* chain):

The conformation of the chain is given by N+I position vectors: $\{\mathbf{R}\} = (\mathbf{R}_0, \mathbf{R}_1, \mathbf{R}_2, \mathbf{R}_3, ... \mathbf{R}_N)$ or, alternatively, by the N bond vectors $\mathbf{r}_i = \mathbf{R}_i - \mathbf{R}_{i-1}$:

$$\{r_i\} = (r_1, r_2, r_3, ...r_N)$$

The size of the polymer can be represented by the end-to-end length:

$$\mathbf{R}_{ee} = \mathbf{R}_{N} - \mathbf{R}_{0} = \sum_{i} \mathbf{r}_{i}$$
 where the sum is over $i = 1 \dots N$

By assumption, $\langle \mathbf{r}_i \rangle = 0$, but $\langle \mathbf{R}_{ee} \rangle$ is not zero. (Blackboard calculation)

$$< R_{ee}^2 > = N.a^2 + < \sum r_i \cdot r_j >$$
 where the sum is over $i \neq j = 1 \dots N$.

which for the freely-jointed chain reduces to:

$$< R_{ee}^2 > = N_{ee}^2$$

as $< r_i \cdot r_j > = 0$ because there are **no correlations** between monomers (inc. no steric repulsion)

Quantifying the size of a polymer

$$< R_{ee}^2 > = N.a^2 + < \sum r_i . r_i >$$

The behaviour of long real polymers often does NOT depend on the chemical details of the monomers, but only on their length (and self-avoidance); the second term represents correlations between monomer positions due to interactions, and is often zero or small.

We can extend the model by assuming a form for $\langle \sum r_i . r_j \rangle$, e.g., bond angles are fixed, bond angles have a distribution, etc. NB Sum is over all pairs not just adjacent monomers.

The Characteristic Ratio of a polymer is defined as:

$$C_N = < R_{ee}^2 > / N_{ee}^2$$

Centre of mass of a polymer (with N monomers):

$$\mathbf{R_{cm}} = 1/N \sum \mathbf{R_i}$$

Radius of gyration of polymer:

$$\langle \mathbf{R}_{g}^{2} \rangle = 1/N \sum_{i \neq j} (\mathbf{R}_{i} - \mathbf{R}_{cm})^{2} = 1/2N^{2} \sum_{i \neq j} \mathbf{R}_{ij}^{2}$$
 $\mathbf{R}_{ij} = \mathbf{R}_{i} - \mathbf{R}_{i}$

The ideal chain has: $\langle R_{ee}^2 \rangle = N.a^2$, so $C_N = I$, and $\langle R_g^2 \rangle \sim I/6$. N.a² as N goes to infinity.

Self-avoiding polymers

We know for a freely-jointed chain polymer that:

$$< R_{ee}^2 > = N.a^2$$

But real polymers cannot pass through each other, so this is only an approximation.

If we impose the condition that monomers cannot intersect each other in space, we can no longer calculate the static properties of the polymer by summing over all conformations as the self-avoidance introduces non-local correlations into monomer positions.

But we can generate self-avoiding walks (SAW) on a computer and count all configurations of N monomers. We find that self-avoiding polymers satisfy the relation: (Note: dimensions and scaling)

$$< R_{ee}^2 > = N^{2v}.a^2$$

The exponent v is called the *Flory Exponent*, and is 1/2 for freely-jointed chain polymers, and has the following value in d dimensions for SAWs:

$$v = 3 / (d + 2)$$

Soft Condensed Matter Physics in Molecular and Cell Biology, WCK Poon and D Andelman, Taylor and Francis, USA, 2006.

Think-Pair-Share - 5 minutes

One person argue for, one against, and then discuss which you most agree with.

QI Modelling a real polymer like DNA as a "phantom chain" is useless because real polymers can never intersect themselves, which is the main property of the phantom chain, so you never get good agreement between model and experiment.

Q2 If you have only the two lengths associated with a polymer — its contour length L, and mean square end-to-end length $< R_{ee}^2 >$. How many different ways can you define a new length that is smaller than L?

What are the formulas for these new lengths?

Relating a real polymer to a phantom chain

How do we relate the scaling law $< R_{ee}^2 > = N.a^2$ to a real polymer?

Is **N** the same as the number of monomers? Is the monomer size equal to **a**? (No!)

