
User Guide to Osprey Dissipative Particle Dynamics 
Simulation Code

Author: Julian C Shillcock


Version History:  1.0   June 2019

Updated:            1.01  August 2020

Updated:            1.1   October 2020

Updated:            1.2   July 2021

Updated             1.3   December 2022

Updated             1.4   September 2023


Contents 

1) Introduction

2) Code and File conventions

3) Installing the code

4) Running the code at the command line

5) Input file

6) Initial state types

7) Output files

8) Issuing commands to a simulation

9) Command Targets

10)Analysing the results of a simulation

11)  Overview of dissipative particle dynamics simulation technique


1) Introduction 

This document describes the OSPREY-DPD Dissipative Particle Dynamics simulation code.  It 
should be read through in sequence to learn how to use the code.  A short introduction to the 
theory of DPD is given at the end, but a longer description, and detailed applications, can be found 
in these references:

R. D. Groot and P. B. Warren,  J Chem. Phys. 107:4423-4435 (1997)

P. Espagnol and P. B. Warren,  J. Chem. Phys. 146:150901 (2017)

J. C. Shillcock and R. Lipowsky,  J. Chem. Phys. 117:5048-5061 (2002)

J. C. Shillcock and R. Lipowsky,  Nature Materials 4:225 - 228 (2005)

J. C. Shillcock,  Langmuir 28:541-547 (2012)

1



J. C. Shillcock, M. Brochut, E. Chénais, J. H. Ipsen,  Soft Matter 16:6413 (2020)

2) Code and file conventions 

The executable code will be referred to as dpd although you may rename it.

The single input file is called the Control Data File or just the input file.  Its name must be of the 
form:

dmpci.nnn

where nnn is referred to as the runID and should be replaced by a user-defined alphanumeric 
string. Throughout this document, any field  of the form “nnn” must be replaced by a user-specified 
alphanumeric string that contains a combination of letters and numbers, the underscore _ and 
hyphen - characters. No other characters are allowed - especially not spaces. Sometimes this 
string must start with a letter and this will be made clear at that point.

All output files produced by the code will have the string nnn embedded in their names.  Files that 
are produced more than once during a simulation will also have the simulation time at which they 
were produced in their names.

Commands that should be entered into a terminal window are shown as follows (text after the // 
sequence is a comment in this document and should not be typed)

> ls                // lists the contents of the current directory on linux

> cd myDir    // change to the directory containing the dpd code

> ./dpd 123     // execute the dpd code using the input file “dmpci.123” 

Important points in this guide are printed in red.

3) Installing the code (skip this if you already have the 
executable) 

Download the source code from github: https://github.com/Osprey-DPD/osprey-dpd


Compile and link it for your platform according to the instructions in the README file, and 
place the executable in a directory that is in your path or in the directory where you will be 
executing it. 


See the README.md in the github repo for details.


2



4) Running the code at the command line 

The dpd executable is executed at the command line. How to do this differs for each platform.

Linux

Open a Terminal Window, navigate to the directory containing the executable, and enter the run 
command at the prompt as described below under 1) Single run”.

Mac OS X

Open a terminal window (double-click the Terminal application in “Macintosh HD/Applications/
Utilities), navigate to the directory containing the executable and enter commands described 
below under 1) Single run”.
.

Windows

Open a Command Window, navigate to the directory containing the executable and enter 
commands described below under 1) Single run”.   See this web page for discussion of command 
windows:

https://www.lifewire.com/how-to-open-command-prompt-2618089

1) Single run

On all platforms, the input file must have a name of the form “dmpci.nnn” where “nnn” is a user-
defined alphanumeric string - called the runId - used to name the output files. 

NB. Only letters, numerals (0-9) and “-“ and “_” characters are allowed in the 
runId. Definitely no spaces.

The code is executed by entering its name and providing the runId of an input that is in the 
current directory as an argument to the command.

Example

 if the input file”dmpci.123” is in the current directory, the simulation is started by executing the 
following command at the prompt (Note that the prompt is represented here by the > character).

> ./dpd 123

NB  ONLY the extension of the input file must be specified in the run 
command, i.e., the user-defined string after the “.” character. 

All output files are produced in the same directory as the input file and will have the user-specified 
extension embedded in their names to identify them.

3



To place the simulation in the background on linux/Mac, so you can continue to use the terminal 
window, place an ampersand character “&” after the command before pressing “Enter”:

> ./dpd 123 &

If the code is executed without arguments it will prompt for an input file as follows; enter the 
extension and hit return:

> ./dpd

DPD Experiment Code 1.5 
Enter a runId (nnn):  
> 123 

A rough estimate of how long a simulation will take is to multiply the total number of beads by the 
total simulation time (i.e., Density*Lx*Ly*Lz*Time) and divide by 5 1010.  The result is the number 
of DAYS on a single core to run the simulation. This timing is based on an AMD Ryzen 3970X 
processor.

Two other ways of executing the code follow.

2) Generating a default input file

If the runId "nnn" is passed to the code but NO corresponding input file is found in the current 
directory,  the code will create a default input file with the name dmpci."nnn". The user can then 
edit this file as desired. This is useful in case you have no input file at hand. By default, this file has a 
simulation that is only 20 time steps long so it should finish quickly.

3) Multiple runs in series

Multiple runs can be executed in series in one command by passing the list of runIds on the 
command line separated by spaces:

> ./dpd  100 101 102

This requires that input files dmpci.100, dmpci.101,  dmpci.102 be present in the current directory.

5) Input file 

The input file uses Keyword/Value pairs for the data items needed.

All keywords and values in the input file are case sensitive and must appear in the order 
shown.

No comments or extra text can appear anywhere in this file except in the section for Commands, 
where a special command is available to insert comments into the sequence of commands. See 
Section 8 for more details.

When a string in the input file is enclosed in inverted commas, e.g.,  “  Water/surfactant bilayer  “, 
there MUST be a space before and after each inverted comma character.  This includes the 

4



polymer shape strings as well. The parser won’t recognise the start or end of a string without 
these spaces.

Here is a complete input file for a lipid membrane self-assembly simulation followed by an 
explanation of the various parameters needed.  The contents of the input file are between the 
starred lines.  Note that the file MUST end in one or more newline characters.

Comments in red are NOT part of the file.

// ******************************************************************************

dpd		 // Selects the simulation type - don’t modify 

Title	 " Water/surfactant bilayer " 
Date    26/04/17		 	 	 // Date format must be as shown 
Comment	" H3(T4)2 lipids.  
        Unstretched bond length of 0.5, k3 = 15 
        A/N = 1.255,  1631  lipids 
        Box 32**3 - Repeat of 1002 for consistency check " 

State	 random	 	 	 // Name of the initial state type 

// List of bead types, each line holds the following data:  
// Name of bead must begin with a letter 
// Radius of all beads is 0.5 - don’t modify 
// Conservative force parameter 
// Dissipative force parameter 

Bead  H	 
      0.5 
      25 
      4.5 

Bead  T 
      0.5 
      50   25 
      4.5  4.5 

Bead  W 
      0.5 
      35	   75	   25 
      4.5   4.5	   4.5 

// List of bond types: Beads 1, 2 the Hookean spring constant  
// and the unstretched length of the spring 

Bond  H H  128	 0.5 
Bond  H T  128	 0.5		 	  
Bond  T T  128	 0.5 

// List of stiff bond types: Beads 1, 2, 3, the bending constant 
5



// and preferred angle 

BondPair	  H T T  20.0  0.0 
BondPair	  T T T  20.0  0.0 

// List of polymer types: Name, number fraction, and molecular  
// shape of the polymer 

Polymer	Water  0.9801083   " (W) " 
Polymer	Lipid  0.0198917   " (H H (* (T T T T)) H T T T T) " 

Box       32 32 32  1  1  1	 // Box size and CNT cell size 
Density		 3	 	 	 	 // Average bead density 
Temp        1	 	 	 	 // Temperature 
RNGSeed		 -712094		 	 // Seed for random number generator 
Lambda	 	 0.5		 	 	 // Constant, see Groot/Warren paper 
Step		     0.005	 	 	 // Integration step size 
Time		     1000		 	 	 // Total simulation time 
SamplePeriod     100		 	 // No of steps between samples 
AnalysisPeriod	  500		 	 // No of steps between averaging 
DensityPeriod    1000	 	 // No of steps between density fields 
DisplayPeriod    100		 	 // No of steps between snapshots 
RestartPeriod    1000	 	 // No of steps between restart states 
Grid		 10 10 256	 	 	 // Size of analysis grid 

Analysis		 	 	 	 	 // Turn analysis of bilayer on 
	 Type	    bilayer 
	 Times	 0 1000 
	 Polymer	Lipid 
	 Normal	 0 0 1 
	 Slice	 256 
	 Grid	    16 16 
	 Solvent	Water 
	 	 	 	 	 	 	  

// List of commands to execute during the run 

Command	ToggleBeadDisplay            1  W 
Command SetCurrentStateCamera        1  0.5 -0.5 -0.5  0.5 0.5 0.5 
Command SetCurrentStateDefaultFormat 1  Paraview 

Command SetTimeStepSize              100  0.01 

// ******************************************************************************

Simulation type and Header Information

The first string in the input file must be “dpd” in lower case ( no blank lines before it).

