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The expulsion of material from a cell by fusion of vesicles at the plasma
membrane, and the entry of a virus by membrane invagination are complex
membrane-associated processes whose control is crucial to cell survival. Our
ability to visualize the dynamics of such processes experimentally is limited by
spatial resolution and the speed of molecular rearrangements. The increase in
computing power of the last few decades enables the construction of
computational tools for observing cellular processes in silico. As experiments
yield increasing amounts of data on the protein and lipid constituents of the cell,
computer simulations parametrized using this data are beginning to allow models
of cellular processes to be interrogated in ways unavailable in the laboratory.
Mesoscopic simulations retain only those molecular features that are believed to
be relevant to the processes of interest. This allows the dynamics of spatially
heterogeneous membranes and the crowded cytoplasmic environment to be
followed at a modest computational cost. The price for such power is that the
atomic detail of the constituents is much lower than in atomistic Molecular
Dynamics simulations. We argue that this price is worth paying because
mesoscopic simulations can generate new insight into the complex, dynamic life
of a cell. [DOI: 10.2976/1.2833599]
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Cells have to manage their functions across
a wide range of length and time scales, and
cope with thermal and chemical fluctuations in
a changing environment. Yet they also have to
tightly regulate the spatio-temporal occurrence
of processes such as cell division and endo-
and exocytosis. Our ability to observe and in-
terrogate a cell to understand how it carries out
its myriad functions is limited by experimental
resolution, and also by the limits of our intu-
ition, which is largely developed from events
in the everyday, macroscopic world. Comple-
mentary to experiments, computer simulations
provide an integrative language for embodying
our understanding of cellular processes that
can be probed in ways that are experimentally
inaccessible. Although limited by the accuracy
of the chosen simulation technique, and by
our ability to identify all the relevant details
for the system under examination, computer
simulations have progressed to the point
where they can be used to test hypotheses

about biophysical processes in a quantitative
manner.

The most accurate, and time consuming,
particle-based simulation method is all-atom
molecular dynamics (MD). The use of com-
plex, carefully tuned force fields allows MD to
capture the atomic interactions between mol-
ecules (Allen and Tildesley, 1987), and it is
widely used for simulating drug molecules
binding to receptors. But the computational re-
sources required for such accuracy are high,
and they are limited to processes that occur on
scales of tens of nanometers (Ohta-lino et al.,
2001; Knecht and Marrink, 2007) and perhaps
tens of nanoseconds. At the other extreme, on
length scales much larger than the molecular
and for times long enough that molecular spe-
cies can freely diffuse to all parts of a system,
sets of ordinary differential equations are used
(Kholodenko, 2006) to model biochemical re-
actions that obey the law of mass action. Partial
differential equations (PDEs) can be used to in-
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clude a degree of spatial dependence, allowing molecules to
diffuse around, but are unable to handle small numbers of
molecules and complex spatial structure. The cytoplasm is a
crowded space that strongly modifies protein behavior from
that exhibited in vitro (Takahashi et al., 2005; Ridgway et al.,
2006). Many of the cell’s functions take place in or near con-
voluted, membrane-bound compartments, and involve only a
few copies of some molecules whose diffusion times are not
negligible compared to their reaction rates. The influence on
protein signaling of spatial gradients caused by the slow dif-
fusion of molecules is recognized in recent calculations
(Kholodenko et al., 2000; Bhalla, 2004a, 2004b), but is dif-
ficult to capture in continuum methods. This has driven the
development of a novel class of simulation techniques: so-
called mesoscopic simulations.

