contents) unless cholesterol is added to the culture fluid. The added cholesterol is incorporated into the plasma membrane, thereby enabling the cells to survive.

The precise fluidity of the plasma membrane must be biologically important, since bacteria, yeast, and other poikilothermic organisms, whose temperatures fluctuate with that of their environment, change the fatty acid composition of their plasma membrane so as to maintain a relatively constant fluidity. As the temperature falls, for example, fatty acids with more *cis*-double bonds are synthesized, so that the decrease in bilayer fluidity that would otherwise result from the drop in temperature is avoided. Certain membrane transport processes and enzyme activities can be shown to cease when the bilayer viscosity increases beyond a threshold level.

The Lipid Bilayer Serves as a Solvent for Membrane Proteins⁵

The lipid compositions of several biological membranes are compared in Table 6–1. Note that bacterial plasma membranes are often composed of one main type of phospholipid and contain no cholesterol; in the absence of cholesterol, mechanical stability is provided by the overlying cell wall (see Figure 6–54, p. 312). The plasma membranes of most eucaryotic cells, however, contain not only large amounts of cholesterol but also a variety of phospholipids. The plasma membrane of many mammalian cells, for example, contains four major phospholipids—phosphatidylcholine, sphingomyelin, phosphatidylserine, and phosphatidylethanolamine. The structures of these molecules are shown in Figure 6–9. Note that only phosphatidylserine carries a net negative charge; the other three are electrically neutral at physiological pH, carrying one positive and one negative charge. Together these four phospholipids constitute more than half the mass of lipid in most membranes (Table 6–1). Other phospholipids, such as the *inositol phospholipids* (see p. 702), are functionally important but present in relatively small quantities. The crucial role of the inositol phospholipids in cell signaling is discussed in Chapter 12.

One may wonder why the eucaryotic plasma membrane contains such a variety of phospholipids, with head groups that differ in size, shape, and charge. In seeking an answer it may be helpful to think of the membrane lipids as constituting a two-dimensional solvent for the proteins in the membrane, just as water constitutes a three-dimensional solvent for proteins in an aqueous solution. It may be that some membrane proteins can function only in the presence of specific phospholipid head groups, just as many enzymes in aqueous solution require a

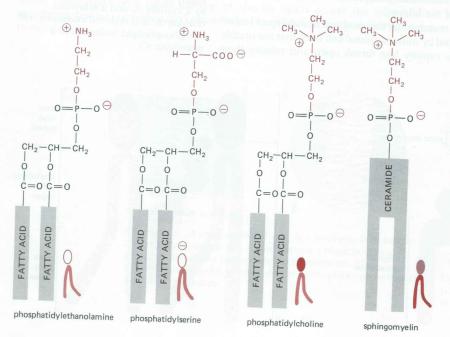


Figure 6-9 Formulas and symmotion four major phospholipids in mammalian plasma membranes. Note that different head groups represented by different symbols this figure and the next. All of the molecules shown are derived from glycerol except for sphingomyelis which is derived from serine. The structure and formation of ceramare shown in Figure 6-11.

Percentage of Total Lipid by Weight

	Liver Plasma Membrane	Erythocyte Plasma Membrane	Myelin	Milochondrion Gimer and outer ment	oranes) Endoplasmic Reticulum	E. colj
sterol hatidyl-	17	23	22	3	6	0
mulamine	7	18	15	35	17	70
midylserine	4	7	9	2	5	trace
ine Hualing	24	17	10	39	40	0
nunyelin	19	18	8	0	5	0
inids the large	7	3	28	trace	trace	0
er Dan 40 do	22	13	8	21	27	30

ion for activity. Consistent with this view is the finding that some memproteins, when inserted into a synthetic lipid bilayer, will function optimally bilayer contains certain specific phospholipids.

Bilayer Is Asymmetrical⁶

compositions of the two halves of the lipid bilayer in those membranes been analyzed are strikingly different. In the human red blood cell cell, for example, almost all of the lipid molecules that have choline— CH₂CH₂OH—in their head group (that is, phosphatidylcholine and sphinare in the outer half of the lipid bilayer, while almost all of the phosphotecules that contain a terminal primary amino group (phosphatidylethame and phosphatidylserine) are in the inner half (Figure 6–10). The fatty of phosphatidylcholine and sphingomyelin are more saturated than phosphatidylethanolamine and phosphatidylserine; therefore, the asymmethe distribution of the head groups is accompanied by an asymmetry in the distribution of hydrocarbon tails that may make the inner monolayer somemore fluid than the outer monolayer. In addition, because the negatively phosphatidylserine is located in the inner monolayer, there is a significant in charge between the two halves of the bilayer.

of the membranes in a eucaryotic cell, including the plasma membrane, the sized in the endoplasmic reticulum (ER), and it is here that the prolipid asymmetry is generated by the phospholipid translocators in the move specific phospholipid molecules from one monolayer to the other 449). Although the function of the lipid asymmetry is largely unknown, membrane-bound enzymes that make use of it: when protein kinase C to the plasma members phosphatidylserine is concentrated, and it requires this negatively