The Title and Comment strings are for convenience, you can enter anything between the 
inverted commas.  The Date is useful for searching input files for runs executed at a certain time.

6



Initial State specification

See Section 6 for a description of allowed initial states.

Bead type specification

The set of bead types that are present in the simulation is specified next.  

A bead type must specify its name, radius (fixed at 0.5), and the conservative and dissipative force 
parameters for ALL previously-defined bead types and itself.   Bead names must begin with a letter, 
contain only letters or numbers, and must be unique.  

NB While bead and polymer names are case sensitive, so that  “W” and “w” represent different 
bead types, it is NOT a good idea to name them like this.

Each new bead type added will have one more pair of interaction parameters than the previous 
one.  The last value on each line is the self-interaction.  So the set of values looks like a lower-
diagonal matrix.

The conservative force parameter can have any non-negative value. But specifying very 
large values (> 100) may lead to instabilities unless a very small integration step-size is used. Typical 
values are between 5 and 100.

The dissipative force parameter can be left at 4.5 for all bead types. See Groot and Warren 
(1997) if you want to know the consequences of changing this parameter.

NB Bead types specified do not have to be used in the simulation.  You can create extra bead types 
for later use. But if a bond or polymer specifies a particular bead type then it must be present.

Bond type specification

The set of bonds that tie beads together into polymers is specified next.

A bond type is defined by specifying the two bead types it connects.  Bonds are symmetric, so it is 
not necessary to specify two bonds to connect beads of different types.

All pairs of beads matching these types that occur in any polymer will be connected with a bond of 
the given type. The name of a bond, which is needed if you want to change the bond parameters 
with a command, is just the bead names concatenated, e.g., a bond connecting beads H to T will be 
called HT.

Bonds are Hookean springs with the force law

F(x) = -k2(x - x0)

where k2 is the spring constant (128 in the example above), and x0 is the unstretched length of the 
spring (0.5 in the example above above), and x is the separation of the bonded beads.

7



The spring constant can be any non-negative value, and is typically around 100 to ensure bonded 
beads do not separate too far. The unstretched length can be left at 0.5 unless very soft springs are 
desired in which case larger values can be used.

NB Bond types specified here do not have to be used in the simulation.  But if a stiff bond specifies 
a particular bond type then it must be present.

Stiff Bond type specification

Stiff bonds are defined as two adjacent bonds in a polymer that have an energy associated with 
bending the bonds away from their preferred angle. A stiff bond is defined by specifying the names 
of the three bead types that form it. The name of a stiff bond type is the names of these beads 
concatenated, e.g.,  a chain of T beads that occurs in the lipid tails above would have a stiff bond 
name TTT.

The energy associated with a stiff bond is:

V(θ) = k3 (1 - cos(θ - θ0) )

where k3 is the bending energy, θ0 is the preferred angle (zero means the bonds are parallel in the 
minimum energy state), and θ is the angle between the two bonds.

NB Stiff bond types that are specified do not have to be used in the simulation but their 
component bonds and beads must exist.

Polymer type specification

The polymer (or molecule) types that make up the system to be simulated are specified next.

Each polymer is defined on one line, and requires its name, its number fraction, and the shape or 
architecture of the polymer.  Polymer names must begin with a letter.  The number fraction of a 
polymer is the ratio of the number of polymers of that type to the total number of polymers of all 
types. The number fractions of all polymer types must add up to 1.

The shape string of a polymer is a linear representation of the connectivity of the beads in the 
polymer.  A polymer’s shape must begin and end with actual bead names, and these are taken as the 
Head and Tail of the polymer and are used to define various properties such as the end-to-end 
length.  All bead names and multiplier/branching/looping characters must must be separated from 
each other by spaces, and the whole shape string must be enclosed in inverted commas (with 
adjacent spaces). Bead names may be adjacent to brackets but it is a good idea to use spaces to 
make the string easily readable.

It is possible to redefine the Head and Tail beads for a polymer so that they are not the first and 
last beads. In this case, the beads specified must be unique in the polymer’s shape string. Here is an 
example:

Polymer  Lipid  0.01  “ ( H H1 ( * (T T T T) ) H ( * (T T T T1) ) H ) “ Head H1  Tail T1

This represents a lipid molecule with 4 head beads and two tails. The H1 bead is the Head of the 
molecule and the T1 bead is the Tail. The end-to-end length of the molecule will be defined by the 
distance between the H1 and T1 beads at any given time.

8



As well as linear molecules, one can define side-chains and loops.  These are specified using the 
special characters “*” and “/“ respectively as shown in the examples below.  A branch defines a sub-
sequence of the polymer that branches off the previous bead in the shape string. Once the branch 
has been created in the code, the succeeding sequence of beads will continue to grow from the 
bead just prior to the branch.  A loop allows a polymer to be connected to itself.  The first bead 
that occurs in with the “/“ character is the anchor and the second bead associated with the “/
“ character and the same number is connected to it.

Branches, loops and linear sequences of beads may be recursive, so a side-branch may contain a 
loop that itself contains branches that contain further branches, etc.

Here are examples of polymer shapes. Note that a polymer’s shape string cannot start or end with 
the numeric multiplier,  branch (*),  or loop (/) character so an extra bead is often used to  define 
the first and last beads in the polymer.

Shape String Structure Image Description

“ ( W ) “          W
Polymer containing a 
single bead W that 
represents, for 
example,  water.

“ ( O O O O O ) “ O-O-O-O-O
Linear molecule made 
up of 5 beads of type 
O.

“ ( H ( 20 H ) H ) “  

H-H-H-H-H-H-H-

-H-H-H-H-H-H-H-

-H-H-H-H-H-H-H-H

Linear polymer made 
up of 22 “H” beads, 
with a numeric 
multiplier to avoid 
having to write out H 
many times. 

Note that the first and 
last beads must be 
specified explicitly,  i.e., 
( ( 22 H ) ) is NOT 
allowed.

9



Simulation box and time specification

The size of the simulation box in the x, y, z dimensions is specified by the Box keyword.  The first 
three values are the number of CNT cells in each dimension and the second three values are the 
widths of these cells in units of the bead diameter. You don’t need to be concerned with the 
definition of the CNT cells, just leave the second three values at unity.

Typical box sizes are “10  10  10” for a small simulation or “32  32  32” for a medium sized one. 
Boxes of “40  40  40” or larger will take a long time to simulate.  Note that because it takes longer 
for beads to diffuse across a larger box, if you increase the box size for a simulation it is necessary 
to increase the simulation time too, otherwise the bigger system will most likely not be 
equilibrated.

“ ( H H H H ( * ( S S S 
) ) ( * ( S S S )) H H 
H ) “

      
Cross-shaped 
molecule with two 
side-chains  “SSS” 
connected to the 
fourth “H” bead.  The 
“*” character tells the 
parser that the next 
bracket is a side-chain. 

 

“ ( H ( 8 ( B B B (* ( S 
( 6 S ) S )) B B B )) T ) 
“ 

Too hard to draw!

Comb polymer with a 
backbone (48 B beads) 
and eight side-chains 
(8 S beads) regularly 
spaced along it. Note 
the H, T beads at the 
ends .

