last time: Dendritic nucleation model of actin assembly in the lamellipodia
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today:

reconstitution of force generation by branching actin array in vitro
other models of force generation by actin assembly

experimental force measurement in vitro and in vivo

properties of actin branching array in vivo
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Reconstitution of actin-based movement
from pure proteins (Loisel et al., Nature 1999)

Proteins required for movement:

1) N-WASP (resp. ActA)-activated
Arp2/3: site-directed generation of
barbed ends

2) Actin, ADF/cofilin,Capping protein:
chemostat maintaining a high steady-
state concentration of ATP-G-actin

 Not required, but Improve movement:

—VASP, Profilin, o-actinin.
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Movement of E. coli (IcsA) and Listeria monocytogenes
with pure components.

E.coli lcsA

Rate :
2 to 3 um/min

lisleria

Essential Proteins :

N-WASP IcsA-bound
Arp2/3 0.1 uM
Capping Protein 0.1 uM
ADF 2 UM

ATP-actin+F-actin 8 pM

Useful Proteins :

Profilin 2 UM
o-actinin 0.5 uM
VASP 0.1 uM
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Movement of E. coli (IcsA) and Listeria monocytogenes
with pure components.

E. coli IcsA
Rate :
~2 um/min

Listeria
Rate :
~3 um/min
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Movement of E. coli (IcsA) and Listeria monocytogenes
with pure components.

Bacteria
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Movement of E. coli (IcsA) and Listeria monocytogenes
with pure components.

Low CP concentration
Slow Rate : less than
1 um/min

Poor capping of
the branches
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Any object N-WASP-coated can move
In minimal motility medium

« Eppur si muove » (Gallileo 1633)
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thermodynamics of force generation by filament assembly
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Polymerization Brownian ratchet

Theriot, 2000
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when filaments are flexible, force deflects them bu doesn't slow their growth
(inconsistent with Brownian ratchet)
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Force production by rigid filament bundles is consistent with
Brownian ratchet mechanism

urface to surface
distance {pm)
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Démoulin et al, 2014
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tethered Brownian ratchet: pushing and attached filaments

I- ActA/VASP/Arp2/3 protein complex
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/ actin filament
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Mogilner, A. & Oster, G. (2003) Biophys. J. 84, 1591-1605.
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N-WASP attaches barbed filament ends to the membrane
Co et al., Cell, 2007
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Alternative to Brownian ratchet — end-tracking motor

Mechanism
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Experimental measurement of polymerization force
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with optical trap for microtubules

(A) bead; in optical trap
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growing barrier
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tubulin subunits

Figure 16.49 Physical Biology of the Cell, 2ed. (© Garland Science 2013)
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with optical trap for actin

1000

800

Footer et al., PNAS, 2007
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assembly of many filaments: velocity independent of viscous drag up to 50 pN

e light scattering, a.u
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Wiesner, S., E. Helfer, D. Didry, F. Lafuma, M.-F. Carlier, and D. Pantaloni. 2003. J. Cell Biol. 160:387-398
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Fluctuations of velocity and tail density

Distance (um) ®

=4.8+0.5 um

cycle

AT,

cycle

=10.7+2.0 min

b
B
S
=
=
2
©
o
2

4 5 6
Diameter (um)

Grey level (a.u) ©

60
Time (min)

Bernheim-Groswasser, A., Wiesner, S., Golsteyn, R. M., Carlier, M. F. & Sykes, C. (2002) Nature 417, 308-311
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Effects of branching kinetics:
autocatalytic branching results

In increase of filament density with force
and flat force-velocity relationship

150

F . .a/kT

obst

Carlsson AE. Biophys J. 2003 May;84(5):2907-18.
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force-velocity relationship for actin network
measured with AFM cantilever
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Figure 16.50 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

see also: Bieling et al., Cell, 2016 slide 23



Measurement of force-velocity relation for actin comet-tall
with a flexible glass needle
flexible coating
micropieette

N-WASp
solution

Marcy Y, Prost J, Carlier MF, Sykes C. Proc Natl Acad Sci U S A. 2004 101:5992-7. slide 24



Fig. 3. Fast-pulling, detachment, and regeneration of a comet
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force-extension curve allows estimation of elastic modulus
Marcy, Yann et al. (2004) Proc. Natl. Acad. Sci. USA 101, 5992-5997
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elastic gel model of force generation
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Force-velocity relation
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Alternative (?) to Brownian ratchet — elastic gel theory
- symmetry breaking and propulsion

Marcy Y, Prost J, Carlier MF, Sykes C. PNAS, 2004; Gocht et al., PNAS, 2005
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Are elastic gel and Brownian ratchet models
really alternative?

