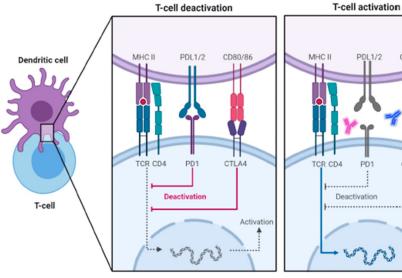


FDA approvals: antibodies on the rise

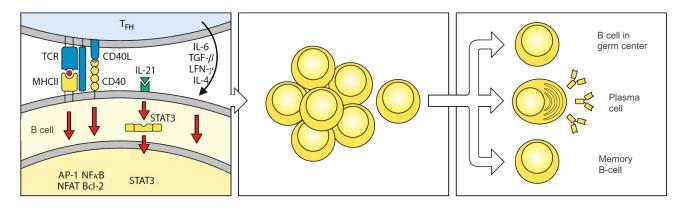


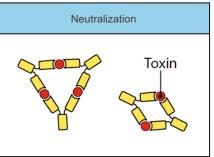
2020

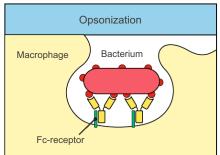
2022

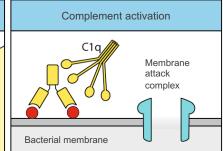
Immune checkpoint **inhibitors**

CD80/86 CTLA4 Activation

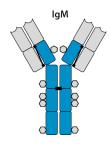

Anti-CTLA-4 Inhibitors: Ipilimumab Tremelimumab

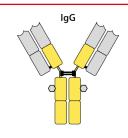

Anti-PDL1 Inhibitors: Durvalumab Avelumab Atezolizumab


Anti-PD1 Inhibitors: Nivolumab Pembrolizumab Tislelizumab Sintilimab Camrelizumab Toripalimab Spartalizumab Penpulimab

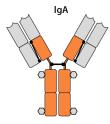


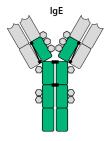
The humoral adaptive immune response



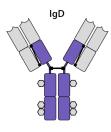


EPFL


IgG is the most common antibody class

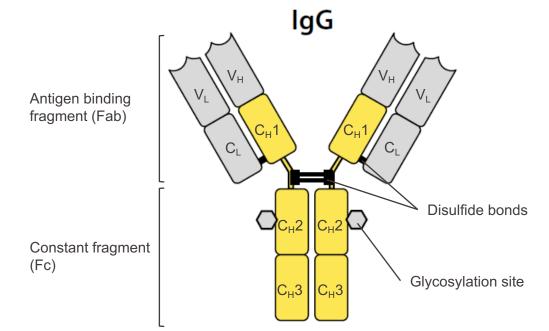

- First soluble immunoglobulin during immune reaction
- · Usually low affinity
- Pentamer
 - → avidity
 - → complement activation

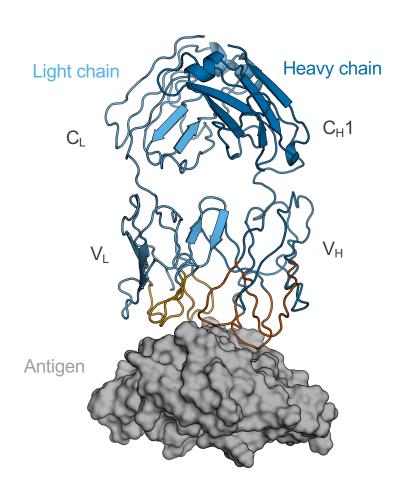
- Most prevalent human antibody
- Mediates immunity in extracellular space
 - Requires class switch (IgM → IgG)