As their name implies, mesoscopic simulations are de-
signed to model phenomena that occur between the molecu-
lar scale of lipids and the micron scale of the cell, and to
follow their evolution for milliseconds or longer. They
achieve this feat by reducing the degrees of freedom that
must be evolved in time, thereby coarse graining the molecu-
lar entities in the model, and increasing the time over which
the simulation can maintain an accurate portrayal of the sys-
tem’s dynamics. There is no unique way of coarse graining a
molecular model, and various techniques have been devel-
oped. These are discussed in detail in several recent reviews
of mesoscopic simulations applied to soft matter, and, in
particular, amphiphilic membranes (Müller et al., 2006;
Venturoli et al., 2006) and vesicle fusion (Shillcock and
Lipowsky, 2006). All the methods attempt to keep only those
properties of molecules that influence their collective be-
havior on long length and time scales, for example, the
amphiphilic nature of lipids. The methods differ in their rep-
resentation of these key properties and the degree to which
the coarse graining of degrees of freedom is carried.

Coarse-grained MD is most closely derived from atomis-
tic MD, and has been successfully used to study biological
problems such as the fusion of small vesicles (Stevens et al.,
2003; Marrink and Mark, 2003; Kasson et al., 2006) and
the opposite process, their fission (Markvoort et al., 2007).
It is typically an explicit-solvent method (but not always, as
Reynwar et al. (2007) illustrates) because the water mol-
ecules that form the bulk of any biological system are
retained, but several molecules or molecular groups are
combined into single particles, so that a lipid molecule con-
taining more than 100 atoms is often represented by a
computational lipid containing only 11 particles that, at a
minimum, consist of only two types: hydrophilic head par-
ticles, and hydrophobic tail particles. The particles possess a
hard-core repulsive force to prevent their overlap, and this
requires a small time step to be used for integrating the equa-
tions of motion. It is consequently computationally demand-
ing, and is currently infeasible for system sizes beyond a few
tens of nanometers and durations longer than a few micro-

seconds. Dissipative particle dynamics (DPD) is another ex-
plicit solvent method (Groot and Warren, 1997), but it goes
further in coarse graining the molecular degrees of freedom.
It integrates out the small length-scale ��1 nm� bond fluc-
tuations and atomic coordinates within molecules, so that a
DPD particle represents a small sphere of material. A water
particle may represent three water molecules, and the linear
16-methyl hydrocarbon chains of a dimyristoyl phosphati-
dylcholine lipid may be represented by only three or four
DPD tail particles each. The forces between DPD particles
do not possess the hard-core repulsion used in coarse-
grained MD, and so a larger time step can be used in the
equations of motion that increases the temporal range of the
method. Brownian dynamics (BD) can be used to simulate
larger length and time scales than explicit-solvent methods
because it replaces the solvent particles by implicit forces
that mimic the self-assembling property of amphiphilic mol-
ecules in water (Noguchi and Takasu, 2001). Eliminating
the solvent degrees of freedom means that BD can simulate
processes up to seconds and, depending on the number of
molecular species being modeled, micron-sized regions of
space. The lack of solvent, however, requires complex forces
to be used to account for the hydrophobic effect and the
propagation of hydrodynamic forces that are mediated by the
solvent. Other solvent-free methods also exist, and have re-
cently been used to study the vesiculation of a membrane in-
duced by embedded curvature-inducing inclusions (Reynwar
et al., 2007).

Probably the most studied biological application of these
techniques is the lipid bilayer membrane. An encouraging re-
sult found by Venturoli et al. (2006) on comparing different
simulation types is that the properties of the model lipid
membranes are quite consistent regardless of the type of me-
soscopic simulation method used. This suggests that the
models are able to capture the collective properties of the
membrane systems relevant to the length and time scales of
interest in biology.

