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Features of RNA-seq data

Features of RNA-seq data
integer counts instead of continuous measurements and non-normally
distributed data
long right tail due to the lack of any upper limit for expression
low number of counts associated with a large proportion of genes
genes with larger average expression levels will tend to have larger
observed variances across replicates
low number of replicates and large expression range ⇒ large
variability within groups (samples)
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Features of RNA-seq data

Challenges in differential expression analysis

RNA-seq data are discrete counts
counts usually modelled by a binomial distribution (number of
successful events with a given occurrence probability)
if the probability of occurrence is small and the number of events is
large, the Poisson distribution is more suitable
mean ̸= variance ⇒ Negative binomial

Each sample will have a different number of reads assigned to it, due
to the fact that one sample might have more low quality reads, or
another sample might have a higher concentration on the flow cell
→ normalize counts to ensure accurate comparisons
RNA-seq data exhibit variability due to biological factors
→ borrow information across genes to lower variance of estimation
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Features of RNA-seq data

Outline of the course

Several software tools (DESeq2 and edgeR for the R statistical software)
have been developed for differential expression analysis and provide
comprehensive workflows for

data processing
model fitting
hypothesis testing

We will go through the technical statistical details of some of the tools
provided by DESeq2 (Love et al., 2014), namely

1 Normalization of raw gene counts
2 Principal component analysis
3 GLM for overdispersed counts
4 Modelling of RNA-seq data
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4 Modelling of RNA-seq data

5 Likelihood and Bayesian inference
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Normalization of raw gene counts

Normalization method in DESeq2

Let Kij denote the number of sequencing reads mapped to gene i in
sample j

DESeq2 uses the method of median of ratios (Anders and Huber, 2010)
where sample-wise normalisation constants are defined as

sj = median
i :KR

i ̸=0

Kij

KR
i

, KR
i = (

n∏
j=1

Kij)1/n

with size factor KR
i being the geometric mean of counts mapped to gene i

→ accounts for sequencing depth and RNA composition of the sample
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Normalization of raw gene counts

Normalization method in DESeq2

recommended for gene count comparisons between samples and for
DE analysis
→ since tools for DEA compare counts between sample groups for the
same gene, gene length does not need to be accounted for
not recommended for comparisons between genes within a sample
robust to imbalance in up-/down-regulation and large numbers of
differentially expressed genes as large outlier genes will not impact the
median ratio values
assumes that most genes are NOT differentially expressed

Remark: Usually, the normalization factors (for each sample j) are around
1. If you see large variations between samples it is important to take note
since it might indicate the presence of extreme outliers!
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Normalization of raw gene counts

Get normalized counts

Divide each raw count value in a given sample by that sample’s
normalization factor to generate normalized count values
DESeq2 doesn’t actually use normalized counts, rather it uses the raw
counts and models the normalization inside the Generalized Linear
Model (GLM): details to follow
normalized counts will be useful for downstream visualization of
results, but cannot be used as input to DESeq2 or any other tools
that perform differential expression analysis which use the negative
binomial model
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Normalization of raw gene counts

Normalized counts
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2 Principal component analysis

3 GLM for overdispersed counts

4 Modelling of RNA-seq data

5 Likelihood and Bayesian inference
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Principal component analysis

Principal component analysis: Introduction

PCA is a dimensionality reduction technique used to transform a
high-dimensional dataset into a lower-dimensional space while preserving
its essential features. PCA has various applications:

Data Visualization: PCA can be used to reduce the dimensionality
of data for visualization purposes, enabling the identification of
patterns and clusters
Data Compression: PCA can compress data by representing it in a
lower-dimensional space while retaining most of its variance

By capturing the most significant variations in the data, PCA provides a
lower-dimensional representation while preserving the essential
information
→ explore complex datasets, identify important features
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Principal component analysis