Define a new length (the Kuhn length) I_k as the ratio of the real polymer's $< R_{ee}^2 >$ to its contour length L, and N_k as the ratio of the contour length to this new length:

$$I_k = \langle R_{ee}^2 \rangle / L$$

$$N_k = L / I_k$$

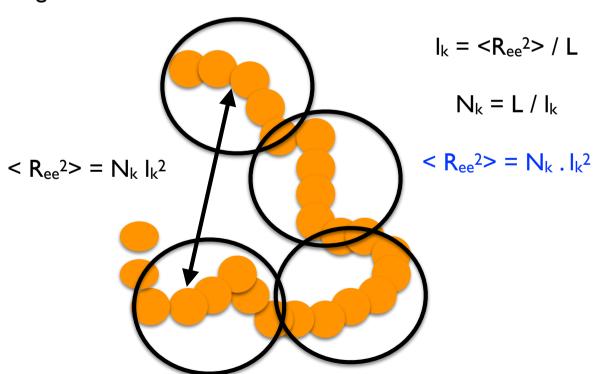
Therefore

$$< R_{ee}^2 > = N_k . I_k^2$$

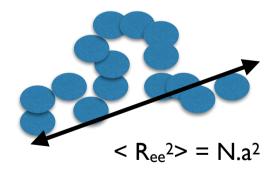
So, a real polymer is equivalent to a RW with step size l_k and number of steps equal to the number of Kuhn lengths in its contour length.

Because real monomers are highly correlated in space (backbones have some stiffness) and succeeding steps in a RW must be uncorrelated, the Kuhn length is roughly the distance required for a segment of the polymer to be uncorrelated in direction with the previous segment.

Visualising the Kuhn length

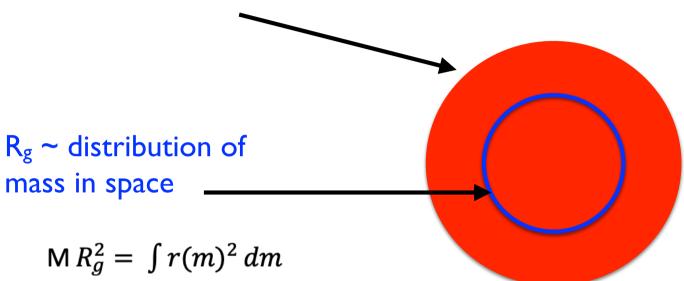


What is the relation between a real polymer and the equivalent phantom one?


A real polymer has correlations between adjacent monomers- some stiffness along the chain

A phantom polymer has no correlations (aka freely-jointed chain)

But if the real polymer is sufficiently long, we can represent it — to some degree of accuracy — as a phantom chain with a smaller number of monomers each of which is larger: this is the Kuhn length.


Random walk

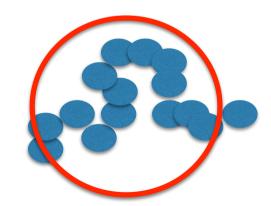
How big is a hard sphere?

e.g.,

Spherical shell: $R_g^2 = R^2$

Solid sphere: $R_g^2 = 3/5 R^2$

which is smaller than for the shell because the interior mass pulls Rg to smaller values


How big is a polymer?

For a polymer we have the following "sizes":

$$< R_{ee}^2 > = N.a^2 + < \sum r_i . r_j >$$
 end to end length

$$\langle R_g^2 \rangle = I/N \sum (R_i - R_{cm})^2 = I/2N^2 \sum R_{ij}^2$$
 radius of gyration

hydrodynamic radius

all are useful in some circumstances, but can be misleading

Example: PEG

We have

$$< R_{ee}^2 > = N_k . I_k^2$$

and for polyethylene glycol (PEG) with a M.Wt of 20,000 Da, we have:

M.Wt ~ 20,000 Da Monomer size (-CH₂CH₂O-) ~ 0.44 nm and mass 44 Da Kuhn length = 1.8 nm

So, PEG has 20,000/44 = 455 real monomers, and contour length L = 455*0.44 = 200 nm.

There are $N_k = L / I_k = 200/1.8 = 111$ Kuhn lengths in the polymer.

So, we predict the polymer's mean size to be:

$$\sqrt{\langle R_{ee}^2 \rangle} = \sqrt{|11|^* |1.8 \text{ nm}} \sim 19 \text{ nm}$$

And this is the size we would expect to measure in a light scattering experiment, for example.