The most common cartoon of lipid membranes is drawn
from the “fluid mosaic model” of Singer and Nicolson
(1972), and appears to show a laterally uniform “sea” of
lipids in which float widely separated proteins. Much ex-
perimental work since then has revealed that this is an
over simplification, and that the plasma membrane is
more heterogeneous and crowded than the cartoon suggests
(Engelman, 2005). In parallel to this, mesoscopic simula-
tions have progressed from measuring the equilibrium prop-
erties of model lipid membranes, containing only one or two
species of amphiphile, and are now being used to follow dy-
namic processes such as vesicle fusion. Significantly, the
molecular rearrangements that occur in the simulations when
two vesicles, or a vesicle and a planar membrane, fuse appear
to be largely independent of the specific simulation type.
Similar behavior is seen in coarse-grained molecular dynam-
ics simulations (Marrink and Mark, 2003; Stevens et al.,
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2003), Monte Carlo simulations (Müller et al., 2003),
brownian dynamics (Noguchi and Takasu, 2001), and dissi-
pative particle dynamics (Shillcock and Lipowsky, 2005;
Grafmüller et al., 2007). Equally significantly, lipid rear-
rangements are observed during the formation of a fusion
pore in particle-based simulations that cannot be represented
in continuum theoretical models that treat membranes as thin
elastic sheets (Efrat et al., 2007; Chernomordik and Kozlov,
2003). Two examples are the splayed tails of lipid molecules
in which one hydrocarbon chain is embedded in each of the
apposed fusing membranes (Ohta-lino et al., 2001), and the
observation of a wide distribution of times required for lipid
flip-flop from one membrane to the other across the interven-
ing water gap (Grafmüller et al., 2007). Such simulations can
test our understanding of the mathematical models con-
structed to explain biological phenomena. These models are
often created using our intuition about the forces or struc-
tures that most influence a given process. Because our intu-
ition is largely derived from the macroscopic world, it is not
necessarily directly applicable to the world of the cell; a
world that possesses properties and forces that are quite dif-
ferent from anything encountered in our everyday life (Jones,
2004). Two examples may help illustrate this.

Although the interior of a cell is very crowded, the lipids,
proteins and other molecules all perform an erratic dance
throughout the space available to them that is caused by the
continual buffeting of surrounding solvent molecules. This
is known as Brownian motion, and results from the thermal
energy that all molecules possess at physiological tempera-
tures. Many processes in the cell consume energy obtained
from the hydrolysis of Adenosine triphosphate (ATP) mol-
ecules. Specialized organelles called mitochondria are re-
sponsible for producing ATP, but unlike in our world, where
fuel has to be packaged and carried to where it is needed, the
ATP molecules are simply released into the cytoplasm.
Brownian motion then ensures that the molecules rapidly dif-
fuse throughout the cell.

Second, lipids, and other amphiphilic molecules sponta-
neously self-assemble into complex structures such as
two-dimensional membranes; and two proteins can orient
and reorient themselves, rapidly probing their mutual inter-
actions until they find their preferred state, and then bind into
a unique structure. This ability to explore rapidly many dis-
tinct configurations, and to locate the one that minimises
their free energy, also derives from Brownian motion, but
their self-assembly is a consequence of the molecular nature
of the molecules. Lipids are amphiphiles, possessing a
water-loving or hydrophilic headgroup chemically bound to
water-hating or hydrophobic tails. The oily nature of their
tails drives them to segregate themselves from the surround-
ing solvent, and adopt the typical structures observed: mi-
celles, bilayers and vesicles. Proteins possess surface patches
that make them “sticky,” and two proteins can bind weakly
or strongly depending on the number of patches that can si-

multaneously be touching and the degree to which the three-
dimensional shapes of their surfaces match.

This combination of continual random motion and self-
assembly allows the cell to carry out many functions in ways
that would not work at the macroscale. A cell contains many
distinct organelles that each have their own purpose. These
organelles must be constructed and maintained, and material
must be passed from one to another. But the cell does not
always control precisely how material is transported, but
leaves it to the vagaries of Brownian motion to deliver it
where it is needed. It may require many attempts before
two proteins bind as they move and reorient about each other.
This leads to a temporal uncertainty in the ordering of events
that is uncommon in the macroscopic world of cars and
planes. (Of course, cells also use directed motion; and
molecular motors ensure the efficient delivery of material
across micron-sized distances by traversing along actin fila-
ments or microtubules. But this is not the only form of trans-
port available to them.) The chemical reactions that occur
in cells sometimes involve many hundreds of molecules,
as when biochemical reactions consume ATP molecules
that are diffusing through the cytoplasm, but may also in-
clude only a few copies of a key molecule, such as a gene
transcription molecule. The inevitable fluctuations in the po-
sition and concentration of these molecules is another com-
plex feature of the cytoplasmic environment. How a cell
regulates its functions in the presence of the stochastic mo-
tion of small numbers of molecules is still a mystery. Meso-
scopic simulations are already able to shed light on aspects
of this puzzle.