“ ( H ( / 1 C ) ( 20 B ) 
( / 1 C ) T ) “

Ring-shaped molecule 
in which the two 
beads called C are 
connected to each 
other.  The  first “/
“ character defines an 
anchor point and the 
second one connects 
to it. More rings can 
be defined by using ( / 
2 D ) pairs, where D is 
a different bead type, 
and so on. Note the H 
and T beads that are 
required at the start 
and end of the shape 
string.

10



The bead Density keyword specifies the average bead density in the simulation box.  The total 
number of beads created in the simulation box is nearly equal to the density times the volume of 
the box. It is approximate because if some of the polymers have many beads, the code may not be 
able to create the exact number required by the number fractions, and it will round down the 
number of polymers to ensure an integer number are made. This value should not normally be 
changed.

The Temp keyword should be left at unity.  The temperature may be changed, but this is advanced 
functionality that requires careful analysis to use.

RNGSeed is the seed for the random number generator. It must a negative integer, and should be 
different for each simulation. If this value is not changed, and the same input file is run several 
times, exactly the same results will be obtained on the same platform. Hence, to collect 
statistically significant results, this value must be changed between simulations.

Lambda is a parameter defined by Groot and Warren in their Velocity-Verlet integration scheme 
and described in their paper of 1997.  It should be left at 0.5.

Step is the integration step size for the simulation.  Smaller values are more accurate, but take 
more time. If too large a value is used, the simulation will be unstable. Typical values are in 
the range 0.001 - 0.04. See Groot and Warren for a discussion of the effects of step size on a 
simulation.

If the initial state contains bonds or stiff bonds with large force constants, it is a good idea to start 
with a small value of Step, e.g., 0.001, and use a command to change it to a larger value, e.g., 0.02 
after the system has evolved for a few thousand time steps. See the Commands section for details.

Time is the total number of time steps in the simulation.  It should be a round number to make 
the values of the sampling periods sensible. The actual simulation time used depends on the system 
being simulated, in particular how fast it approaches equilibrium and what statistical accuracy is 
desired.

There are constraints on the various sampling periods to ensure that the time-averaged analysis 
takes place regularly at the same frequency, and that all files are written at integer time steps.

SamplePeriod specifies the number of time steps between taking samples of observables that are to be 
time-averaged. It must be an integer divisor of the Time value and the AnalysisPeriod value.

AnalysisPeriod specifies the number of steps between writing out time-averaged observables. It must be 
an integer divisor of the Time value. For good statistical accuracy there should be at least 100 samples per 
analysis period.

DensityPeriod should be set equal to Time. This value can be ignored.

DisplayPeriod specifies the number of time steps between saving current state snapshots, and must be 
an integer divisor of Time. If it is set too small, a large number of files may be produced (Time/
DisplayPeriod to be precise).

RestartPeriod specifies the number of time steps between saving restart states, and must be an integer 
divisor of Time. As for DisplayPeriod, if it is set small, a large number (Time/RestartPeriod) of files 
will be produced. Unless you need extra restart states (e.g., if you think the simulation might exceed its 

11



allowed time before completing), you can safely set RestartPeriod equal to Time. This will produce a 
single restart state at the end of the simulation.

Grid is a parameter that controls the size of a 3D rectangular grid that is used in some analysis options. 
Unless needed as described in Section 10, it should be set to “1 1 1”.

Analysis 

See Section 10 Analysing the results of a simulation.

Commands

See Section 8 Issuing commands to a simulation.

6) Initial State types 

Random

State	 random 

The most common initial state is a random distribution of all polymers throughout the simulation 
box.  The code ensures that beads that are bonded together in a polymer are positioned close to 
their associated bonds’ unstretched length to prevent large forces occurring in the initial state.

Restart

State	 restart 
RunId   100 
StateId 10000 

A restart state is a special form of initial state that continues a simulation from a previously saved 
state.  It is the only initial state that requires more than one input file.  In addition to the new input 
file,  which we call “dmpci.101” here, the original input file (dmpci.100) and the specified restart 
state file (saved at time 10000) must be present in the current directory.  The original runId is 
specified as the value of the keyword “RunId” and the time at which the restart state was saved is 
the value of the keyword “StateId”.  This time is embedded in the name of the restart files.

For this example, the following files must be present in the run directory:

New Input file:         dmpci.101
Old Input file:          dmpci.100
Old restart file:  dmpcrs.100.con.10000.dat

Some of the parameters in the new input file (e.g., simulation time,  sample periods,  RNG seed,  
analysis options, and commands) can be changed,. But many of them cannot: the box size, density, 
number and types of beads, bonds, stiff bonds, and polymers cannot be changed.  This is a 

12



consequence of the simulation being carried out in the NVT ensemble: the numbers of particles, 
volume and temperature are constant.

NB. If the conservative/dissipative interactions between beads, or bond or stiff bond parameters 
are to be changed, this must be done by issuing commands in the restarted run to do so. The 
values present in the new input file are ignored.

Multi-component micelle

State	 micelle 
       	Polymers  Surfactant Alcohol 
        Centre    0.5 0.5 0.5 
        Radius    5.0 
        

This places all the polymers specified by the Polymers parameter in a spherical region of the 
simulation box with all the other polymers randomly distributed throughout the remainder of the 
simulation box.  The centre of the micelle is specified by Centre (as fractions of the simulation 
box size in the three dimensions).  The radius of the micelle is specified by Radius (in units of the 
bead diameter).  Note that the molecules are positioned on an hexagonal lattice created on the 
surface of the sphere defined by the centre and radius. This may lead to large gaps, or an 
incomplete micelle, if the number of molecules and the radius are not calculated appropriately. 

Also, note that this and all subsequent pre-assembled initial states simple place the polymers in the 
locations defined by the shape; they will only retain this morphology if their conservative 
interactions are such as to make it the equilibrium state, e.g., a planar membrane is only stable if 
the polymers are amphiphiles - that is, have a hydrophobic part and a hydrophilic part whose sizes 
are compatible with a planar bilayer.

Single-component bilayer membrane

State	 lamella 
       	Polymer		 	 Lipid 
        Normal	 	 	 0 0 1 
        Centre	 	 	 0.5 
        Thickness	 	 5.0 
        Linearise	 	 1 
       	UpperFraction	 0.5 
       	Polymerise	 	 0 

13



This places all the polymers specified by the Polymer parameter in a planar bilayer arrangement 
with all the other polymers randomly distributed throughout the remainder of the simulation box. 
The bilayer contains two monolayers, has its normal in the direction specified by Normal (it can 
only be in the x, y, or z directions), its centre at the point along the normal axis specified by 
Centre (as a fraction of the simulation box size in that dimension). The initial thickness of the 
membrane is specified by Thickness, (in units of the bead diameter) but as the simulation 
evolves the actual thickness will relax to its equilibrium value that may be different.  An estimate of 
this value can be made by multiplying the number of beads along the polymer by the unstretched 
bond length used and doubling this. 

The Linearise parameter is a boolean flag (0/1) showing if the beads in the polymers should be 
initially placed in a linear sequence or slightly randomly.  As seen in the above snapshot, the initial 
placement of the polymers is very regular as each molecule is placed at the vertices of a triangular 
lattice in the plane of the bilayer.  The polymers will fluctuate at the start of the simulation as the 
system evolves towards its equilibrium state.

UpperFraction specifies what fraction of the polymers used in the membrane should be placed 
in the upper monolayer. If this is not 0.5 the bilayer will be asymmetric, with more polymers in one 
monolayer than the other. The Polymerise keyword should be ignored and left at 0.

Multi-component bilayer membrane

State	 compositelamella 
       	Polymers		 Lipid CoLipid 
        Normal	 	 	 0 0 1 
        Centre	 	 	 0.5 
        Thickness	 	 5.0 
        Linearise	 	 1 
       	UpperFraction	 0.5  0.5 
	 	 Patches         1  1 
       	Polymerise	     0 

This is similar to the “lamella” initial state but any number of polymer species can be placed in the 
membrane.  The geometric parameters are the same as above, but there are two differences:

UpperFraction - this parameter must be specified for each polymer type in the membrane. 
It allows different polymers to be distributed between the two monolayers independently of each 
other.

Patches - this new keyword is a boolean flag (0/1) with a value for each monolayer. If set to 
0, all polymers in that monolayer will be randomly arranged throughout the monolayer, while if set 
to 1, all polymers of a given type will be positioned in the monolayers according to their order in 
the Polymers keyword.

