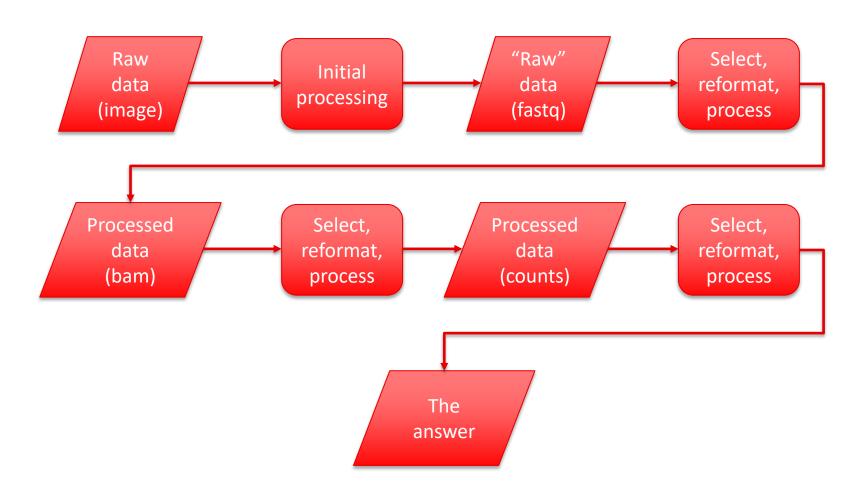


BIOC | BioInformatics Dompetence Center

Bioinformatics Analysis of RNA-sequencing

BIO-693



Allison Burns, Maxime Jan, Linda Mhalla, Christian Iseli & Nicolas Guex – summer 2023 –

Program of the course

- Day 1: Working with data at the command line
 - A refresher of bash and R, tips and tricks for data reproducibility
- Day 2: Preparing sequence alignments
 - Downloading and aligning raw RNA-seq data, sequences QC
- Day 3: Bulk RNA-sequencing workflows
 - Getting counts per gene, samples QC, DE, visualization, gene ontology
- Day 4: Single cell RNA-sequencing workflows
 - Filtering and normalizing, clustering and cell type assignments
 - Differential expression analysis and visualization
- Day 5: Prepare and present reports of independent student analysis performed in teams

Bioinformatics analysis

This morning

- Connect to the cluster
- Quick tour of Unix commands
- Containers
- Retrieve raw data to analyze

Create and use **ssh** keys

Private key

Public key

Create an ssh key pair

Note

- Part of commands in angular brackets need to be adapted
- E.g.
 - if your username is "iseli"
 - and the command is "ssh <username>@izar.epfl.ch"
 - you need to type the command as "ssh iseli@izar.epfl.ch"

Some ssh basics

- Generate a key pair ssh-keygen
- Organize keys
 - .ssh/
 - id_rsa
 - id_rsa.pub
 - authorized_keys
- Agent and forwarding
- Connect to destination ssh <user>@<host>

Example GEO GSM5615574

- URL
 - https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5615574
- Select GSE185453 (RNAseq data)
 - https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185453
- Go to SRA run selector (link near bottom of page)
 - https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA769123
- Download metadata for all samples
 - Should obtain a text file named SraRunTable.txt

Many base file formats are text based

- Line based
 - Can be further split in columns by separator character, tsv, csv
- Group of lines
 - Some lines with special marking
- Mix of the above

Basic shell commands

- ls, ls -l, pwd, cd, mkdir, cat, cp, mv, rm
- stdin, stdout, stderr, >, >>, <,
- Need to rudimentary learn 1 text editor (e.g., vim)
- grep, less, wc, echo, cut, head, tail, sed, sort, uniq
- Be aware of \$PATH, env and export
- Be aware of .bashrc, .bash_profile, .bash_history
- Useful to learn variables and arithmetic \$((i + 1))
- Some characters have a special meaning to the shell

• Documentation: man, info, web search

Learn basics of regular expression and globbing

- All shell implement some kind of file globbing
- Many Unix commands make use of regular expressions
- Implementation details vary
- Playground can be useful:
 - https://regex101.com/
 - https://regexr.com/

Organize data

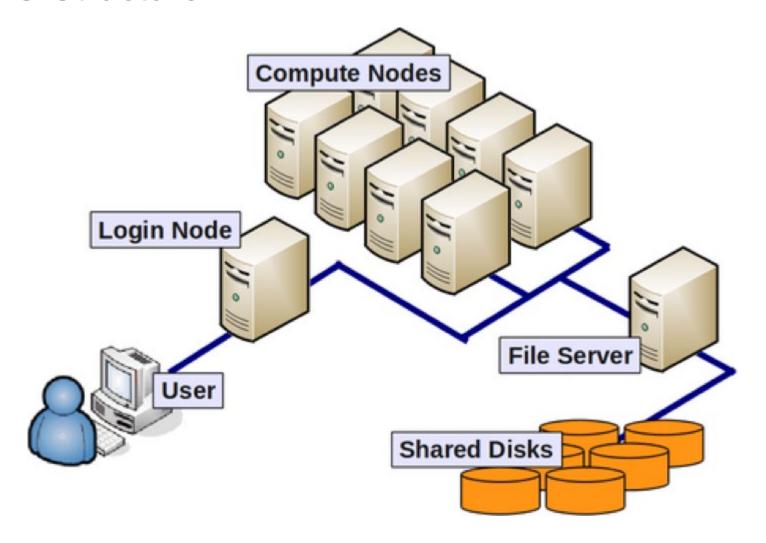
- Unix uses file paths, e.g., /work/bix/course
- / has a special meaning as a separator
- A full path always starts with a slash /
- A path is relative if it does not start with a slash
- . is the current directory, . . is the parent
- Unix has a concept of symbolic link ln –s
- Each cluster has its own set of conventions
 - /tmp short term temporary files
 - /scratch scratch space
 - /work longer term data storage
 - /home user scripts