Considerable success has been achieved in the modeling
of lipid membranes as discussed in the reviews of Müller
et al. (2006), Shillcock and Lipowsky (2006) and Venturoli
et al. (2006). The first steps toward including peptides into
the models have been taken (Srinivas et al., 2004; Venturoli
et al., 2006). A simple model of chemical reactions in DPD is
described in Bedau et al. (2006), where the ligation of mono-
mers to form polymers is demonstrated. It is possible to con-
struct a spatially heterogeneous model of regions of a cell via
the sculpting of membranes into crypts and invaginations,
and to study the interactions of coarse-grained representa-
tions of proteins or nanoparticles with membranes (Shillcock
and Lipowsky, 2007; Smith et al., 2007). Figure 1 shows four
snapshots taken from an explicit-solvent DPD simulation of
an elliptical nanoparticle translocating across a lipid mem-
brane. The process is driven by the adhesion energy of the
particle binding to the circular patch of lipid within the larger
membrane acting together with the line tension around the
patch. Such simulations may be useful in exploring the inter-
action of novel nanoparticles with cell membranes, a process
important in determining their toxicity. Rigid, spherical-cap
inclusions embedded in a fluid membrane simulated with
solvent-free, coarse-grained MD (Reynwar et al., 2007) are
able to induce membrane curvature resulting in membrane
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invagination as shown in Fig. 2, a process that is used by
some viruses to infect cells.

Physical effects, such as diffusion in confined spaces or
in two-dimensional membranes, membrane curvature, and
protein crowding are important in biological processes. The
self-assembly of syntaxin molecules in the plasma mem-
brane plays a key role in preparing for exocytosis (Sieber
et al., 2007; White, 2007), and may be a paradigm for other
trans-membrane proteins, such as receptors, that form clus-
ters. The self-assembly of syntaxin clusters and the exchange
of freely diffusing molecules between them have been simu-
lated using BD, and are in excellent agreement with fluores-
cence recovery after photobleaching (FRAP) experiments
(Sieber et al., 2007). The simulations also agree with experi-
mental observations that the over-expression of syntaxin
leads to more clusters rather than increasing the cluster size,
a result that depends on the clustered syntaxin molecules
adopting a branch-like structure instead of a linear cylindri-
cal shape. The vesicle-localized SNARE protein synaptotag-
min inserts two domains into the target membrane on receipt
of a calcium signal, inducing a high positive curvature that
bends the membrane toward the vesicle and promotes fusion
(Martens et al., 2007). Mesoscopic simulations of vesicle fu-
sion had previously shown that bending two membranes to-
wards each other, and locally raising the tension within the
bent region, yielded fusion in a reproducible manner
(Shillcock and Lipowsky, 2006). These examples show that
biological processes on length scales around 100 nm can be
quantitatively explored using simulations. But because dif-
ferent techniques are best suited to different length and time

scales, we anticipate that a computational solution that can
be scaled up to cellular size requires a combination of tech-
niques to enable it to capture the relevant processes at all in-
termediate levels. The enormity of this task is made clear by
considering a few relevant numbers.

A typical cell has a diameter of the order of 10 �m, cel-
lular processes can take seconds or minutes to occur. Taking
1 nm as a typical molecular length scale, and 1 ns as a typi-
cal molecular time scale, the cell contains approximately
1012 volumes of 1 nm3. A 1 s simulation of such a cell that
retained atomistic detail would generate 1021 molecular con-
figurations per second. Such enormous data sets are impos-
sible to manage, and even if they could be stored, their analy-
sis would defy comprehension. Mesoscopic simulations
reduce the size of these data sets by storing only data in the
length and time scales of the process of interest. Up to the
scale of 100 nm, explicit solvent methods, such as coarse-
grained MD or DPD, capture the solvent-mediated forces
relevant to membrane fluctuations and the topology-
changing processes of fusion and budding. At longer length
scales of 1 �m or so, Brownian Dynamics can be used to
model vesicle transport, and at the length scale of the cell,
continuous methods using PDEs can be parametrized using
data obtained from the lower scales. In this way, a combina-
tion of simulation types can propagate data obtained from
smaller scales to longer scales.

