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We critically review dissipative particle dynamics~DPD! as a mesoscopic simulation method. We
have established useful parameter ranges for simulations, and have made a link between these
parameters andx-parameters in Flory-Huggins-type models. This is possible because the equation
of state of the DPD fluid is essentially quadratic in density. This link opens the way to do large scale
simulations, effectively describing millions of atoms, by firstly performing simulations of molecular
fragments retaining all atomistic details to derivex-parameters, then secondly using these results as
input to a DPD simulation to study the formation of micelles, networks, mesophases and so forth.
As an example application, we have calculated the interfacial tensions between homopolymer
melts as a function ofx and N and have found a universal scaling collapse whens/rkBTx0.4 is
plotted againstxN for N.1. We also discuss the use of DPD to simulate the dynamics of
mesoscopic systems, and indicate a possible problem with the timescale separation between particle
diffusion and momentum diffusion~viscosity!. © 1997 American Institute of Physics.
@S0021-9606~97!51335-3#
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I. INTRODUCTION

Many systems of academic and industrial interest
examples of soft condensed matter: They are neither c
pletely solid nor completely liquid. When we take a clos
look at the background of these systems a common fea
arises, namely the existence of a relevant length-scale in
tween the atomistic scale and the macroscopic scale. In s
cases, when we consider polymer gels, this length-scale i
by the distance between the cross-links in the gel. Simula
on this length-scale, using a simple bead-and-spring mo
has proved appropriate to analyze the phase diagram an
rheology.1 Surprisingly, the linear viscoelastic behavior th
results from this model shows a universal behavior simila
what is found in many experimental systems2 even without
the incorporation of hydrodynamic interactions. This in its
indicates that for polymer gels the nature of the chemistr
not important, but life-time and structure of the polymer co
nections is.3

If we now draw attention to other types of system
where surfactant mesophases form the structuring me
nism, a similar universality is found. In this case the flexib
ity or bending rigidity of a lamellar bilayer leads to a mes
scopic length-scale: the wavelength of undulations of
lamellar sheets.4 The precise value of the rigidity of bilayer
is a subject of debate, and by no means trivial.5 However, an
analysis in terms of lamellar sheets presupposes their e
tence, whereas in reality many self assembled structures
occur.6,7 The available techniques to predict these pha
range from Monte Carlo methods of lattice polymers,8 self-
consistent field theory,9 to dynamic density functiona
theory.10 A problem with these techniques is that they
describe polymers confined to lattice conformations, and
not very well suited to describe branched polymers. Mu
block copolymers and branched polymers are molecules
J. Chem. Phys. 107 (11), 15 September 1997 0021-9606/97/107(11
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are capable of forming lamellar structures~or more general
mesostructures!, and are candidates to form weak gels. So
polymer zones may form micelles, and if these micelles
connected by polymer strings a network is formed.

Although the behavior of these networks on larg
length-scales is now reasonably well understood, we
cannot make the full connection from atomistic length-sc
to the macroscopic world. In simulations of associati
liquids1,2 the associated atoms are moved together as
new species. This implies that the order of association
defined at forehand~in this case binary association!. Conse-
quently, properties defined on a smaller length-scale than
effective cross-link, like how many chains are joined t
gether in a micelle, cannot be predicted. Furthermore, hyd
dynamic interactions are not accounted for. To bridge
gap between atomistic simulations and these large scale
work simulations, we therefore seek an intermediate simu
tion technique aimed at a length-scale larger than the at
istic scale, but smaller than the network connection scale

A few years ago Hoogerbrugge and Koelman introduc
a new simulation technique for hydrodynamic behavi
called dissipative particle dynamics~DPD!.11,12 This tech-
nique is based on the simulation of soft spheres, whose
tion is governed by certain collision rules. By introducin
bead-and-spring type particles, polymers can be simula
with the same method.13,14 As applications of the method
abound, it is necessary to create a firm basis from which
can interpret what the simulation means, before we go i
any detail on the results of the simulations. The aim of
present article is to provide such an interpretation. The st
ing point of this analysis will be the formulation of DPD b
Español and Warren,15 who studied the fluctuation
dissipation theorem in connection with this method. In th
formulation all particles interact by three forces: a conser
4423)/4423/13/$10.00 © 1997 American Institute of Physics
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4424 R. D. Groot and P. B Warren: Dissipative particle dynamics
tive forceFC, a dissipative forceFD, and a random forceFR.
They showed that the dissipative force and the random fo
have to satisfy a certain relation in order that the system
the statistical mechanics corresponding to the canonical
semble with a temperature related to the relative amplitu
of the random and dissipative interactions.

In the present article the physical interpretation of t
relation is discussed, and algorithms formulated for arbitr
timesteps. The negative consequences of not satisfying
relation are elucidated, and the statistical mechanical vali
of the method is checked explicitly as a function of t
timestep size. Once the validity is established, the thermo
namic basis of the model is investigated. A simple scal
relation is found, which leads to the interpretation of t
underlying model in terms of the well known Flory-Huggin
theory of polymers. This opens the way to bridge the g
from atomistic simulations, where solubility parameters c
be calculated, to mesoscopic simulations where mesoph
and network formation can be studied. Finally, as an
ample of a practical application, we examine the surface
sion between homopolymer melts.