14



Multi-component free bilayer membrane

State	 freelamella 
       	Polymers		 Lipid CoLipid 
        Normal	 	 	 0 0 1 
        Centre	 	 	 0.5  0.5  0.5 
        Thickness	 	 5.0 
        Length           20 
        Width            20 
        Linearise	 	 1 
       	UpperFraction	 0.5  0.5 
	 	 Patches         0  0 
       	Polymerise	     0 

This is similar to the “lamella” initial state,  multiple polymer types are allowed and each must have 
a value specified for the UpperFraction parameter.  But the molecules are not arranged to span the 
periodic boundaries of the simulation box. The Length and Width parameters should be chosen to 
be smaller than the box size in the plane define by the Normal vector. So, if the normal is 0 0 1, 
Length and Width should be smaller than the box side lengths in the X and Y directions. If they are 
not, the lamella will likely connect across the box boundaries and form a typical membrane. Note 
that the molecules will most likely swell as the initial state evolves (depending on the number 
fraction of the molecules composing the lamella), so Length and Width must be sufficiently smaller 
than the box side lengths to allow for this.

Note also that the Centre must be specified by three values as the lamella is not centred within 
the simulation box.

Multi-component vesicle

State	 vesicle 
        Polymers       Lipid 
	 	 Interior       Water1 
	 	 Centre         0.5 0.5 0.5 
	 	 OuterRadius    10 
	 	 Thickness      4.0 
	 	 OuterFraction  0.7353 
	 	 Patches        0  0 
	 	 Polymerise     0 

Here, the polymers specified by the Polymer parameter are arranged as a spherical vesicle.  In 
the image above, only half of the vesicle is shown. There may be more than one polymer type 
specified for the vesicle. Because the interior of a vesicle is topologically distinct from the exterior, 
the polymer types that are to be placed inside the vesicle must be specified separately as the 
values of the Interior keyword.  Again, there may be several polymer types specified here.  All 
other polymer types defined in the input file will be randomly distributed in the surrounding space. 
NB The same polymer type must NOT be specified in more than one region.

15



 The vesicle contains two monolayers, and its centre is at the point specified by Centre (as a 
fraction of the simulation box size).  The outer radius of the vesicle is specified by OuterRadius, 
and the membrane thickness in Thickness (both in units of the bead diameter).  As the 
simulation evolves the thickness will relax to its equilibrium value.  The OuterFraction 
parameter specified what fraction of each polymer type in the vesicle will be placed in the outer 
monolayer.  Because of the finite thickness of the bilayer, the number of molecules in the outer 
monolayer is larger than that in the inner monolayer, so this parameter is generally specified 
greater than 0.5. One can create an asymmetric vesicle by changing this parameter. For example, if 
a minor component is to be all placed in the outer monolayer, one would set the corresponding 
value to 1. There must be as many values assigned to this parameter as there are polymer types in 
the vesicle. The Patches keyword specifies if the polymers should be randomly distributed in the 
inner and outer monolayers of the vesicle (Patches 0 0), or occur in discrete patches in the order 
they polymers are specified (Patches 1 1). Note that the two values refer to the inner and outer 
monolayers respectively.  The Polymerise keyword should be ignored and left at 0.

There are many other initial state types.  Consult the code or ontact the author for more details.

7) Output files 

A typical simulation produces a number of different types of output file. Depending on how often 
the data are analysed, or snapshots of the simulation state or restart states are saved, there can be 
a large number of files produced. The file names all start with “dmpc” and have 2 or more 
characters appended to this to indicate the type of data they contain.

The following types of output file are always produced (assuming the input file was dmpci.nnn, and 
ttt is the integer simulation time at which the corresponding file was saved):

dmpcas.nnn - Analysis State contains a set of time-averaged observables

dmpccs.nnn.con.ttt,vtk - Current State snapshots of the simulation (only bead x, y, z and 
type)

dmpchs.nnn - History State contains time series of various observables

dmpcis.nnn - Initial State contains a copy of all the input parameters 

dmpcls.nnn - Log State contains information, warnings and error messages

dmpcrs.nnn.con.ttt.dat - Restart State contains all the data needed to restart a run

There are several types of Current State format, but the one used in the course is suitable for 
visualising using the free Paraview software. Go here to download it - https://www.paraview.org.

Other recognised formats are Povray (www.povray.org), and a special format called 
SolventFree that includes connectivity information of all polymers so that offline analysis can be 
performed (use the command SetCurrentStateDefaultFormat to select the format.)

Analysis State File 

16

https://www.paraview.org
http://www.povray.org


The analysis state file (dmpcas.nnn) contains time-averaged data of predefined observables, e.g., 
temperature, pressure, bond lengths for all defined bond types, and the end-to-end lengths of all 
defined polymers. Turning on specialised analysis can also add more observables to this file. Data 
that appear as two columns are mean/standard deviation pairs. The averages are taken over 
periods equal to AnalysisPeriod, and the number of data points will be AnalysisPeriod/
SamplePeriod. This is why SamplePeriod must be a divisor of AnalysisPeriod,and AnalysisPeriod 
must be a divisor of the total simulation time.


History State File 

This file contains time series for predefined observables, written out every SamplePeriod time 
steps. The columns contain the following data:


Note that the number of columns depends on how many bead types and polymer types have 
been defined in the simulation. Also note that if Water (or any other polymer) is defined as a single 
bead in the simulation, then it’s end-to-end length is automatically zero.


Finally, if new bead types are created as the result of commands like ChangeNamedBeadType, 
then new columnes will appear in the History state file containing their diffusion constant. This 
means that the number of columns before the execution time of the command will be smaller than 
the number afterwards, and all the values will be shifted across to the right.


8) Issuing commands to a simulation 

Commands are used to modify the execution of a simulation and turn on and off various analysis 
and output options.  

Commands must be placed at the end of the input file (after any analysis options) and they all have 
the common specification:

Command  <commandName>    <executionTime>   arg1 arg2 …

where <commandName> is the (case sensitive!) name of the command; <executionTime> is the 
time-step at which the command is to be executed;  and any remaining fields are arguments 
required by the command. 

Not all commands have arguments, while some commands will require more than one line to 
specify all their arguments. But every command must start on a new line.

NB  Any number of commands may share the same execution time, but commands must be 
ordered as a series of non-decreasing execution times. 

NBB Commands are executed at the start of the time-step specified as their execution time.  
Analysis options and saving snapshots, etc are performed at the end of their respective time-steps. 
So if a command is executed in the same time step as writing a snapshot it will take effect before 
the data is written.

Column 
1 2 3 4-6 7 to 6 + # bead types

(7 + # bead types) to 
(6 + # bead types)  + 

# polymer types

Time Temperature Pressure Ignore these 
zeroes

Diffusion Constants for 
each bead type

End-to-end length 
for each polymer 

type

17



Example: the following command toggles on/off the appearance of the “W” bead type in the 
current state snapshots at simulation time 1.  It is useful when a simulation is mainly water so that 
the other polymers can be seen in the snapshots. This command may be issued any number of 
times:  each appearance toggles the state from its previous value.

Command  ToggleBeadDisplay    1    W

If appropriate arguments are not supplied, or are misspelled, or have illegal values, an error 
message is printed to the screen or log state file (depending on when the command executes).

List of Commands

There are three categories of command that can be issued during a simulation. They are described 
in the tables below in alphabetical order:

• Monitor commands - these control the output from the simulation but don’t change its 
evolution

• Constraint commands - these may change the evolution of the simulation

• Target commands - these modify the properties of beads, bonds or polymers that have been 
grouped into targets (see Section 9 Command Targets).

The following conventions apply to all commands and their arguments:

1) All commands must specify their time of execution as the first argument.  The tables below 
do not include the execution time for clarity.

2) If a command takes no arguments apart from the execution time, the second column is empty.

3) The | character separates alternative choices for an argument.

4) When an alphanumeric string is required as an argument, it must start with a letter and it must 
be unique during the simulation.

5) All string arguments are case sensitive as are command names.