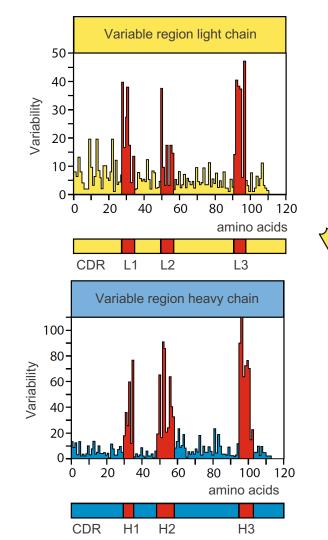


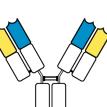
- Secreted antibody
- Mucosa-associated class (e.g. digestive tract)
- Can be monomer, dimer, or trimer

- Protection against parasites
- Associated with allergies


Funciton unclear

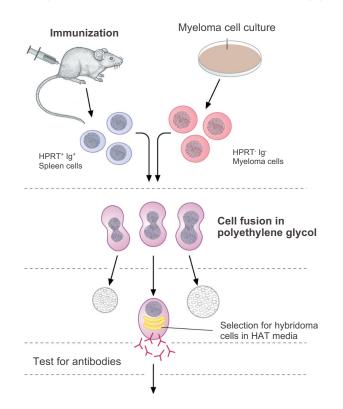


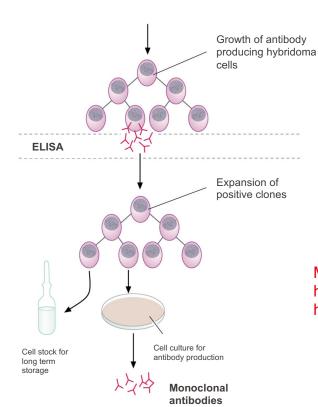

The structure of IgG

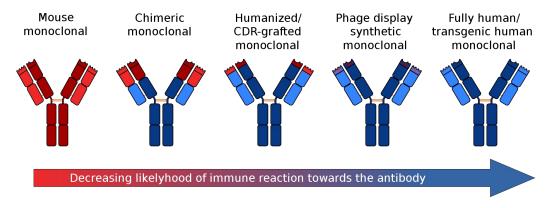


- IgG is a Y-shaped protein
- 2 light (L) and 2 heavy (H) chains
- Antibodies can be cleaved into antigen binding and constant fragments
- Constant (C) and variable (V) domains
- Stabilized by disulfide bnds
- Glycosylation on the Fc part

Fab: antigen binding






Monoclonal antibodies: Hybridoma technology

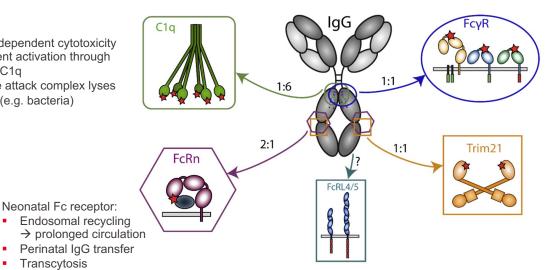
Murine antibodies are highly immunogenic to humans!

Humanization of therapeutic antibodies

- Chimeric: fusion of variable domains (e.g. from mouse antibody) with constant domains from human antibody
- Humanized: grafting (transferring) CDRs from mouse antibody to a human antibody
 - Selection of a human antibody closely matching the structure/sequence of the mouse antibody
 - Often results in reduced affinity (non-matching framework regions / vernier zones)
- Synthetic mAb: guided selection
- Humanization methods may be less important with the emergence of single B-cell sequencing for identification of fully human antibodies

Beyond Antigen binding: Effector functions

Nicolas Goldbach


CDC:

Complement dependent cytotoxicity

- Complement activation through binding of C1q
- Membrane attack complex lyses target cell (e.g. bacteria)

Neonatal Fc receptor:

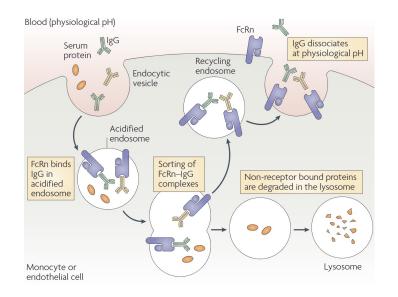
Transcytosis

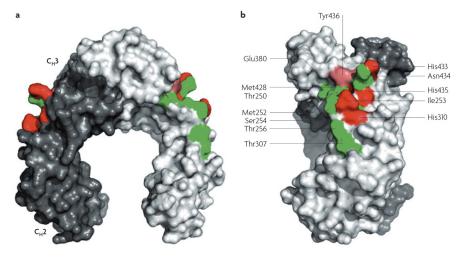
Fc receptors:

- Antibody dependent cellular cytotoxicity
- Antibody dependent cellular phagocytosis

ADIN:

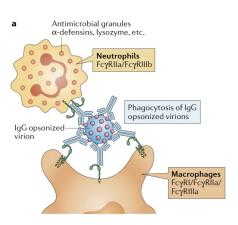
Antibody dependent intracellular neutralization

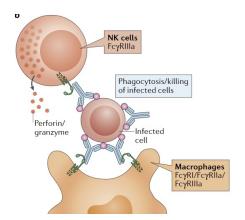

- Recognition of internalized IgG
- Intracellular bacteria / virus
- Trim21 = E3 ubiquitin ligase
 - → Ab mediated proteolysis

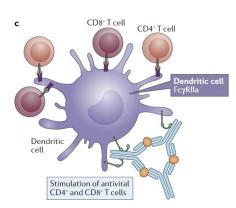

Fc like receptors:

- Present on B-, NK-, and T-cell (subsets)
- Regulation of humoral immune response?

Prolonged circulation: Endosomal Recycling

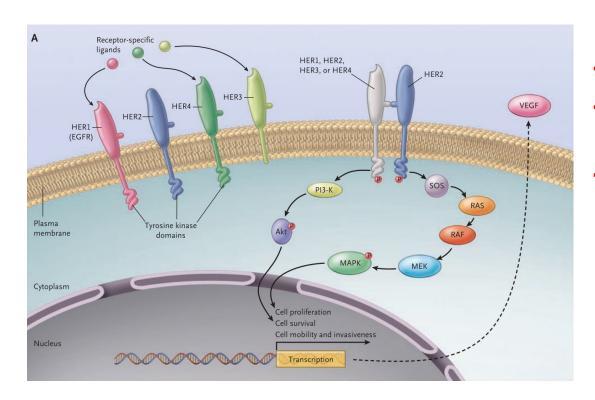

pH dependent binding of IgG Fc is mediated through histidine residues 310 and 435 located the $C_{\rm H}2$ domain


→ Most (but not all) antibodies, which can bind to FcRn have an increased half-life in blood plasma



Fc Receptors mediate effector funcitons

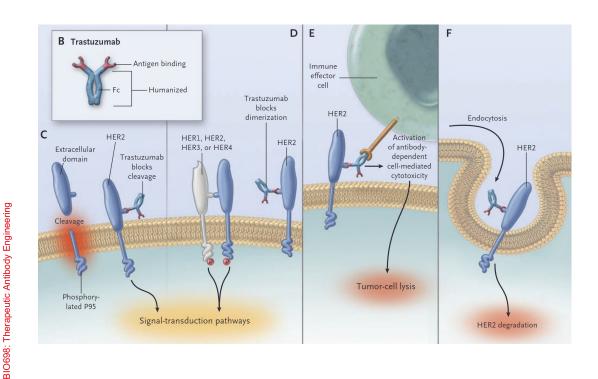
	Inhibitory Fc receptor					
Human						
Structure	γ_2	Pα	α	72	α-GPI	α
Name	FcγRI	FcγRIIA	FcγRIIC	FcγRIIIA	FcγRIIIB	FcγRIIB
Affinity	High	Low to medium	Low to medium	Low to medium	Low to medium	Low to medium
Alleles		FcγRIIA ^{131H} FcγRIIA ^{131R}		FcγRIIIA ^{158V} FcγRIIIA ^{158F}	NA1 NA2	FcγRIIB ^{232I} FcγRIIB ^{232T}