Example: Bacterial DNA

We have

$$< R_{ee}^2 > = N_k . I_k^2$$

For the E. Coli chromosome:

Size = 4.64 Mbp Monomer size (I base pair) ~ 0.34 nm Kuhn length = 100 nm

So, the DNA backbone length is $L = 4.64.10^6 * 0.34 \text{ nm} = 1.6.10^6 \text{ nm} = 1.6 \text{ mm}!$

There are $N_k = L / I_k = 1.6.10^6/100 = 16,000$ Kuhn lengths in the chromosome. So, we predict

 $\sqrt{\langle R_{ee}^2 \rangle} = \sqrt{16,000 * 100 \text{ nm}} \sim 12,600 \text{ nm} = 12.6 \text{ microns} > \text{E. Coli itself (\sim 2 microns)}$

The bacterium must use active packing to store its DNA as a simple collapse of the RW is too large (interesting project possibility...)

Summary

- Small molecules in a cell have only short-range forces (electrostatic forces are screened); but polymers and proteins can have long-range interactions because of their length and thermal fluctuations
- Polymers make thousands of interactions that change all the time as the polymer's shape fluctuates (⇒ each interaction is less important than the total number)
- Phantom chain model represents long, flexible polymers well
- Lipids are special because they are frustrated, and this leads to new phases and behaviour. They are intermediate between small molecules and large polymers: they are small, but have a lot of entropy in their tails.
- Everything in a cell is moving, so the life of a cell (at least its macromolecules) depends on entropy as much as energetic interactions
- · Cells use many small interactions to drive many processes not few large ones

Break - 15 mins.

Exercise

- First test in 2 weeks (2nd October), I'll put a practise test on moodle next week. Topics will be taken from first 3 lectures.
- 2) Journal club in 3 weeks (9th October), pick a paper from the moodle set. Work in a group, each person speaks, 10 15 minutes with slides.
- 3) I have to miss first hour on 9th October, so Benedikt will give the lecture that day, and I should be back in time for the exercise period and Journal Club Or shall we move it to Lecture 6 (16th October)?
- 4) DPD simulation of equation of state of water.

While that's happening ...

- 5) Introduce homework exercises.
- 6) Download visualisation software Paraview
- 7) Download the polymer in water input file and visualize it
- 8) Plot the equation of state of DPD water

Equation of state of a fluid

The ideal gas EOS is: $pV = N k_BT$

For a real gas, it can be written as a Virial expansion ($\rho = N/V = density$)

$$p = \rho k_B T (1 + B_2(T) \rho + B_3(T) \rho^2 + ...)$$

where B₂, B₃ are independent of density. What is the EOS for "DPD water"?

$$p = p(a_{ij}, \rho, T)$$

p = Pressure

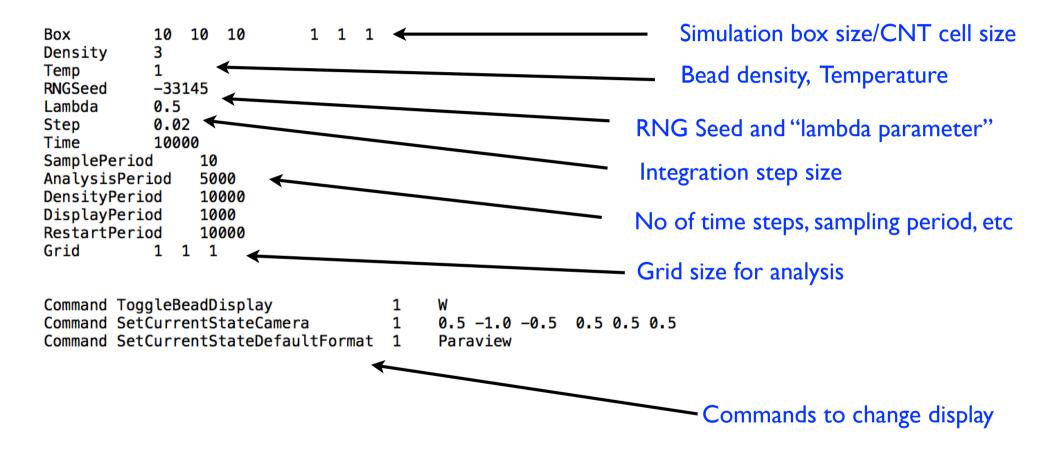
 a_{ij} = Conservative interaction parameter

 ρ = Bead density

T = Temperature

Equation of State Exercise

Goal: to set up and run a DPD simulation of pure water, check that it's equilibrated, and measure the equation of state.