6) When specifying a bead,  bond or polymer type in a command, it is possible to use its name (e.g., 
H,  T, etc, referred to as its string identifier) or its numeric type (0, 1, etc, referred to as its numeric 
identifier).  Commands that expect a numeric type usually have “ByType” in their name.

7) The numeric type of beads, bonds and polymers are zero-indexed and assigned in the order that 
the entities appear in the input file.  So the first bead type is 0, the second is 1, etc., and similarly 
for bonds, stiff bonds, and polymers  Entities created during a simulation are given the next 
available numeric type at the time the command is executed.

18



8) If an alphanumeric string is used to name a new bead type, command target or target decorator 
it must be unique for the simulation. Even if the associated entity is subsequently destroyed (e.g., a 
RemoveCommandTargetActivity command is used to turn off a force on a target),  the name 
cannot be reused.  Although the names strictly only have to be unique within their class (i.e., a bead 
name can also be used for a target, or a target name can also be used for a target decorator) this is 
not encouraged because of the confusion that could arise.

Monitor Commands

These commands modify the output produced by a simulation but do NOT change its execution.

Command Name arguments Purpose

Comment //  write some text here  // Allows comments 
between commands 
and, if the // 
characters are 
placed around other 
commands, it 
removes them from 
execution. Spaces 
must be present 
between text and the 
slash characters

SaveAmiraCurrentState Save a snapshot in 
Amira format

SaveBeadDensityFluctuations beadName - bead’s string identifier

dataPoints - number of values

densityPeriods - number of periods 
to calculate over

x, y, z - integer coordinates of density 
grid cell to analyse

bConjugate - 0 | 1, flag showing 
whether to write out the fluctuations 
in the remainder of the simulation box 
as well

Write to file an array 
containing the 
number of beads of 
specified type in a 
rectangular volume 
over time. The x,y,z 
values multiply the 
respective Grid 
keyword values in 
the input file to 
define the 
rectangular space 
within which the 
fluctuations are 
calculated


The densityPeriods 
parameter specifies 
the number of 
DensityPeriod ranges 
over which to 
average each 
measurement, and 
the dataPoints value 
specifies the number 
of values to write file.

Command Name

19



SaveBeadDensityFluctuationsByType beadType - bead’s numeric type (0-
indexed)

dataPoints - number of values

densityPeriods - number of periods 
to calculate over

x, y, z - integer coordinates of density 
grid cell to analyse

bConjugate - 0 | 1, flag showing 
whether to write out the fluctuations 
in the remainder of the simulation box 
as well

As previous 
command but uses 
bead’s numeric type 
instead of its name.

SaveBead1dDensityProfile beadType - bead’s numeric type (0-
indexed)

start - >= 1

end - <= TotalTime

samplePeriod - must divide (end+1-
start)

normalVector - (1,0,0) | (0,1,0) | 
(0,0,1)

sliceTotal - integer

Calculate a 1d 
density function (with 
sliceTotal values) of a 
bead type along the 
normal direction 
between two times

SaveCurrentState Save a snapshot in 
the current default 
format

SaveParaviewCurrentState Save a snapshot in 
Paraview format

SavePolymerBeadRDF analysisPeriods - number of periods 
to sample over  
totalDataPoints - number of bins

Rmax - maximum distance to bin

polymerName - polymer to use

beadName - bead in polymer to use

Analyis must start on 
a multiple of 
AnalysisPeriod; the 
number of data 
points to be written 
is required and the 
max distance to 
search;  both 
polymer and bead 
names are required 
in case the bead 
occurs in other 
polymers

SaveSAXS analysisPeriods - number of periods 
to sample over  
totalQPoints - number of q values

qMin, qMax - range of q values

bIncludeBead - flag (0/1) showing 
whether to include each bead type


Analysis must start 
on a multiple of 
AnalysisPeriod; the 
number of wave-
vectors (q) to be 
calculated; a boolean 
list showing which 
beads types to 
include in the 
calculation, it must 
be terminated by -1 
because the number 
of bead types is only 
known at run-time


arguments PurposeCommand Name

20



SavePovrayCurrentState Save a snapshot in 
Povray format

SaveRestartState Save a restart state

SetAllBeadsInvisible Make all beads 
invisible

SetAllBeadsVisible Make all beads 
visible

SetBeadDisplayId beadName - bead string identifier 
displayId - integer  >= -1

Change the seleted 
bead type’s colour in 
snapshots; a value of 
-1 restores the colour 
to that set by the 
bead’s numeric id

SetBeadTypeDisplayId beadType - bead’s numeric type (0-
indexed)

displayId - integer  >= -1

As previous 
command but uses 
bead’s numeric type 
instead of its name.

SetCurrentStateCamera xc, yc, zc - [-inf, +inf] camera 
coordinates 
x0, y0, z0 -[-inf, +inf]  look-at point 
coordinates

Set the camera (xc, 
yc, zc) and look at 
points (x0, y0, z0) for 
Povray snapshots as 
multipliers of the box 
size. They must not 
be the same point.

SetCurrentStateDefaultFormat Povray | Paraview | Amira | 
SolventFree | 
SolventFreeAndPovray

Set the default 
format for snapshots

SetDensityPeriod newPeriod Change the 
frequency of writing  
density fields

SetDisplayBeadRange axis - x | y | z

minFraction - [0, 1]

maxFraction - [0, 1]

Restrict the beads in 
a snapshot to those 
in a rectangular slice 
of the box defined by 
two fractions along a 
major axis

SetDisplayPeriod newPeriod Change the 
frequency of writing 
snapshots

SetPolymerDisplayId polymerName - polymer’s string 
identifer

displayId - integer >= -1

Set the same colour 
for all beads in the 
selected  polymer 
type in snapshots; a 
value of -1 restores 
all bead types to 
their original colours

arguments PurposeCommand Name

21



Constraint Commands

These commands change conditions in the simulation and usually modify its subsequent evolution. 
They are also used to create Command Targets that are collections of beads or polymers to which 
subsequent commands can be sent to carry out actions or modify them.

SetPolymerTypeDisplayId polymerType - polymer’s numeric 
type (0-indexed)

displayId - integer >= -1

As previous 
command but uses 
numeric type of the 
polymer not its name

SetRestartPeriod newPeriod Change the 
frequency of writing 
restart states

SetSAXSProcessBeadElectronNo pid - SAXS process id (integer)

beadName

eno - number of electrons in bead 
type

The pid is an integer 
that counts the 
number of processes 
of all types created 
and is appended to 
their name (1-
indexed);  the 
number of electrons 
is per bead not per 
atom, so the number 
of atoms/bead must 
be used

ToggleBeadDisplay beadName Turn on/off display of 
a bead type in 
snapshots

ToggleDensityFieldOutput Toggle on/off the 
density field output

TogglePolymerDisplay polymerName Turn on/off the 
display of a polymer 
type in snapshots

arguments PurposeCommand Name

Command Name arguments Purpose

ChargeBeadType beadName - bead’s string identifier

strength (F0) - (>= 0)

range (1/k) - (>10-6)

Adds a repulsive 
screened Coulomb 
force to the bead 
type ( F = F0 e-kR / R ), 
where F0 and k are 
summed for the two 
interacting beads

ChargeBeadByType beadType - bead’s numeric identifier

strength - (>= 0)

range - (>10-6)

As above but uses 
the numeric type of 
the bead instead of 
its name

Command Name

22



GravityOff Turn preset gravity 
force off (Gravity 
keyword must be 
present in input file)

GravityOn Turn preset gravity 
force on (Gravity 
keyword must be 
present in input file)

SelectBeadTypeInCylinder targetLabel - unique alphanumeric 
string starting with a letter

beadName - bead’s string identifier

normalVector - (1,0,0) | (0,1,0) | 
(0,0,1)

cx, cy, cz - [0, 1], centre point as 
fraction of box size

halfLength - [0, 0.5]

innerRadius - units of bead diameter

outerRadius - units of bead diameter

Create a cylindrical 
command target 
from the specified 
bead type. The 
centre point, normal 
vector, half length 
and inner and outer 
radius are required.