Group and compress

- Group using tar
- Compress using gzip, bzip2, xz, 7za
- Group and compress using zip

Retrieve data from the web

- wget
- curl
- SRA toolkit https://hpc.nih.gov/apps/sratoolkit.html
- Cloud toolkits e.g., aws-cli
- https://scitasdata.epfl.ch/confluence/display/DOC/Mount+a+NAS+share
- dbus-run-session -- bash
- MYSHARE="smb://intranet;<user>@svnas1.rcp.epfl.ch/pteg-raw/Lecture"
- gio mount \$MYSHARE
- gio { list | copy } \$MYSHARE/<dir>/<file>
- gio mount -u \$MYSHARE

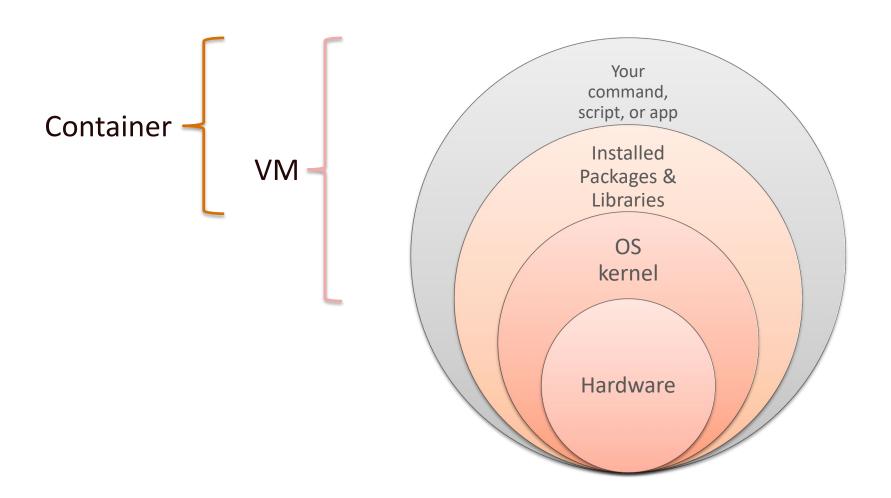

Simple bash scripting

- Process and subprocess ps, htop, jobs, history
- source and . vs new process
- Executable files hashbang
- Background, detach, &, &&,

Persistent sessions: screen and tmux

- By default, act as a transparent layer
- Can launch several, with different names
- Control character to enter a command
 - Ctrl-A in screen, Ctrl-B in tmux by default
- Configuration file in your home
 - .screenrc and .tmux.conf

HPC Structure



From https://hbctraining.github.io/Intro-to-shell-flipped/lessons/08 HPC intro and terms.html

Cluster, frontal and nodes

- Connect on the frontal
 - Launch tmux or screen
 - Prepare files
 - Prepare scripts
 - No compute on the frontal
- Use nodes to perform computation
 - Use Sinteract for interactive work
 - Use sbatch to submit non-interactive jobs
 - Time and resources are limited

Computer layers

Demonstration of container creation

- This video on mediaspace explains container creation
 - BIO-693 Bioinformatic Analysis of RNA-sequencing EPFL Ecole polytechnique fédérale de Lausanne
- Singularity is now named apptainer

Run container

Use -B < PATH> to make directories available in container

```
singularity shell \
    -s /bin/bash \
    -B /scratch/iseli \
    -B /work/bix \
    /work/bix/MicMap-2.4-f38.sif
```

Example SRA – setup

- Initial setup
 - vdb-config -interactive
- Need a proxy on the cluster
 - vdb-config --proxy '\$HTTP_PROXY' --proxy-disable no
- Check the resulting configuration
 - cat ~/.ncbi/user-settings.mkfg

Example SRA – retrieve

- Retrieve a sample
 - fasterq-dump --split-3 SRR24947468
- Retrieve stat info
 - sra-stat --quick SRR24947468 >SRR24947468_stat.txt
- Check retrieved data
 - cat SRR24947468_stat.txt
 - wc -l SRR24947468_1.fastq
 - echo \$((316088 / 4))
- Compress the fastq files
 - pigz --fast SRR24947468_?.fastq