PCA for RNA-seq data

In the context of RNA-seq data, PCA
is applied before any downstream analysis to check if we should
expect to see some differences in the data
can help identify the most significant patterns of gene expression
across samples or conditions
→ look for points that cluster with each other, i.e., points that are
more similar to each other than they are to other group points
can help detect outliers (features that should be dropped to avoid
skewing results, mislabeling issues)
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Principal component analysis

PCA: Key steps

PCA involves several key steps:
1 Standardization: Since RNA-seq data often contains genes with

widely varying expression levels, it’s essential to standardize the data
to ensure that all genes contribute equally to the PCA

2 Covariance Matrix Computation: Calculate the covariance matrix
of the standardized data

3 Eigenvalue-Eigenvector Decomposition: Obtain the eigenvalues
and corresponding eigenvectors of the covariance matrix

4 Feature Vector Construction: Select the top k eigenvectors based
on their corresponding eigenvalues to form the feature vector matrix

5 Projection: Transform the original data onto the lower-dimensional
space using the feature vector matrix
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Principal component analysis

PCA: definition
PCA is performed on the logarithm of normalized data (or rlog)
→ moderate and stabilize the variance to improve the distance/clustering
→ avoid genes with large ranges dominating the variance

Let X = [ X1, · · · , Xp] ∈ Rn×p be the matrix of such transformed counts,
where n is the number of samples in the dataset and p the number of
genes
We compute the covariance matrix

C = 1
n − 1XT X

and proceed with its eigenvalue-eigenvector decomposition given by

C = VΛVT

where V is the matrix of eigenvectors, and Λ the diagonal matrix of
eigenvalues
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Principal component analysis

PCA looks for a linear combination with maximal variance that would
separate out the multidimensional objects
→ select the top k(< p) eigenvectors by rearranging the eigenvalues in
descending order and choosing the corresponding eigenvectors:
W = [v1, v2, . . . , vk ] ∈ Rp×k

We project the original data onto the lower-dimensional space spanned by
the selected eigenvectors

Y = XW

For example,
sample j : xj = [ gene1, gene2, · · · , genep]
l-th eigenvector vl = [ vl1, vl2, · · · , vlp]⊤

Thus, the l-th PC score of sample j is PClj = xjvl

→ the position of sample j in the new coordinate system of PCs
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Principal component analysis

PCA: interpretation

The principal components represent new orthogonal variables obtained
from the original dataset

the first principal component captures the maximum variance in the
data
subsequent principal components capture the remaining variance in
decreasing order
the size of the loadings vli indicates how much the i-th gene
contributes to the l-th PC
→ suppose that v1is are large for a certain class of genes but small for
the others. Then, PC1 can be interpreted as representing that class
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Principal component analysis

Example
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Principal component analysis

Example: mislabeling
Iris dataset: sepal length, sepal width, petal length, petal width
biplot shows how strongly each feature influences a PC

positive loadings indicate that a feature and a PC are positively
correlated whereas negative loadings indicate a negative correlation
large loading indicates that a feature has a strong effect on that PC

biplot: angles between vectors reflect their correlation
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→ PC1 represents having
smaller sepal widths and
larger sepal lengths
→ PC2 refers to having
lower sepal measurements
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Principal component analysis

Example: mislabeling
What went wrong?
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→ check the meta data
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Principal component analysis

Example: outlier?

What went wrong?
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moving a sample
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GLM for overdispersed counts

Generalized Linear Model: Introduction

Linear models are only suitable for data that are (approximately)
normally distributed
However, there are many settings where we may wish to analyse a
response variable which is not necessarily continuous, including
when

Y is binary
Y is a count variable
Y is continuous, but non-negative

Generalized linear models (GLMs) extend the linear regression model to
handle various types of response variables and non-normal error
distributions
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GLM for overdispersed counts

Generalized Linear Model: Introduction
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GLM for overdispersed counts

Common GLM Families

GLMs can accommodate different types of response variables through
specific distributions and link functions. Some common families include:

Gaussian Family: Used for continuous responses
Binomial Family: Used for binary or categorical responses
Poisson Family: Used for count data (discrete and positive)
Gamma Family: Used for positively skewed continuous responses

GLMs combine a model for the conditional mean with a distribution for
the response variable and a link function tying predictors and
parameters
→ linear regression (with normal errors) is a special case of a generalized
linear model
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GLM for overdispersed counts

Families for count data

The Poisson distribution describes the number of events occurring in a
given time interval
→ event: read alignment to gene A: 1 count

the probability mass function is

Pr(Y = y) = µy

Γ(y + 1)e−µ, y = 0, 1, 2, . . .

the parameter µ of the Poisson distribution characterizes both its
mean and variance, meaning E(Y) = Var(Y) = µ
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GLM for overdispersed counts

Families for count data
When variability in counts is much larger than the mean, a phenomenon
termed overdispersion, the Poisson distribution is no longer appropriate

→ the negative binomial model is often used as replacement for
overdispersed count data
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GLM for overdispersed counts

Negative binomial distribution
the negative binomial distribution is a probability distribution for
integer random variables with two parameters
we restrict attention to the most common parametrization used in
modelling. The probability mass function is

Pr(Y = y) = Γ(y + 1/α)
Γ(y + 1)Γ(1/α)

( 1/α

1/α + µ

)1/α (
µ

1/α + µ

)y

for y = 0, 1, 2, . . ., where Γ denotes the gamma function. Both
parameters are positive, i.e., µ > 0 and the dispersion α > 0
the mean and the variance are

E(Y) = µ Var(Y) = µ + αµ2

the variance of the negative binomial distribution is always larger
than its mean
we denote Y ∼ NB(µ, α)
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GLM for overdispersed counts

Notation for generalized linear models
the starting point is the same as for linear regression:

we have a random sample of independent observations

(Yi , Xi1, . . . , Xip), i = 1, . . . , n

where Y is the response variable and X1, . . . , Xp are p explanatory
variables or covariates which are assumed fixed (non-random)
the goal is to model the response variable as a function of the
explanatory variables

let µi denote the (conditional) mean of Yi given covariates,

µi = E(Yi | Xi1, . . . , Xip)

let ηi denote the linear combination of the covariates that will be
used to model the response variable

ηi = β0 + β1Xi1 + · · · + βpXip
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GLM for overdispersed counts

Definition of generalized linear model

there are three building blocks to the generalized linear model:
a probability distribution for the outcome Y that is a member of the
exponential family (normal, binomial, Poisson, gamma, inverse
Gaussian, . . . )
a linear predictor η = Xβ
a function g , called link function, that links the mean of Yi to the
predictor variables, g(µi) = ηi

the link between the mean of Y and the regression “line” is

g {E(Y | X1, . . . , Xp)} = β0 + β1X1 + · · · + βpXp
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GLM for overdispersed counts

Negative binomial regression

negative binomial regression assumes that the response variable Y
follows a negative binomial distribution and that the link function
is the logarithmic function

g{E(Yi)} = log{E(Yi)} = β0 + β1Xi1 + . . . + βpXil.

the dispersion parameter α, is assumed to be the same for every
observation and therefore doesn’t depend on the predictor variables
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Modelling of RNA-seq data

RNA-seq modelling
Let K be the matrix of raw counts with one row for each gene i and one
column for each sample j
→ Kij is the number of reads aligned to gene i in sample j
For each gene i , we assume

Kij ∼ NB(sjqij , αi),

where
sj is the normalization constant in sample j
qij is the normalized count of gene i in sample j
αi is the dispersion of gene i

→ µij = sjqij is the mean number of aligned reads for gene i in sample j
The normalized count qij is modelled by a GLM with logarithmic link

log2(qij) =
∑

r
xjr βir, (1)

where X = (xkl)kl is the design matrix
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Modelling of RNA-seq data

RNA-seq modelling

Design matrix
Analyse expression differences between control and treatment,
knowing that it should depend on the sex and age
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Modelling of RNA-seq data