Limitations of particle-based simulations are apparent in
two areas. First, as the modeled systems increase to the
length scale of the cell, the memory and CPU time require-
ments of explicit-solvent methods grow enormously. The
DPD and BD simulations described in this article represent
systems of 50–100 nm in size, and can be run on a single

Figure 2. A cross section through a membrane invagination
driven by the presence of rigid inclusions. The membrane
contains approximately 45,000 lipids and 36 inclusions. The inclu-
sions are spherical caps that induce a local membrane curvature
resulting in their aggregation. �Adapted by permission from
Macmillan Publishers Limited: Nature 447�7143�:461–4 �2007�, with
the permission of M Deserno.�

Figure 1. Sequence of snapshots of a cross section through a
rigid nanoparticle „magenta… translocating across a planar lipid
bilayer membrane immersed in solvent „invisible for clarity….
The times of the snapshots are 130 ns, 650 ns, 1.3 �s and 2.8 �s
labeled top to bottom by row. The membrane contains 7973 lipids
and spans the 50�50 nm2 simulation box. It initially contains a cir-
cular patch of 480 molecules of one lipid type �purple headgroups
and cyan tails� surrounded by 7493 of the second lipid type �red
headgroups and green tails�. Both types have identical molecular
architecture, but their interactions are chosen so that they phase
separate in the membrane. The nanoparticle has approximate di-
mensions 8�6�6 nm3, and its interactions are chosen so that it
prefers to adhere to the patch lipid headgroups rather than the other
lipid type. The combination of the adhesion of the nanoparticle to the
patch, which induces it to curve, and the line tension of the patch
boundary drives the translocation process. The snapshots are taken
from a dissipative particle dynamics simulation of the author, and
are rendered using the PovRay software �www.povray.org�.
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processor of a Xeon-class personal computer, whereas
coarse-grained MD simulations frequently require a small
cluster. Future simulations of processes on length scales
larger than 100 nm will require more processing power and,
almost certainly, parallel implementations of the simulation
methods. Second, and more importantly, the insight needed
to identify and represent the relevant properties of the mol-
ecules involved in a computational model, and the quality of
the experimental data used to calibrate the model’s param-
eters, limit the phenomena that can be accurately simulated.
Even a simple lipid-water simulation involving two species
of lipid has more than ten interaction parameters whose
inter-relationships are important for describing the behavior
of the self-assembled membranes (Laradji and Kumar, 2005;
Illya et al., 2006). As the number of molecular species grows,
the number of such parameters increases as their square, to-
gether with more data needed to specify the concentration
and distribution of the species. This highlights the need for
an interdisciplinary approach to the computational modeling
of biological systems; bringing together the biologists with
their detailed knowledge of the system of interest and the
physicists and computer scientists who have the simulation
experience to convert the biological information into a com-
putational model.

Although still in their infancy, simulation tools that can
continuously pass time-dependent “measurements” of the
cell’s internal state at one length and time scale to a higher-
level model that extrapolates it to longer length and time
scales will yield insight into cellular processes on many
scales from the molecular to the cellular. As well as being
used to test hypotheses about cellular function, and to
complement theoretical models, such tools can also convey
the beauty of cellular behavior, thereby helping to inspire
students to explore the overlap of biology, physics and com-
puting. Similar to a well-planned experiment, they can probe
our understanding of the interactions between the experi-
mental consituents, lead to further questions about the details
of these interactions, and they may reveal unexpected results
that lead us onto new paths of research. Carefully designed,
multi-scale simulations will provide the cheapest means to
interrogate complex biological systems in ways that now
seem far fetched, but which will become commonplace in
years to come.
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