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Démoulin et al, 2014

last time: Force production by actin filament assembly in vitro and in vivo

Heinemann et al., 2011



slide 2Weichsel and Schwarz, PNAS, 2010

Orientation matters: Anomalies in force-velocity relationship result from change 

of filament orientation
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Filament orientation in fast and slow cells

Weichsel et al.,

2012
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Persistence length Lp

Pritchard et al., Soft Matter, 2014

Filament length matters for force production

for 1 μm actin filament 
with ξ = 10 μm 

Fcrit =  0.5 pN

buckling force
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What proteins could regulate actin filament length in the 

branching network?
a

0 min 3 min 6 min 9 min

0 min 3 min 6 min

10 µm

Rate :

2 to 3 µm/min

Essential Proteins :
N-WASP IcsA-bound
Arp2/3 0.1 µM
Capping Protein 0.1 µM
ADF 2    µM
ATP-actin+F-actin 8    µM

Useful Proteins :

Profilin 2     µM

a-actinin 0.5  µM

VASP                     0.1 µM

almost all of them!
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Bear et al., Cell, 2002

VASP increases actin filament length and protrusion speed

but decreases protrusion persistence
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Small et al., 2008

filament length is difficult to measure with electron microscopy

negative staining

freeze-drying/metal replication

electron tomography
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now:

estimation of filament length with optical microscopy

how the cell makes long, unbranched filaments

molecular motors
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criss-cross pattern in the lamellipodia
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EM: platinum replica
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EMfluorescence
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blurred EMfluorescence

Verkhovsky et al. Mol. Biol. Cell, 2003

blurred EM corresponds well to fluorescence pattern:
pattern is due to filament density variation
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Simulating images of the lamellipodia

density map

diffraction spot of
our optical system

Growing filament

Capped filament

Arp2/3

Capping protein
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Concentration = 1160  550 mm/mm3 = 900  400 μM

(1580  613 mm/mm3, Abraham et al. Biophys. J. 1999)

Image contrast: estimation of filament 
concentration

Contrast  St.D.     Mean

=b [actin]

b =0.18
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Image texture : visual comparison

L=4mm R=500mm dq=1° L=1mm R=500mm dq=1° L=0.3mm R=500mm dq=1°

L=4mm R=10mm dq=20° Experimental Exp. +0.1mM cytochalasin D
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Correlation length
x

x+dx

x-axis
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Orientational distribution of correlation length
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m

)
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Experimental

Simulations

Filament Mean Length=1.3μm

Curvature Radius=10 μm

Branching Fluctuation=20°

Capping Rate0.23 s-1

Depolymerizing Rate  0.015s-1

Schaub et al., J. Cell Sci., 2007
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Suraneni et al., JCB, 2012

ARPC3+/+ ARPC3-/-

Arp2,3 is essential for lamellipodia,

but not essential for cell spreading
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There are other actin structures in the cell, besides lamellipodium:

filopodia, stress fibers in the lamellum

How do they form?
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Svitkina TM et al. J Cell Biol. 2003 Feb 3;160(3):409-21.

Mechanism of filopodia extension from lamellipodial network
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Svitkina TM et al. J Cell Biol. 2003 Feb 3;160(3):409-21.

Mechanism of filopodia extension
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Stress fibers seems to assemble independently of the lamellipodia

lamellipodia

filopodia

stress fibers
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Actin patches and cables in yeast: cables require formins

M. Evangelista, D. Pruyne, D.C. Amberg, C. Boone and A. Bretscher, 

Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 4 (2002), pp. 32–41. 



slide 29

C. Higashida, T. Miyoshi, A. Fujita, F. Oceguera-Yanez, J. Monypenny, Y. Andou, S. Narumiya and N. Watanabe, 

Actin polymerization-driven molecular movement of mDia1 in living cells.

Science 303 (2004), pp. 2007–2010.

Processive movement of formin mDia in animal cells by

single molecule FSM

Cytochalasin D
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Reconstruction of formin-stimulated motility in vitro

Romero et al., Cell, 2004



slide 31

Formins and ENA-VASP family proteins work like end-tracking motors
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acceleration of actin elongation by delivery of profilactin complex
by formin FH1 domains

Paul and Pollard, 2009
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Bombardier et al., 2015

Competition between formin and capping protein by single molecule fluorescence
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formin interacts with microtubule end-binding protein CLIP-170
to grow actin filaments from microtubule ends
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Formins (mDia) contribute to the assembly of stress fibers

Hotulainen and Lappalainen, JCB, 2006
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Tee et al., NCB, 2015

cellular chirality emerges from actin dynamics:
possible role of filament rotation while elongating from formins
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hypothesis on chirality arising from formin-mediated filament rotation

Tee et al., NCB, 2015
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Role of formins in filopodia formation

Schirenbeck et al., NCB, 2005
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Third actin nucleator – Spire

(identified in Drosophilla, contains four WH2 domains)

Quinlan et al., Nature, 2005

Baum and Kunda, Current Biol., 2005
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polymerization is not enough:

assembly at the front, translocation at the back

Schaub et al., 

MBC, 2007

Is there an independent mechanism of force generation at the back?
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Motor proteins

Cartoon of kinesin moving along a microtubule 

(Vale lab website)
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Microtubule-dependent  motors

kinesins: 

+ and – end directed

dyneins:

-end directed

microtubule polarity
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Actin-dependent motors: myosins
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myosin II in the muscle
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similar molecular designs in different motor proteins



slide 46

ways to study motors in action

motors on the surface,
filaments in the solution

microtubule on the surface,
motors on a bead
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Kinesin’s steps and forces

Svoboda et al., Nature, 1993

Svoboda and Block, Nature, 1994
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Biophysical properties of motors

step size

stall force

processivity: how many steps can motor take without detaching
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Myosin V is a processive actin-based motor

Mehta et al., Nature, 1999
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What is the mechanism of processivity?
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What is the mechanism of processivity?

two active sites

hand over hand?

inchworm?
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could be distinguished by labeling just one motor head in the dimer
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Yildiz and Selvin 

Acc. Chem. Res., 2005

Step sizes and dwell times for myosin V suggest hand over hand mechanism
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Yildiz and Selvin, Acc. Chem. Res., 2005

Kinesin

Myosin VI
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Next time:

what if there are many motors on the same cargo?

what microtubule-dependent motors do in the cells
(transport, mitosis)