Choosing the right scaffold: IgG subtype

- Subtype of IgG will affect half-life of the therapeutic antibody
- Additional cysteines may cause tertavalent antibodies (IgG2)
- Chain exchange with in-vivo antibodies may lead to heterogenous antibodies (IgG4)
- Therpeutically relevant antibody subtypes: IgG1 and IgG3
- Subtype can affect effector function efficacy (e.g. IgG1 has lower CDC)

	lgG1	lgG2	lgG3	lgG4
Functional form <i>in vivo</i>	Monomeric bivalent	Dimeric tetravalent ^a	Monomeric bivalent	Half-lg monovalent
Biological role in host response	Protein antigens	Carbohydrate antigens	Protein antigens	Response to chronic stimulation, anti-inflammatory
Percentage of all IgG in humans ^b	60%	25%	10%	5%
Half-life (range in days) ^c	36.3 ± 9.2 (17.6–56.2)	37.1 ± 13.9 (22.9–62.5)	28.6 ± 10.4 (13.0–50.2)	15.6 ± 4.5 (7.1–24.7)
Allotypes ^d	4	1	13	0
FcRn ^e	+	+	+	+
Hinge length (number of amino acids)	15	12	62	12
Potential (actual) inter-heavy chain disulfide bonds in hinge region	2 (2)	4 (4? ^f)	11 (11)	2 (2)
Effector functions				
C1 ^e	++	_	+++	-
FcgRI ^e	+++	_	+++	++
FcgRII ^e	+	±	+	?
FcgRIIIa/b ^e	+	_	+	±

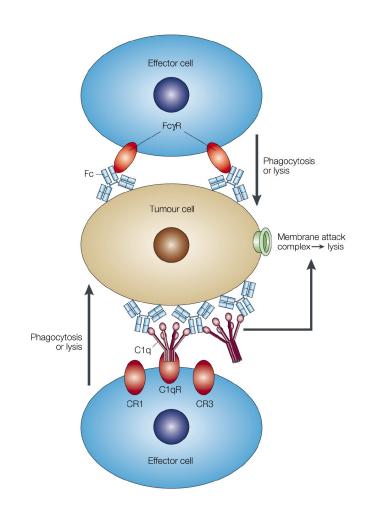
EPFL


Breast cancer: HER2 overxpression

- HER2 overexpression in 20-30% of invasive breast cancer
- Overexpression results in ligand independent homo- and heterodimerization of EGFR → increased cell proliferation
- Downstream effect of HER2 signalling: VEGF expression
 → Increased angiogenesis

Trastuzumab (Herceptin)

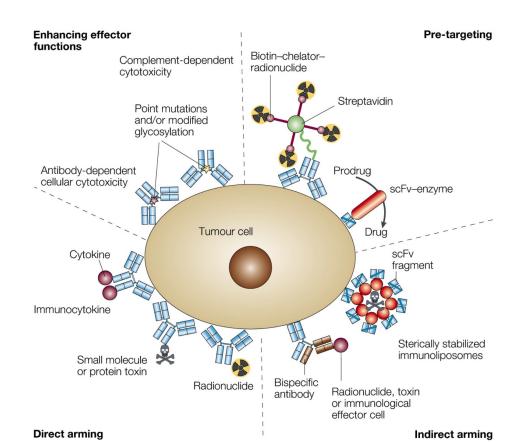
- Humanized through CDR grafting
- First approved humanized antibody (Genentech)
- Plasma half-life ~5.8 days
- Only 1 case of HAHA (human-antihumanized-antibody) response in 903 patients


Mechanism of Trastuzumab

- Prevents shedding of HER2
- Blocks dimerization
- Induction of ADCC
- Clustering induces receptor internalization via endocytosis

Low success of mAbs in Tumor Therapy

- Deplenished immune cell population in patients after chemotherpay / radiation
- Immunosuppressive microtumor environment
- → reduced ADCC
- Expression of inhibitory proteins (CD46, CD55, CD59) on tumor cells
- → reduced CDC



NICOIAN

How can we enhance efficacy of natural antibodies?