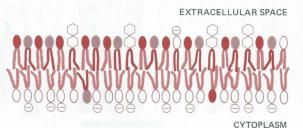


Figure 6–10 The asymmetrical distribution of phospholipids and glycolipids in the lipid bilayer of human red blood cells. The symbols used for the phospholipids are those introduced in Figure 6–9. Glycolipids are drawn with hexagonal polar head groups. Cholesterol (not shown) is thought to be distributed about equally in both monolayers.

charged phospholipid in order to act (see p. 704). The importance of having specific inositol phospholipids concentrated in the cytoplasmic leaflet of the plasma membrane lipid bilayer, where they can be used to generate intracellular mediators in response to extracellular signals, is discussed in Chapter 12 (see p. 702).

Glycolipids Are Found on the Surface of All Plasma Membranes, but Their Function Is Unknown⁷

The lipid molecules that show the most striking and consistent asymmetry in distribution in the plasma membranes of animal cells are the oligosaccharide-containing lipid molecules called **glycolipids**. These intriguing molecules are found only in the outer half of the bilayer, and their sugar groups are exposed at the cell surface (see Figure 6–10), suggesting some role in interactions of the cell with its surroundings. The asymmetric distribution of glycolipids in the bilayer derives from the addition of sugar groups to the lipid molecules in the lumen of the Golgi apparatus, which is topologically equivalent to the exterior of the cell (see p. 408).

Glycolipids probably occur in all animal cell plasma membranes, and they generally constitute about 5% of the lipid molecules in the outer monolayer. They differ remarkably from one animal species to another and even among tissues in the same species. In bacteria and plants almost all glycolipids are derived from glycerol-based lipids, as is the common phospholipid phosphatidylcholine. In animal cells, however, they are almost always produced from *ceramide*, as is the phospholipid sphingomyelin (see Figure 6–9). These *glycosphingolipids* have a general structure that is similar to that of the glycerol-based lipids, having a polar head group and two hydrophobic fatty acid chains. However, one of the fatty acid chains is initially coupled to serine to form the amino alcohol *sphingosine*, to which the second fatty acid chain is then linked to form ceramide (Figure 6–11).

Figure 6–11 Final steps in the synthesis of the simple glycosphingolipid galactocerebros Sphingosine is formed by condens the amino acid serine with one facility as second fatty acid is then acid is a second fatty acid is then acid form ceramide, as shown. Ceramis made in the endoplasmic reticular and the carbohydrate is added in acid apparatus (see p. 449). Ceramis also used to form the major phospholipid sphingomyelin (see Figure 6–9).

consists of one or more sugar residues. Among the most widely distributed pids in the plasma membranes of both eucaryotic and procaryotic cells are tral glycolipids, whose polar head groups consist of anywhere from 1 to neutral (uncharged) sugars, depending on the organism and cell type. The is galactocerebroside, one of the simplest glycolipids, which has actose as its polar head group (see Figure 6–11). It is the main glycolipid which consists of many concentric layers of plasma membrane wound a nerve cell process (an axon) by a specialized myelinating cell (see The myelinating cells can be distinguished by the large amount of gamonolayer. Galactocerebroside is largely absent from the membranes of the cells, and it is thought to play an important part in the specific interpretween the myelinating cell and the axon.

most complex of the glycolipids, the **gangliosides**, contain one or more residues (also known as *N*-acetylneuraminic acid, or NANA), which gives net negative charge (Figure 6–12). Gangliosides are most abundant in the membrane of nerve cells, where they constitute 5–10% of the total lipid athough they are found in much smaller quantities in most cell types. So than 40 different gangliosides have been identified. Some common extension in Figure 6–13, where the nomenclature used to describe them introduced.

the ganglioside G_{M1} (Figure 6–13) acts as a cell-surface receptor for the toxin that causes the debilitating diarrhea of cholera; cholera toxin binds enters only those cells with G_{M1} on their surface, including intestinal epicells. The entry of cholera toxin into the cell leads to a prolonged increase concentration of intracellular cyclic AMP, which in turn causes a large efflux and water into the intestine (see p. 697). Although binding bacterial toxins be the *normal* function of gangliosides, such observations suggest that colipids may also serve as receptors for normal signaling between cells:

ппагу

membranes consist of a continuous double layer of lipid molecules in membrane proteins are embedded. This lipid bilayer is fluid, with lipid molecules able to diffuse rapidly within their own monolayer. However, types of lipid molecules very rarely flip-flop spontaneously from one