- Description of dmpci.nnn input file and output files
- Simulate pure water and measure T, P against time from dmpchs
- Measure P as a function of bead density and plot the equation of state of dpd "water"
- When is a simulation equilibrated?

dmpci.nnn input file

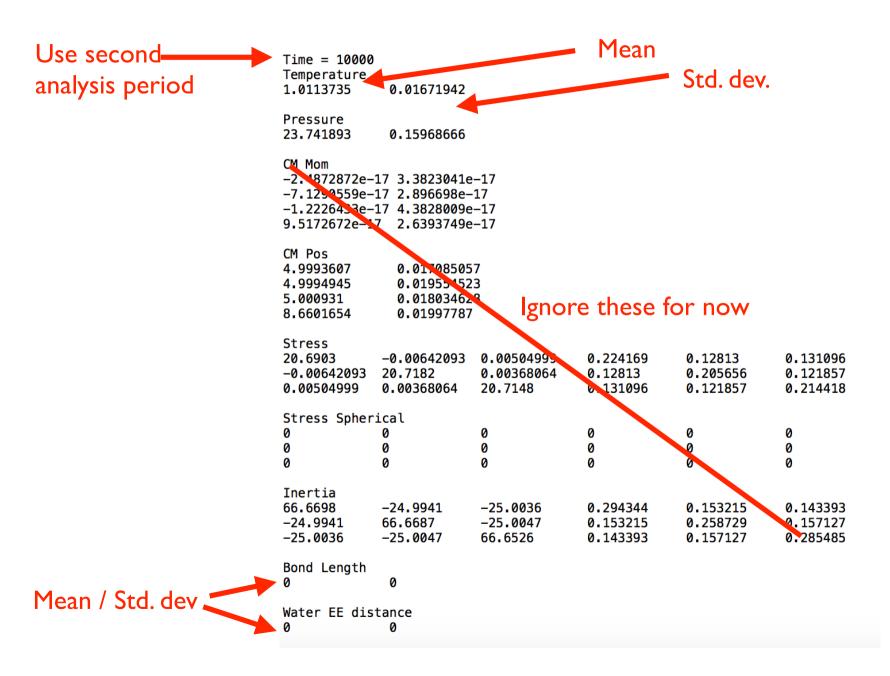

```
The runld "nnn" can only contain letters, numbers, - and
dpd
Title
       " Water "
Date
       19/09/18
Comment " Pure water simulation. Measuring the pressure as a function of the bead
         density parameter (Density 3) allows the equation of state to be determined. Title, Date and description of run - there
         Ignore the first analysis period (1 - 5000 timesteps) to allow the system
         to equilibrate and then take the value from the second period (5001 - 10000) MUST be space between text and
        Note. If you edit the title above or this comment there must be at least
        bne space between the quotes and the text. Blank lines are allowed.
                                                                               Initial state type
State
       random
Bead
     0.5
     25
                                                                            Bead type definitions
     4.5
                                                                            (Name, radius, cons. int., diss. int.)
Polymer Water
               1.0
                      (W) "
                                                                            Polymer (or molecule) type definitions
              10 10
                          1 1 1
Box
                                                                            (Name, number fraction, shape) - note
Density
Temp
                                                                            spaces between shape and ""
          -33145
RNGSeed
Lambda
          0.5
Step
          0.02
Time
          10000
SamplePeriod
               10
AnalysisPeriod
               5000
DensityPeriod
               10000
DisplayPeriod
               1000
RestartPeriod
               10000
Grid
          1 1 1
Command ToggleBeadDisplay
Command SetCurrentStateCamera
                                      0.5 -1.0 -0.5 0.5 0.5 0.5
Command SetCurrentStateDefaultFormat 1
                                      Paraview
```


Commands must be time-ordered

Each pair/group set the density to one value:

Day 10 10 1 1 1				
Box 10 10 10 1 1 1 1 Density 3 Temp 1			Group	Density
RNGSeed -33145 Lambda 0.5 Step 0.02 Time 10000 SamplePeriod 10			J.	3
AnalysisPeriod 5000 DensityPeriod 10000 DisplayPeriod 1000 RestartPeriod 10000			2. 3.	4 5
Grid 1 1 1 Command ToggleBeadDisplay	1	W	4. 5.	6 8
Command SetCurrentStateCamera Command SetCurrentStateDefaultFormat	1	0.5 -1.0 -0.5 0.5 0.5 0.5 Paraview	6.	10
			7.	12
			8.	14
			9.	16
			10.	20

Output files


The code produces a set of output files: they all start with "dmpc" and have a suffix identifying the data they contain and the same extension as the input file.

dmpcas.999 ←	Time-averaged analysis data
dmpchs.999 ←	Time series data of T, P diffusion, end-to-end lengths
dmpcis.999 ←	Copy of input data for verification
dmpcls.999 ←	Logfile of commands, error messages, etc
dmpcrs.999.con.1000.dat ←	Restart state file
dmpccs.999.con.100.pov	Povray snapshot files used for movies, images
dmpccs.999.con.200.pov	(can also output vtk files for Paraview)
•••	

Files produced repeatedly (display and restart states) have time encoded in their names.