EPFL

Therpeutic antibodies: Armed Antibodies

Mylotarg: Toxin armed mAb

- mAb humanized from mouse
- Target: CD33 (acute myeloid leukemia)
- Antibody conjugated with Calicheamicin (bacterial toxin)
- NHS coupling to lysine (on average 2-3 toxin molecules per mAb)
- After internalization of the ADC Calicheamicin breaks DNA
 → Apoptosis

Antibody Engineering of armed antibodies involves intensive linker chemistry!

Biologically instable linker:

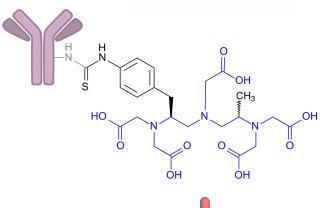
- 1) Disulfide bridge: reduction upon internalization
- 2) Hydrazone: hydrolysis under acidic conditions

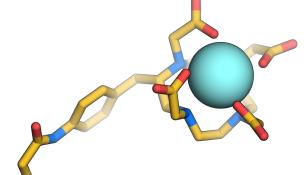
Development of a radioactive mAb

Disease: B-cell non-Hodgkin's lymphoma

Target: CD20 (B-cells)

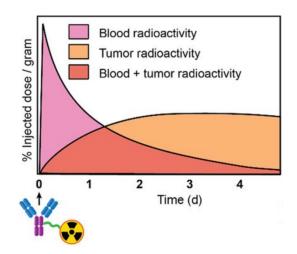
Ibritumomab: murine mAb targeting CD20

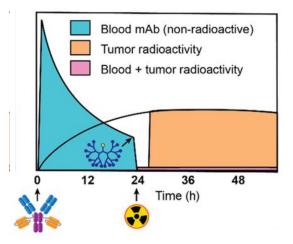

Do we need to humanize the mouse antibody?


→ No, we will eradicate all immune cells with this antibody – so there can not be a immune response!

Zevalin: 90**Yttrium Ibritumomab Tiuxetan**

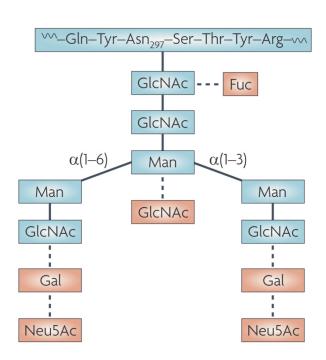
- Coupling of a chelating agent (Tiuxetan, DTPA derivate) to Ibritumomab
- Tiuxetan can bind multiple isotopes:
 - 111 In3+ (diagnosis)
 - $-90Y^{3+}$ (therapy, $t_{1/2} = 64 \text{ h}$)
- 90Y3+ will penetrate solid tissue (range of about 200 cells)
- Most successful therapeutic antibody
- Comparison to non-armed antibody equivalent: 80/56% overall response, 30/16% complete remission





Pretargeting: Reducing Side Effects

- Strategy to reduce the exposure of healthy tissue to toxic or radioactive compounds of armed antibodies
- Administration of targeting antibody without toxin or radionuclide
- Independent administration of low molecular weight toxin / readionuclide leads to accumulation at the target site
- Pretargeting antibody is required to remain on the surface of the cell (Endocytosis!)
- Difficult pharmacokinetics (two-component system)



Glyco-Engineering: Enhancing natural effector functions

- IgG carries glycolylation at Asn297 in the Fc part
- Glycosylation is of complex diantennary type
- 20% of IgG glycosylated, about 128-512 glycoforms!
- Glycosylation is dependent on the enzyme repertoire of the producing cell
- terminal α-2,6-linked sialic acid
 → anti-inflammatory activity
- CHO, NS0, Sp2/0 cells: >90% fucosylated IgG
 → decreased ADCC
- Roche GlycoMAB: Cell line for recombinant expression of non-fucosylated antibodies