SelectBeadTypeInEllipsoid targetLabel 
beadName 
cx, cy, cz - [0, 1], centre point as 
fraction of box size

boundingRadius - radius of a sphere 
that bounds the ellipsoid

sma - [0, 1] semi-major axis of 
ellipsoid

smb - [0, 1] first semi-minor axis

smc - [0, 1] second semi-minor axis

theta - [0, 180] polar angle of 
ellipsoid’s axis (deg)

phi - [0, 360] azimuthal angle of 
ellipsoid’s axis (deg)

Create an ellipsoidal 
command target 
from the specified 
bead type. The axis 
lengths must be in 
the order:


sma > smb > smc

SelectBeadTypeInPentagon targetLabel 
beadName 
cx, cy, cz - [0, 1], centre point as 
fraction of box size

boundingRadius - radius of a sphere 
that bounds the pentagon (units of 
bead diameter)

side - length of pentagon’s side 
(units of bead diameter)

thickness - depth of the pentagon 
(units of bead diameter)

theta - [0, 180] polar angle of 
pentagon normal (deg)

phi - [0, 360] azimuthal angle of 
pentagon normal (deg)

Create a pentagonal 
command target 
from the specified 
bead type. The 
pentagon’s side 
length and thickness 
must be less than the 
bounding radius

SelectBeadTypeInSimBox targetLabel 
beadName 

Put all beads of the 
given type into a 
command target

arguments PurposeCommand Name

23



SelectBeadTypeInSlice targetLabel 
beadName 
normalVector - (1,0,0) | (0,1,0) | 
(0,0,1)

cx, cy, cz - [0, 1], centre point as 
fraction of box size

halfX 
halfY - [0, 0.5] half widths of slice

halfZ

Create a rectangular 
slice command 
target from the 
specified bead type

SelectBeadTypeInSphere targetLabel 
beadName 
cx, cy, cz - [0, 1], centre point as 
fraction of box size

innerRadius - units of bead diameter

outerRadius - units of bead diameter

Create a spherical 
command target 
from the specified 
bead type. If 
innerRadius is 0, it 
creates a solid 
sphere, if not it 
creates a spherical 
shell

SelectBeadTypeInSphericalCap targetLabel 
beadName 
cx, cy, cz - [0, 1], centre point as 
fraction of box size

innerRadius - units of bead diameter

outerRadius - units of bead diameter

theta - [0, 180] polar angle of 
ellipsoid’s axis (deg)

phi - [0, 360] azimuthal angle of 
ellipsoid’s axis (deg)

gamma - [0, 90] half-angle of cap 
(deg)

Create a spherical 
cap command target 
from the specified 
bead type

SelectPolymerTypeHeadInCylinder See corresponding bead command As for the 
corresponding bead 
command, except 
that it selects 
polymers whose 
head beads lie within 
the specified 
geometric region

SelectPolymerTypeHeadInEllipsoid See corresponding bead command 

SelectPolymerTypeHeadInPentagon See corresponding bead command 

SelectPolymerTypeHeadInSlice See corresponding bead command 

SelectPolymerTypeHeadInSphere See corresponding bead command 

SelectPolymerTypeHeadInSphericalCap See corresponding bead command 

SelectPolymerTypeInSimBox See corresponding bead command 

arguments PurposeCommand Name

24



Target Commands

SetBondStiffness stiffBondName (e.g., HHH)

bendingConstant ( >= 0) 
preferredAngle (in degrees, 0 = 
straight)

Modify the bending 
potential spring 
constant and 
preferred angle for 
the specified bond 
type by name

SetBondStrength bondName (e.g., HH)

springConstant (>= 0)

unStretchedLength (units of bead 
diameter)

Modify the Hookean 
spring constant and 
the unstretched 
length for the 
specified bond type 
by name

SetBondStrengthbyType bondType - bond’s numeric type (0-
indexed)

springConstant (>= 0)

unstretchedLength (units of bead 
diameter)

As previous 
command but uses 
bond’s numeric type

SetDPDBeadConsInt firstBeadName - string identifier

secondBeadName - string identifier 
consForceParam (negative for an 
attractive force)

Modify the non-
bonded conservative 
force parameter for 
the given bead types 
using their names

SetDPDBeadConsIntByType firstBeadType (0-indexed)

secondBeadType (0-indexed) 
consForceParam (negative for an 
attractive force)

As previous 
command but uses 
the beads’ numeric 
types

SetDPDBeadDissInt firstBeadName - string identifier 
secondBeadName - string identifier 
dissForceParam ( >= 0)

Modify the non-
bonded dissipative 
force parameter for 
the given bead types 
using their names

SetDPDBeadDissIntByType firstBeadType - bead’s numeric type 
(0-indexed)

secondBeadType - bead’s numeric 
type (0-indexed)


dissForceParam ( >= 0)

As previous 
command but uses 
the beads’ numeric 
types

SetTimeStepSize stepSize  (keep in range [0.001 -0.04] Change the 
integration step size

WallOff Toggle preset wall off 
(Wall keyword must 
be present in input 
file)

WallOn Toggle preset wall on

(Wall keyword must 
be present in input 
file)

arguments PurposeCommand Name

25



See the next section -  Section 9 Command Targets - that describes how to create command 
targets to which these commands can be sent.

Target commands are directed at user-created targets,  and can modify their properties or 
behaviour, e.g., apply an external force to a target or change the colour of the target’s beads/
polymers,  or measure properties of the target and write the results to the log file, e.g., calculating 
the radius of gyration of all the beads in a target. See the description in the next section. 

Note the definitions: a command target decorator wraps a command target for the purpose of 
carrying out an action (e.g., applying a force, counting beads, etc). An active command target is one 
that has at least one decorator currently defined. The effects of a decorator are stopped by issuing 
the command RemoveCommandTargetActivity to destroy the decorator instance.

Command Name arguments Purpose

AnchorForceOnTarget targetName - string identifier for a 
target 

decName - string identifier for this 
force decorator

xn, yn zn - [-inf, +inf] arbitrary normal 
vector, all components must not be 0

xc, yc zc - [0, 1] origin from which 
bead distance is measured (units of 
box size)

magnitude - (>= 0) magnitude of 
force - may be zero

Applies a force to 
each bead in the 
target in the plane 
defined by the 
normal vector with a 
magnitude 
proportional to the 
bead’s distance from 
the axis

AssignExistingBeadType targetName - string identifier for a 
target 

beadName - string identifier for an 
existing bead type

Changes the type of 
all beads in the target 
to the existing bead 
type. The beads will 
subsequently interact  
with forces for the 
assigned type

AxialForceOnTarget Not implemented yet

ChangeBeadType targetName - string identifier for a 
target 


Changes the numeric 
type of all beads in 
the target to the next 
available value, and 
assigns a random 
string as the beads’  
string identifier

ChangeBondPairType Not implemented yet

ChangeBondType Not implemented yet

ChangeNamedBeadType targetName - string identifier for a 
target 

newBeadName - new string 
identifier

Changes the numeric 
type of beads in the 
target to the next 
available value, and 
assigns them the 
user-defined name

Command Name

26



ConstantForceOnTarget targetName - string identifier for a 
target 

decName - string identifier for this 
force decorator

xn, yn zn - [-inf, +inf] direction of 
force, all components must not be 0

magnitude - [-inf, +inf] magnitude of 
force - may be zero

Apply a constant 
force to a target. The 
force is turned off by 
issuing a subsequent 
“RemoveCommandT
argetActivity” 
command with the 
decName as the 
argument

CountBeadTypeInTarget. targetName - string identifier for a 
target 

beadType - bead’s numeric type 
identifier

Counts the number 
of beads of the 
specified type in the 
target

CountBeadsInTarget targetName - string identifier for a 
target 


Counts the 
accumulated  
number of beads of 
all types in the target

CylinderLinearForceOnTarget targetName - string identifier for a 
target 

xn, yn zn - [-inf, +inf] arbitrary normal 
vector, all components must not be 0

xc, yc zc - [0, 1] origin of cylinder  
from which bead distance is 
measured (units of box size)

magnitude - (>= 0) magnitude of 
force - may be zero

Applies a force to all 
beads in the target 
that is directed 
inwardly in the plane 
defined by the 
normal vector and 
whose magnitude is 
proportional to the 
distance of each 
bead from the 
cylinder’s axis in the 
plane.It attempts to 
keep all beads on the 
cylinder’s axis.