T, P are in dmpcas.nnn file

When is a simulation equilibrated?

History State File - dmpchs.nnn

The History file contains information on the time evolution of observables; we use this to determine if the simulation is in equilibrium, is unstable, or if numerical errors are large.

To Do:

- I. Run a simulation of pure water in a 10³ box for 10,000 steps, sample every 10 steps (or use one from last week in ~/BIOENG455 Exercises/Exercise I)
- 2. Plot time series of temperature and pressure from the dmpchs file
- 3. Why are there large fluctuations initially?
- 4. Increase the integration step size to dt = 0.1 (or 0.2) and repeat: what happens?
- 5. Increase the temperature (set dt = 0.01 here) and repeat: what happens?

Visualising simulations with Paraview

Simulations are boring without pictures and movies:

Go to: https://www.paraview.org

and download the Windows/Mac/Linux executable as needed

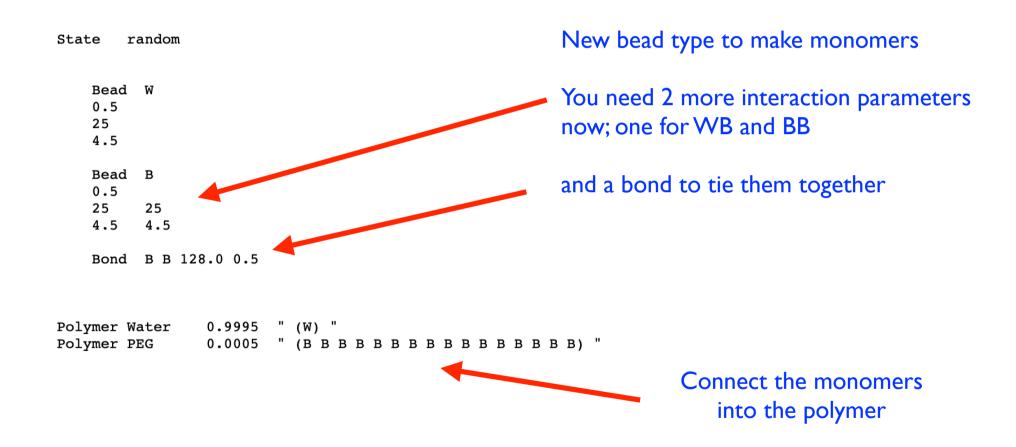
https://www.paraview.org/download/

Visualising a simulation

The **dmpccs.nnn.con.ttt.vtk** files contain snapshots of the simulation state (x, y, z coordinates and an integer identifying the type of all beads). These can be exported in Paraview (*.vtk) or povray (*.pov) format.

NB. Add the command "ToggleBeadDisplay I W" to the dmpci file to make the water invisible otherwise you won't see anything.

Two options for making images and movies:


- Paraview allows import of a sequence of *.vtk files to make movies.
- Or convert the *.pov files into *.gro and *.xtc files, and use VMD to view them (ask me for the script).

The dmpccs files can also be used for off-line analysis that requires particle coordinates as they are written in plan ascii text.

Visualising a polymer in water

Download the input file dmpci.p001 from moodle

Exercise - Time Series Data

Log State File - dmpcls.nnn

- Sequence of time-ordered information, warning, error messages.
- Shows results of commands executed during a run

History State File - dmpchs.nnn

- Time series data of observables saved at a frequency of: SamplePeriod
- Time, Temperature, Pressure, (ignore 4-6), Bead diffusion, Polymer end-end length
- I diffusion column for each bead type defined in input file
- I end-end length column for each polymer defined in input file (head and tail beads are defined as first and last in the polymer's shape string)

1000	1.24793	23.9731	0	0	0	0.0394071	0.0461911	0.0210613	0	7.13659
2000	1.01469	23.1952	0	0	0	0.170226	0.084775	0.0428191	0	5.83192
3000	1.01307	23.1768	0	0	0	0.212399	0.0842294	0.0470196	0	5.73367
4000	1.01176	23.1712	0	0	0	0.233601	0.0791722	0.0466596	0	5.66858
5000	1.01094	23.1694	0	0	0	0.246302	0.0741255	0.0450801	0	5.71554
			-	-	_				-	