They consider events at different scales:
could be complementary to each other (?)

What is the feature that could distinguish
between the two models?
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Brownian ratchet model implies
that filaments grow with their ends to the surface

In elastic gel theory filament orientation is not important
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Brownian ratchet model implies
that filaments grow with their ends to the surface

In elastic gel theory filament orientation is not important

Determining filament orientation and visualizing how they push
would help to distinguish between the two models:

- In a reconstituted in vitro motility system

Achard et al., Current Biology 20, 423-28, 2010
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Autoctalitic branching starts after flament “primer” contacts a particle
functionalized with Arp2,3 activator. Filaments grow away from the particle.
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Capping protein limits the size of actin network around the particle
and increases its density

experiment
simulation
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Multiple actin shell-breaking leads to motility

experiment model
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Synthes of elastic gel and Brownian ratchet models
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ellipsoidal beads move in two orientations

Lacayo et al., MBoC, 2012
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Explained by a hybrid model
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Zhu, Mogilner, PLoS Comp. Biol. slide 36



actin organization and polymerization forces in the cell:

Measuring protrusive forces in vivo

Is the filament organization at the cell edge really similar
to the branching network generated in vitro?

What is the filament length?

How are filaments oriented?

Problems of EM: difficult to measure, prone to artifacts
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Brownian ratchet model implies
that filaments grow with their ends to the surface
In elastic gel theory filament orientation is not important
What is the filament orientation in reality?

- In the lamellipodia of migrating cells filaments are oriented with barbed
ends towards the edge, consistent with Brownian ratchet model
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Direct determination of actin filament polarity
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Branches and polarity
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Narita et al., JMB, 2012 slide 40
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Selection of fllament orientation

A=y y-8 by

Maly 1V, Borisy GG. Proc Natl Acad Sci U S A. 2001 98:11324-9

slide 42



Experimental measurement of polymerization force in the cells
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lamellipodial protrusion stalled with fluid flow

Bohnet et al., Biophys. J., 2006
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force to stall the edge estimated in a few pN range
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IRM: competition between the external force
and the nascent contacts at the very tip of the
lamellipodia
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Measuring protrusive force with the AFM

~ afm-cantilever

‘ : : microscope
slide

objective

Prass et al., J. Cell Biol., 2006
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With optical fiber

light source /
condenser
(phase contrast)

beamsplitter

pulled glass rod

Heinemann et al.,
BJ, 2011
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Filament reorganization and/or deformation may be responsible
for convex up force-velocity profiles in vivo

modes of filament deformation

Figure 10.2 Physical Biology of the Cell, 2ed. (© Garland Science 2013)
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filaments are flexible
persistence length

fluorescently labeled
actin filament

i
beads held
in optical
traps
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Flexible chain

Semiflexible filament

Rigid rod

Fig. 1 Chain conformation depends on persistence length, L, and
contour length, L.. Flexible chains take a random coil formation,
semiflexible filaments are comparatively straight with thermally
induced bending undulations, and rigid rods are not influenced by

thermal energy.

Pritchard et al., Soft Matter, 2014

Persistence length L
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Actin filaments:
bending, torsional and
coupled twist-bend
persistence lengths

De la Cruz and

ENEEEEEE  Gardel, 2015
I
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to buckle, work of buckling force should exceed strain energy of bending

Figure 10.33 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

for 1 ym actin filament with £ = 10 pm

F.i: = 0.5 pN
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long filaments or short filaments?
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Figure 1. Multiple branching of actin filaments in lamellipodia. EM of lamellipodia of Xenopt. a-g) and fibroblasts (h-o)
sho 3 of the leading edge (a and h) and enlargements of the boxed regions (h-g and / xamples of filaments
cyan) can be visualized in lamellipodia despite the high overall density of the actin network
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Svitkina and Borisy, 99

Small, Herzog and Anderson, 95
Related to length:
network stiffness,
branching and capping frequency

slide 55



Short branching filaments — real or artifact of EM?

electron tomography

Ing

INn

lve sta

negat

freeze-drying/metal replication

Small et al., 2008
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nhext time:
estimation of filament length with optical microscopy
how the cell makes long, unbranched filaments

molecular motors
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