DistanceMovedByTarget targetName - string identifier for a 
target 

forceLabel - string identifier for a 
force decorator

decLabel - string identifier for this 
decorator

start - start time of measurement

end - end time of measurement

Writes out the 
distance moved by 
the target as a 
function of time in 
the specified interval. 
Both the total 
distance of all beads 
and the distance per 
bead are written.

ExternalWorkOnTarget targetName - string identifier for a 
target 

forceLabel - string identifier for a 
force decorator

decLabel - string identifier for this 
decorator

start - start time of measurement

end - end time of measurement

Writes out the work 
done on all beads in 
the target by the 
external force 
defined by 
forceLabel during the 
specified interval. It 
sums up all the F.dx 
elements for each 
bead in the target.

arguments PurposeCommand Name

27



FreezeBeadsInTarget targetName - string identifier for a 
target 


Prevent all beads in 
the target from 
moving: they still 
interact with other 
beads

ListActiveCommandTargets Writes a list of all 
targets currently 
active, i.e., that have 
at least 1 decorator

ListAllCommandTargetActivities Writes a list of all 
decorators for all 
targets with the 
target name last on 
each line

ListCommandTargetActivities targetName - string identifier for a 
target 


Writes a list of all 
decorators wrapping 
the specified target

ListCommandTargets Writes a list of all 
command targets 
whether active or not

MSDOfPolymerTarget targetName - string identifier for a 
target

decName - string identifier for this 
decorator

startTime - start time for output (>= 
execution time of command)

endTime - end time for output

Writes out the mean-
square displacement 
of the polymers in 
the target during the 
given time interval

PlanarAnchorForceOnTarget targetName - string identifier for a 
target 

decName - string identifier for this 
decorator

xn,yn,zn - normal vector to plane 

xc,yc,zc - arbitrary point in plane

kef - spring constant

Applies a Hookean 
spring force to each 
bead in the target 
from the plane 
defined by the 
normal vector/point 
with a magnitude 
proportional to the 
bead’s distance from 
the axis

PolymerisePolymersInTarget targetName - string identifier for a 
target 

maxBonds - max bonds per pair

range - max separation of polymers

fraction - (0,1)

springConstant - Hookean spring 
constant

unstretchedLength - Hookean 
spring length

Binds together a 
given fraction of 
polymers in a target 
with multiple 
Hookean springs; 
only polymers within 
speceified range are 
connected

arguments PurposeCommand Name

28



RadialForceOnTarget targetName - string identifier for a 
target 

xn, yn zn - [-inf, +inf] arbitrary normal 
vector, all components must not be 0

xc, yc zc - [0, 1] origin of cylinder  
from which bead distance is 
measured (units of box size)

magnitude - (>= 0) magnitude of 
force - may be zero

Applies a force to all 
beads in the target 
that is directed in the 
plane defined by the 
normal vector whose 
magnitude is 
proportional to the 
distance of each 
bead from the 
cylinder’s axis in the 
plane. 

RemoveActiveCommandTarget targetName - string identifier for a 
target

Removes all 
decorators for the 
named target but 
does not destroy the 
target. Further 
commands can be 
sent to it.

RemoveCommandTargetActivity decName -string identifier for a 
target decorator

Removes the named 
decorator from a 
target. Typically used 
to turn off a force 
being applied to the 
target.

RgOfBeadTarget targetName - string identifier for a 
target

decName - string identifier for this 
decorator

startTime - start time for output (>= 
execution time of command)

endTime - end time for output

Writes out the radius 
of gyration of all 
beads in the target

RgOfPolymerTarget targetName - string identifier for a 
target

decName - string identifier for this 
decorator

startTime - start time for output (>= 
execution time of command)

endTime - end time for output

Writes out the radius 
of gyration of all 
polymers in the 
target

RotationalMSDOfPolymerTarget targetName - string identifier for a 
target

decName - string identifier for this 
decorator

startTime - start time for output (>= 
execution time of command)

endTime - end time for output

Writes out the 
rotational mean-
square displacement 
of all polymers in the 
target

SelectBeadsInSphericalTargetRegion

SetBondStiffnessInTarget Not implemented yet

arguments PurposeCommand Name

29



SetBondStrengthInTarget targetName - string identifier for a 
target

bondName (e.g., HH)

springConstant (>= 0)

unStretchedLength (units of bead 
diameter)

SetTargetBeadTypeDisplayId targetName - string identifier for a 
target

beadType - bead type

displayId - new display id

Changes the display 
id (and colour) of all 
beads of the 
specified type in the 
target

SetTargetDisplayId targetName - string identifier for a 
target

displayId - new display id

Changes the display 
id (and colour) of all 
beads in the target

SetTargetInvisible targetName - string identifier for a 
target


Set all beads in the 
target invisible in 
current state 
snapshots

SetTargetPolymerTypeDisplayId targetName - string identifier for a 
target

polymerType - polymer type

displayId - new display id

Changes the display 
id (and colour) of all 
beads in the 
specified polymer 
type in the target

SetTargetVisible targetName - string identifier for a 
target


Display all beads in 
the target in current 
state snapshots

SineForceOnTarget targetName - string identifier for a 
target 

decName - string identifier for this 
force decorator

xn, yn zn - [-inf, +inf] direction of 
force, all components must not be 0

amplitude - [-inf, +inf] magnitude of 
force - may be zero

period - [1, +inf] period of the force

Apply a sinusoidal 
force to the target 
from the time of 
execution. The 
normal vector is 
normalised before 
applying the force. 
The amplitude must 
be positive or zero, 
and the period must 
be at least 1. The 
frequency is defined 
as 2π/period and 
multiplies the 
simulation time 
minus the start time.

SpringForceBetweenTargets

SpringForceOnTarget

ToggleAntiTargetDisplay

ToggleTargetDisplay

UnFreezeBeadsInTarget targetName - string identifier for a 
target

Unfreeze the beads 
in the target so they 
can move again

arguments PurposeCommand Name

30



9) Command Targets 

It is often useful to be able to manipulate the properties of sets of beads or polymers during a 
simulation. This can be used to modify their appearance in snapshots to distinguish them from the 
environment. But a more powerful use is to change their mutual  interactions or apply external 
forces to them, and so modify their dynamics in the simulation. Once a target has been created, its 
name can be used in other commands to execute actions on it. The set of commands that can be 
sent to a target depends on whether it is a bead or polymer target, and are given in the Target 
Command list above.

A Command Target is a set of beads or polymers that have been grouped together according to a 
certain criterion and given a unique label by which their properties can be modified by subsequent 
commands. The most common way of defining a target is to select all beads whose centres of mass 
lie within a specified geometric region, e.g., sphere, cylinder, planar slice, etc. This creates a Bead 
Target.  Alternatively, a set of polymers whose head beads (i.e., the first bead specified in their shape 
string unless redefined with the Head/Tail parameters) lie within a geometric region can be 
selected to create a Polymer Target. Different commands can be sent to bead and polymer targets.

The format of all commands that create targets is similar, but the arguments differ depending on 
the geometric shape. Here is the command to create a spherical bead target:

Command SelectBeadTypeInSphere  1   targetName  beadName  xc yc zc  
rin rout 

and here is the corresponding command for a cylindrical bead target:

Command SelectBeadTypeInCylinder  1   targetName  beadName  xn yn 
zn xc yc zc half rin rout 

Both commands provide a unique name targetName for the newly-created target and the string 
name of the bead type to be selected - beadName. 

The spherical target command then requires the centre of the sphere - xc, yc, zc - to be specified 
as a fraction of the box size,  and the inner and outer radii - rin, rout - in units of the bead 
diameter. If rin is non-zero, a spherical shell is created.

The cylinder target command requires the normal vector along the long axis of the cylinder, which 
must be one of 1,0,0 or 0,1,0 or 0,0,1, the centre of the cylinder, again as a fraction of the 
simulation box size, and the half length of the cylinder, its inner radius, and its outer radius all in 
units of the bead diameter.

Further examples of geometric targets that can be created are given in the Constraint Command 
list above. In particular, all the beads or polymers of a single type in the simulation can be selected 
with the commands SelectBeadTypeInSimBox or SelectPolymerTypeInSimBox.

31



The following four commands illustrate a typical use of a bead target. They all execute at time 
25000 and create a bead target and then change its colour in snapshots and modify its non-bonded 
interaction with another bead type.