RNA-seq modelling

Coefficients βir are the log2 fold changes (LFC) for gene i in each
sample group: the effect of a covariate on gene expression levels

Example: When comparing two groups, βi1 is the LFC for gene i between
treatment and control
→ A LFC=1.2 for a specific gene in the comparison treatment vs control
means that the expression of that gene is increased in the treatment group
relative to the control group by a multiplicative factor of 21.2 ≈ 2.297
→ A positive value indicates an increase in expression, while a negative
value indicates a decrease in expression
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Modelling of RNA-seq data

RNA-seq modelling: Estimation of dispersion

few biological replicates → high variability/uncertainty of estimates
but, large number of genes!
→ borrow/pool information across genes
→ genes with similar average expression level have similar dispersion

Thus, we use an empirical Bayes inference method to shrink individual
dispersion estimates towards a global dispersion
How it works:

low dispersion estimates are shrunken (up) towards the global mean
high dispersion estimates are shrunken (down) towards the global
mean
genes with extremely high dispersion values are not shrunken. They
are considered outliers to the model assumptions

→ reduces estimation uncertainty by pooling information
→ increases power of statistical tests by reducing false positive calls
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Modelling of RNA-seq data

Empirical Bayes shrinkage of dispersion

Key steps

1 fit the gene-specific GLM
get initial estimates of the mean read counts µ̂0

ij
get estimates α̂gw

i of gene-wise dispersion
2 obtain a global dispersion trend αtr by regressing α̂gw

i onto the mean
counts µ̄i =

∑
j

Kij/n, where n = #samples

αtr (µ̄) = a1
µ̄

+ α0

→ similar average expression strengths yield similar dispersions
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Modelling of RNA-seq data

Empirical Bayes shrinkage of dispersion

3 set a log-normal prior distribution for αi

log(αi) ∼ N (log(αtr (µ̄i)), σ2
d)

→ the width σ2
d (same for all genes) plays a role in the amount of

shrinkage and is estimated from the data (large sample size results in
a large width and less shrinkage)

4 get final Maximum A Posteriori estimate α̂MAP
i

α̂MAP
i = arg max

α
{ℓNB(Ki ·; µ0

i ·, α) + Λprior
i (α)}, where

Λi(α)prior = −{log(α) − log(αtr (µ̄i)}2

2σ2
d

is the log density of the prior
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Modelling of RNA-seq data

Empirical Bayes shrinkage of dispersion
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Modelling of RNA-seq data

RNA-seq modelling: Estimation of fold change
Issues

LFCs for genes with low read counts are highly variable (consequence
of taking ratios wrt small values)
hypothesis testing (and interpretation of results) heavily depends on
the variability of the LFC
→ the higher the variability the smaller the effect size and the harder
is to detect a difference

Solution
When the information for a gene is low (small sample size, low read
counts, high dispersion), its LFC is shrunk towards zero

avoids large absolute values of LFCs for weakly expressed genes
induces a bias towards zero when the dispersion/variability is large
with increasing sample size, less shrinkage is applied

→ quantitative conclusions, e.g., testing and ranking genes, are more
reliable
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Modelling of RNA-seq data

RNA-seq modelling: Shrinkage of fold change

Key steps: estimation and shrinkage of βir
1 the negative binomial GLM with link (1) is fitted by IRLS → β̂ir
2 for each column of the design matrix (except the first for the

intercept), set a prior distribution reflecting the bias towards zero
set a normal prior

βir ∼ N (0, σ2
r ), r > 0

estimate the width from the empirical variance of β̂r (averaged over all
possible contrasts) → amount of shrinkage
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Modelling of RNA-seq data

RNA-seq modelling: Shrinkage of fold change

3 get final Maximum A Posteriori estimate β̂
MAP
i

β̂
MAP
i = arg max

β

{ ∑
j

log fNB(Kij ; µj(β), α̂MAP
i ) + Λprior (β)

