dynamics (assembly/disassembly) of microfilaments and microtubules

actin microfilaments microtubules

Actin-GFP Wild type

Mitosis in Drosophila embryo
Crawling B16 cell Sharp et al.,

Vic Small Mol. Biol. Cell, 2000



assembly conditions

Actin filaments: Microtubules:
100 mN KCI Mg?*, no Ca?*
or/and 2mM Mg?* or Ca?*

GTP
ATP

37°C

Glycerol, or polycations, or MAPs



nucleotides in actin and tubulin assembly
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Assembly poisons

Actin: Microtubules:

cytochalasin, latrunculin colchicin, colcemid, vinblastin,
(block assembly) nocodazole (block assembly)
phalloidin, jasplakinolide taxol (block disassembly)

(block disassembly)



Equilibrium view of filament assembly
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short filaments prevail, length very sensitive to monomer concentration
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In reality, formation of dimers and short oligomers
IS not the same as filament elongation,

hence:
nucleation, elongation, steady state
polymerization — condensation assembly mechanism

(Oosawa and Kasai, 1962):

critical monomer concentration
at steady state = K_/ K,
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at the steady state

dP/dt=k,CN -k N

dP/dt = 0 C. = kUK,
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how to measure polymerization

e.g., centrifugation to separate polymer from the subunits

sedimentation velocity vg.¢ = mg./(friction coefficient)
for a sphere at low Reinolds number,

friction coefficient = 6mnR

4/3mR3 (p B psolvem‘) 9c

Vdrift = 6 Tl'nR =2R? (p - psolven’r) 9c /9n

sedimentation velocity strongly depends on the size -
- polymer can be separated from subunits (need 103-10* g)



Opposite end assembly and disassembly of microtubules at
steady state in vitro (assayed in the bulk using centrifugation
and GTP-labeled tubulin)
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Figure 1. Steady State Exchange of Dimers with Microtubules



expectation from equilibrium assembly-disassembly

microtubule length variance at equilibrium:
<L? = 20kt (a - length increment per dimer)

subunit incorporation is not linear with time



Polymer could be observed by electron microscopy

Discovery of dynamic instability
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with different rate constants at the two ends

minus (pointed) end plus (barbed) end

Figure 15.21b Physical Biology of the Cell, 2ed. (© Garland Science 2013)



critical concentration should be the same at both ends
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Role of nucleotide in assembly

minus end

minus end

lus end
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- | |
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with nucleotide hydrolysis

Figure 15.21d Physical Biology of the Cell, 2ed. (© Garland Science 2013)




critical concentration differ for nucleotide state and for two ends
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theoretically possible at steady state:

net addition of NTP-subunits at +end
net loss of NDP-subunits at —end

This was termed treadmilling

also possible:

assembly and disassembly alternate at the same end
depending on the nucleotide state

This was termed dynamic instability



ADP ATP

. SRSl

Actin Intrinsic Treadmilling



catastrophe happens when the end monomers (cap) hydrolyze their nucleotides

cytoskeletal filament
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he Cell, 2ed. (© Garland Science 2013
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In microtubules, catastrophe may be related to the change in
protofilament curvature

T. Hawkins et al. / Journal of Biomechanics 43 (2010) 23-30




catastrophe frequency may be age-dependent

SINGLE STEP

If microtubule catastrophe is a single-
step random process, a microtubule is
equally likely to undergo catastrophe at
any point in time.
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Time

As the likelihood of catastrophe doesn't
change over time, in a single-step
process most catastrophes occur near
the nucieation center, where the number
of microtubules is the greatest.

MULTIPLE STEP

In a multiple-step process young
microtubules are ‘protected’, as they
havent yet accumulated a number of
destabilizing features needed for
catastrophe.
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Time

In a multiple-step process microtubules
grow further, creating a zone of
microtubule catastrophes away from the
nucleation center.
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Gardner et al, 2013
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Brouhard, 2015



How fo measure polymerization (depolymerization)?

challenges:
separate polymer from subunits
distinguish newly assembled polymer

distinguish one filament end from the other



distinguish polymer from subunits

in bulk:
centrifugation
light scattering
viscosity

fluorescence (pyrene-modified actin)

at a single filament level:

direct observation by light or electron microscopy

distinguish new assembly and one end from the other: selective labeling



at the individual filament level:
electron microscopy (fixed)
immunofluorescence microscopy (fixed)
video-enhanced microscopy (live)

fluorescence microscopy with labeled proteins of interest (livell)



EM-visualization of polarized assembly of microtubules

newly
formed
microtubule




Actin disassembly at —end at a steady state
Visualization with Limulus acrosomal actin bundle

Coluccio and Tilney, JCB, 1983



rate constants measured with EM
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individual microtubules visualized with video-enhanced DIC
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Bormuth et al., 2007



Video-enhanced phase contrast

Phase Contrast Microscope Configuration
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Phase contrast vs fluorescence




fluorescence microscopy

chemical dyes attached either to antibodies or
directly to the protein of interest

e.g., fluorescein

chromophore is formed by three amino acids: Ser65-Tyr66—-Gly67



polymerization kinetics by fluorescence of pyrene-labeled actin
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Cytoskeletal polarity and sites of assembly
In the cell

After disassembly, microtubules grow
from the centrosome

Centrosome

i T~~Microtubule
Centrioles |
_0.25 um

Longitudinal section Microtubules Cross‘section
of one centriole

Didier et al., 2008



Microtubule polarity in different cells
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Observation of assembly of individual actin filaments with TIRFM
(total internal reflection fluorescence microscopy)

figure 1
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Table 1 Polymerization and depolymerization rate constants.

Conditions k- (M- s1) k(s) Cy (nM])

w 107
Steady-state phase’ 18 25 —
45 29 —

Polymerization phase' 0.61 0.85 0.14
1.0 0.64 0.064

Solution + 0.5% 0.75 .94 0.13
methylcellulosat 1.2 0.80 0.067

Solutiont Ca 0.50 0.57 0.11
Mg (.95 0.90 0.095

x107

Conditions: 30 mM potassium chlonde, 2 mM magnesivm chloride, 4 mM ATF, 20 mk
MOPS at pH 7.0, 10 mM DTT, with* ¥ or without® 0.5% (w) methylcellulose,

‘Estimated from the analysis of kength fluctuation in the steady-state phase in single-mok
ecule analysis.

TEstimated from the average length change i the polymerization phase in single-mole-
cule analysis.

H50btaned from the inital rate of increase in the fluorescence mtensity in salution in the
presencet or absence® of methwicellulose.
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Dynamics of individual microtubules in cells

From Rodionov and Borisy, 1997, 1999

microtubule moves - how can we distinguish if this is transport or treadmilling?