The first command creates a bead target called bolus that contains all beads of type W that lie in 
a sphere with its centre in the middle of the simulation box (at 0.5, 0.5, 0.5), and an inner and outer 
radius of 0 and 4.0.  

The second command changes the display type of these beads so that they appear as a different 
colour in snapshots.  Note that this does not change their interactions: the display id is just a 
paramete

The third command changes the type of the beads to a new value with the new name fluors. This 
allows them to be the target of subsequent commands by using their new name or numeric type. 
The fourth command change the conservative force parameter for interactions of these beads 
with W beads  to 35.

Command SelectBeadTypeInSphere 25000  bolus W 0.5 0.5 0.5 0.0 4.0 

Command SetTargetDisplayId        25000 bolus  4 

Command ChangeNamedBeadType       25000 bolus  fluors 

Command SetDPDBeadConsInt         25000 fluors  W  35 

However, even though the beads have had their properties changed, they are still moving 
independently and will diffuse away from each other over time. To make the target rigid so that it 
moves as a single object, we have to create a second target that contains the polymers 
corresponding to these beads, and then tie them together using newly-created bonds. For this, we 
create a polymer target that exactly overlaps the same volume.

For this example, we assume that polymers of type Water contain the single bead W.

SelectPolymerTypeHeadInSphere  25000 bolusPoly Water  0.5 0.5 0.5 
0.0 4.0 

PolymerisePolymersInTarget     25000 bolusPoly  12 1.5 1.0 128.0 
0.5  

Whereas the bead target required a bead name, the polymer target requires the corresponding 
polymer name. The geometric parameters are the same as before. The second command then 
creates Hookean spring bonds between the head beads in the polymers in the bolusPoly target. 
The arguments are, in order:  

12     = the maximum number of bonds created per pair of polymers
1.5     = maximum range out to which two beads will have a bond created between them
1.0     = the fraction of polymers that will be bonded; fractions less than 1 create floppy target
128.0  = the Hookean spring constant
0.5      = the Hookean spring unstretched length

32



10) Analysing the results of a simulation 

Two types of analysis are performed automatically in all simulations: time-averaged data, which are 
written to the Analysis State file, and time-series data, which are written to the History 
State file.

All commands that are specified in the input file and that execute correctly write a message to the 
Log State file - dmpcls.nnn.  This file also contains the results of some user-specified analysis 
that is turned on by command. See the appropriate commands in Section 8 above. If a command 
fails to execute (e..g, if its name is misspelt or its arguments are incorrect), a warning or error 
message is written to the log file.

The Restart States - dmpcrs.nnn.con.ttt.dat -  contain information on all beads and 
polymers and their position, momenta, and forces in ascii text format that is required to restart a 
simulations. Offline analysis can be performed on the contents of these files as they contain plain 
text.

Analysis State File - dmpcas.nnn

Observables are written here every AnalysisPeriod time steps during a simulation, and all data are 
averaged over AnalysisPeriod / SamplePeriod values.  Each AnalysisPeriod number of time steps,  
observables are averaged over all samples taken since the last analysis was performed, and written 
to this file.

Each block of data starts with the simulation time, temperature and pressure, and is followed by 
other observables:

Time = 100000 
Temperature 
   1.0080152   0.046555619 

Pressure 
   23.352143    0.11033159 

Scalar observables are presented as Mean / Standard deviation pairs on the same line.

When certain special analysis options are switched on, extra data will be written to this file. Ask 
me for more details.

Because a lot of data is present in this file, we do not describe it all here. But the following 
observables are always calculated:

Temperature
Pressure
Centre of mass momentum of all beads (this should be zero as the CM of the simulation 
box should not be moving), and position (should be the middle of the simulation box)

Stress tensor (3 x 3 matrix) of all beads, and spherical stress tensor

33



Inertia tensor of all beads

Bond length of all bead types combined

Sequence of bond lengths for all types of bond defined in the simulation

Sequence of end-to-end lengths for all polymer types defined (polymers that contain only 
a single bead have an end-to-end length of zero)

Angular and bond length measures of the stiff bond types defined

History State File - dmpchs.nnn

The history state file contains time series of various observables. They are written out every 
SamplePeriod number of time steps into the following columns:

Time
Temperature
Pressure
(next are 3 columns of zeroes for observables not used in DPD)

Set of bead diffusion constants for all bead types defined in the input file

Set of polymer end-to-end lengths for all polymer types defined in the input file

Note that even if a bead type is not used in any polymer, and so no instances are created, it will still 
have a column in the history file that will contain all zeroes. Also note that if a new bead type is 
created as the result of a command during a simulation, an extra column for the bead’s diffusion 
constant will be added to this file from the command’s execution time onwards.

Conditionally-created analysis files

When specialised analysis options are used, extra files are created to hold the data.  Consult the 
code or ontact the author for more details.

11) Overview of Dissipative particle dynamics 

Molecular Dynamics (MD) and Dissipative Particle Dynamics (DPD) are two simulation techniques 

that integrate Newton's laws of motion for a set of particles interacting via specified forces and 

generate trajectories from which the observable properties of the set can be estimated. The 

techniques differ in their specification of the force laws, but are otherwise quite similar. MD aims to 

model the inter-atomic potentials as accurately as possible, and so generate detailed information 

on the molecular interactions of complex systems such as proteins and lipids in aqueous solution. 

By contrast, DPD ignores the atomic-level details of molecules, and uses a coarse-grained set of 

force laws that are chosen to produce the correct hydrodynamic behaviour of fluids. The forces in 

34



DPD are all short-ranged, pairwise additive, conserve linear momentum, and have no hard- core 

repulsion at zero separation:  thus, two particles can be at exactly the same place in space, although 

this is unlikely if the conservative force parameter is non-zero. This feature makes DPD especially 

suitable for fluid simulations, as the representation of the strong repulsion present in the solid 

phase is problematic. 

The elementary units in a DPD simulation are fluid elements or beads. A bead represents a volume 

of fluid that is large on a molecular scale, and hence contains at least several molecules of the fluid, 

but still macroscopically small. Beads interact via effective forces chosen so as to reproduce the 

hydrodynamic behaviour of the fluid without reference to its molecular structure. DPD differs in 

this respect from MD simulations, in which the forces are chosen to model the inter-molecular 

interactions of a system as accurately as possible. Forces in DPD are pairwise additive, conserve 

momentum, have no hard core and are short-ranged, the range of the force defining the size of the 

beads. 

All beads have the same mass, m0, and diameter, d0, and these set the mass and length scales in the 

simulation.  A time-scale must be extracted from the dynamics of relevant processes in the 

simulated fluid, such as the diffusion of a micelle's centre of mass, or the in-plane viscosity of a 

bilayer membrane. For example, when we study equilibrium properties of the bilayers, we use the 

generic time- scale set by the system temperature, t0 = √(m0*d0*d0/kBT), where kB is Boltzmann's 

constant and the temperature, T, is the mean kinetic energy of all beads.

All beads interact via three forces: a Conservative force that gives each bead an identity and allows, 

for example, the representation of hydrophobicity between hydrocarbon and water; a Random 

force that creates relative momentum between bead pairs; and a Dissipative force that destroys 

relative momentum. Beads are considered to have (unobserved) internal degrees of freedom that 

give rise to the dissipative force, and to be coupled to the local temperature of their (fluid) 

environment that is the source of the random forces. It has been shown that choosing the random 

and dissipative forces appropriately leads to equilibrium states of the system that satisfy the 

Boltzmann distribution.  An important point about the random forces is that they are pairwise anti-

symmetric. If one bead in an interacting pair gains an amount of relative momentum, its partner 

loses the same amount. This distinguishes DPD from Brownian Dynamics in which each particle 

receives a random push independently of all other particles. 

Because DPD beads represent a volume of fluid, and not single molecules, the interpretation of a 

polymer composed of such beads requires some care.  We take the view that the head bead in a 

model lipid represents the hydrophilic glycerol-phosphate-head region while each tail bead 

represents several methyl groups, or a Kuhn length, in a hydrocarbon chain. In this view, each 

35



hydrophobic bead represents, say, 3 to 4 methyl groups. The same interpretation applies to non-

biological amphiphiles, such as sulphonium surfactants that consist of an 18-carbon chain attached 

to a sulphonium group and two hydroxy groups. 

36