}
= arg max

β

{ ∑
j

log fNB(Kij ; µj(β), α̂MAP
i ) −

∑
r

β2
r

2σ2
r

}
,

where µj(β) = sje
∑

r
xjr βr is the mean of the negative binomial fitted

to the raw counts
→ if Step 1 yields a high-uncertainty estimate β̂ir due to a flat NB
likelihood (small mean, high dispersion, or few samples), then the MAP is
pulled closer to zero
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Modelling of RNA-seq data

Representation of results

The MA plot shows the LFCs between two conditions (“M” values)
versus the average of the normalized counts over the two conditions (“A”
values) for all tested genes

illustrates the effect of LFC shrinkage
identifies genes that exhibit significant differences
→ genes with significant upregulation or downregulation correspond
to points that deviate significantly from the center line (M = 0)
→ genes that are not differentially expressed in both conditions tend
to cluster around the center line
→ genes that are significantly DE are colored to be easily identified
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Modelling of RNA-seq data

MA plot
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Likelihood and Bayesian inference

Introduction to likelihood inference
suppose we want to estimate the probability that an event occurs,
which we assume is constant
suppose that we have a sample of size n with Xi assumed to come
from a Bernoulli distribution with probability p, meaning

Pr(Xi = 1) = p, Pr(Xi = 0) = 1 − p
by convention, “1” denotes a success and “0” a failure

The probability mass function is
Pr(Xi = xi | p) = pxi (1 − p)1−xi , xi ∈ {0, 1}

Since the observations are independent, the joint probability of a given
result is the product of the probabilities for each observation,

Pr(X1 = x1, . . . , Xn = xn | p) =
n∏

i=1
Pr(Xi = xi | p)

=
n∏

i=1
pxi (1 − p)1−xi
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Likelihood and Bayesian inference

Likelihood

the likelihood L(θ) is a function of the parameters of the
distribution, say θ

the likelihood gives the probability of observing a sample under a
postulated distribution whose parameters are θ
the likelihood treats the observations as fixed

the maximum likelihood estimator θ̂ is the value of θ that
maximizes the likelihood, i.e., the value that makes the observed
sample the most likely or plausible
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Likelihood and Bayesian inference

Likelihood of the Bernoulli model
The likelihood for a random sample is

L(p; X) ≡ Pr(X |p) =
n∏

i=1
pXi (1 − p)(1−Xi )

= pΣn
i=1Xi (1 − p)n−Σn

i=1Xi
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Likelihood and Bayesian inference

Bayesian inference

Bayesian methods trace its origin to Thomas Bayes who, along with
Pierre-Simon Laplace, discovered the so-called Bayes’ theorem

Pr(x |θ) likelihood
Pr(θ) prior (the unknown parameter is now a random variable
distributed according to our prior knowledge)
Pr(θ|x) posterior (belief after observing some data)
Pr(x) marginal distribution

Pr(θ|x) = Pr(θ, x)
Pr(x) = Pr(x |θ) Pr(θ)

Pr(x) ∝ Pr(x |θ) Pr(θ)
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Likelihood and Bayesian inference

Back to the Bernoulli case

Likelihood: Pr(x1:n|p) = p
∑n

i=1 xi (1 − p)n−
∑n

i=1 xi

Beta prior p ∼ Beta(a, b):

Pr(p) ∝ pa−1(1 − p)b−1

on the interval (0, 1)
Posterior of Bernoulli-Beta:

Pr(p|x1:n) ∝ Pr(x1:n|p) Pr(p)

⇒ the maximum a posteriori (MAP) estimator is defined as

p̂MAP = arg max
p

Pr(p|x1:n) = arg max
p

Pr(x1:n|p) Pr(p)
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Likelihood and Bayesian inference

Effect of the prior

as sample size increases, the effect of the prior is washed out
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Likelihood and Bayesian inference

Effect of the prior

flat priors (uniform, non-informative) have no effect
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