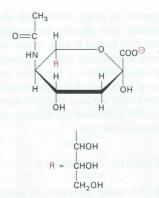
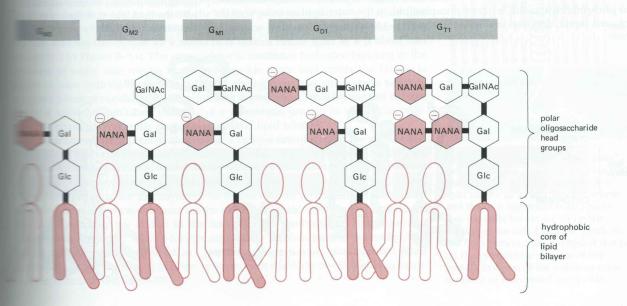
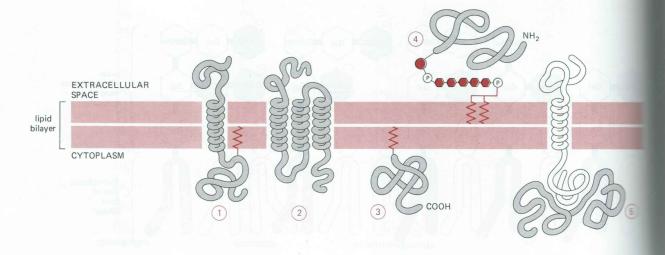



Figure 6–12 The structure of sialic acid (*N*-acetylneuraminic acid, or NANA). In cells this acid exists in its ionized form (—COO⁻), as shown.

Figure 6–13 Some representative gangliosides with their standard designations. In G_{M1} , G_{M2} , G_{M3} , G_{D1} , and G_{T1} , the letters M, D, and T refer to the number of sialic acid residues (mono, di, and tri, respectively), while the number that follows the letter is determined by subtracting the number of uncharged sugar residues from 5. NANA = N-acetylneuraminic (sialic) acid; Gal = galactose; Glc = glucose; GalNAc = N-acetylgalactosamine. Gal, Glc, and GalNAc are all uncharged, whereas NANA carries a negative charge (see Figure 6–12).

monolayer to the other. Membrane lipid molecules are amphipathic and assemble spontaneously into bilayers when placed in water; the bilayers form sealed compartments that reseal if torn. There are three major classes of lipid molecules in the plasma membrane bilayer—phospholipids, cholesterol, and glycolipids—and the lipid compositions of the inner and outer monolayers are different. Different mixtures of lipids are found in the plasma membranes of cells of different types, as well as in the various internal membranes of a single eucaryotic cell. For the most part the functional significance of the different lipid compositions of different membranes is unknown.


Membrane Proteins

Although the basic structure of biological membranes is provided by the lipid bilayer, most of the specific functions are carried out by proteins. Accordingly, the amounts and types of proteins in a membrane are highly variable: in the myelin membrane, which serves mainly to insulate nerve cell axons, less than 25% of the membrane mass is protein, whereas in the membranes involved in energy transduction (such as the internal membranes of mitochondria and chloroplasts), approximately 75% is protein; the usual plasma membrane is somewhere in between, with about 50% of the mass being protein. Because lipid molecules are small in comparison to protein molecules, there are always many more lipid molecules than protein molecules in membranes—about 50 lipid molecules for each protein molecule in a membrane that is 50% protein by mass.

6-10 The Polypeptide Chain of Many Membrane Proteins 6-11 Crosses the Lipid Bilayer One or More Times⁸

Many membrane proteins extend across the lipid bilayer (examples 1 and 2 in Figure 6–14). Like their lipid neighbors, these so-called **transmembrane proteins** are amphipathic: they have hydrophobic regions that pass through the membrane and interact with the hydrophobic tails of the lipid molecules in the interior of the bilayer and hydrophilic regions that are exposed to water on both sides of the membrane. The hydrophobicity of some of these membrane proteins is increased by the covalent attachment of a fatty acid chain that is inserted in the cytoplasmic leaflet of the bilayer (see example 1 in Figure 6–14). Some intracellular membrane proteins are associated with the bilayer only by means of such a fatty acid chain (see example 3 in Figure 6–14 and p. 417), while some cell-surface proteins are attached to the bilayer only by a covalent linkage (via a specific oligosaccharide) to phosphatidylinositol, a minor phospholipid, in the outer lipid monolayer of the plasma membrane (see example 4 in Figure 6–14 and p. 448).

Figure 6-14 Five ways in which membrane proteins can be associ with the lipid bilayer. Transmember proteins extend across the bilayer a single α helix (1) or as multiple a helices (2); some of these "single-pa and "multipass" proteins have a covalently attached fatty acid chair inserted in the cytoplasmic monoli (1). Other membrane proteins are attached to the bilayer solely by a covalently attached lipid-either a acid chain in the cytoplasmic monolayer (3) or, less often, via an oligosaccharide, to a minor phospholipid, phosphatidylinositol the noncytoplasmic monolayer (4) Finally, many proteins are attached the membrane only by noncovalent interactions with other membrane proteins (5). The details of how membrane proteins become associ with the lipid bilayer in these ways discussed in Chapter 8.