II. THE DPD SIMULATION METHOD

A set of interacting particles is considered, whose ti
evolution is governed by Newton’s equations of motion

dr i

dt
5vi ,

dvi

dt
5f i . ~1!

For simplicity the masses of the particles are put at 1, so
the force acting on a particle equals its acceleration. T
force contains three parts, each of which is pairwise addit

f i5(
j Þ i

~Fi j
C1Fi j

D1Fi j
R!, ~2!

where the sum runs over all other particles within a cert
cutoff radiusr c . As this is the only length-scale in the sy
tem, we use the cutoff radius as our unit of length,r c51.
The conservative force is a soft repulsion acting along
line of centres and is given by

Fi j
C5H ai j ~12r i j ! r̂ i j ~r i j ,1!

0 ~r i j >1!
, ~3!

where ai j is a maximum repulsion between particlei and
particle j ; and r i j 5r i2r j , r i j 5ur i j u, r̂ i j 5r i j /ur i j u. The re-
maining two forces are a dissipative or drag force and
random force. They are given by

Fi j
D52gwD~r i j !~ r̂ i j –vi j ! r̂ i j , Fi j

R5swR~r i j !u i j r̂ i j , ~4!

wherewD andwR are r -dependent weight functions vanish
ing for r .r c51, vi j 5vi2vj , andu i j (t) is a randomly fluc-
tuating variable with Gaussian statistics:^u i j (t)&50 and
^u i j (t)ukl(t8)&5(d ikd j l 1d i l d jk)d(t2t8). These forces also
act along the line of centres and conserve linear and ang
momentum. There is an independent random function
eachpair of particles.
J. Chem. Phys., Vol. 107, No
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Español and Warren15 showed that one of the two weigh
functions appearing in Eq.~4! can be chosen arbitrarily an
that this choice fixes the other weight function. There is a
a relation between the amplitudes andkBT. In summary

wD~r !5@wR~r !#2, s252gkBT. ~5!

As a simple choice we take

wD~r !5@wR~r !#25H ~12r !2 ~r ,1!

0 ~r>1!
~6!

~i.e., wR(r ) is the same function as in the conservati
force!. Unlike Hoogerbrugge and Koelman11 we choose not
to include normalization factors in these functions.

In previous studies11,15 a simple, Euler-type algorithm
was used to advance the set of positions and velocities.
an arbitrary timestep it is found by integrating the equatio
of motion over a short interval of timeDt over which neither
the positions nor velocities of particles change very mu
This algorithm is

r i~ t1Dt !5r i~ t !1Dtvi~ t !,

vi~ t1Dt !5vi~ t !1Dtf i~ t !, ~7!

f i~ t1Dt !5f i~r ~ t1Dt !,v~ t1Dt !!.

Care must be taken with the random force which becom

Fi j
R5swR~r i j !z i j Dt21/2r̂ i j , ~8!

wherez i j is a random number with zero mean andunit vari-
ance, again chosen independently for eachpair of interacting
particles and at each timestep. The appearance ofDt21/2 in
this expression will be discussed below.

Rather than using the Euler algorithm as utilized by p
vious authors11,15 in the context of DPD, a modified versio
of the velocity-Verlet algorithm16 is used here:

r i~ t1Dt !5r i~ t !1Dtvi~ t !1 1
2~Dt !2f i~ t !,

ṽi~ t1Dt !5vi~ t !1lDtf i~ t !,
~9!

f i~ t1Dt !5f i~r ~ t1Dt !, ṽ~ t1Dt !!,

vi~ t1Dt !5vi~ t !1 1
2Dt~ f i~ t !1f i~ t1Dt !!.

If the force were independent of velocity, the actual veloci
Verlet algorithm would be recovered forl51/2. Because the
force does depend on velocity, we make a prediction for
new velocity, which we denote byṽ, and correct for this
afterwards in the last step. In this more sophisticated al
rithm, the force is still updated once per iteration~after the
second step! thus there is virtually no increase in comput
tional cost. All physical measurements that depend on co
dinate differences are also taken after the second step
temperature is measured after the last step.

If there were no random or dissipative force, this alg
rithm would be exact toO(Dt2) at l51/2. Because of the
stochastic nature of the process, the order of the algori
becomes unclear; this is discussed more fully by O¨ ttinger,
. 11, 15 September 1997
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4425R. D. Groot and P. B Warren: Dissipative particle dynamics
for example.17 The variable factorl, introduced empirically,
appears to account for some of the additional effects of
stochastic interactions. In practice, all simulations reporte
this paper were carried out withl51/2 with the exception of
some investigations of the effect ofl on the steady state
temperature reported in the next section.

The factorDt21/2 appearing in the expression for th
random force in Eq.~8! will now be discussed. It can b
derived by integration of the underlying stochastic differe
tial equations and interpreting the random force as a Wie
process,18 but a heuristic argument as to whyDt21/2 appears
is useful for a correct understanding of the method. Cons
therefore the motion of a particle in a liquid over a fixe
time-span. Due to collisions with other particles, a rand
force f (t) acts on the particle. The mean value of this for
is zero, but its variance is non-zero. To calculate this
divide the time axis inN intervals. In each of these interva
suppose the force has a random valuef i with zero mean
^ f i&50 and variancê f i

2&5s2, where, initially, we suppose
the variance has no dependence on the timestep. We will
that this leads to unphysical behavior. The random forc
uncorrelated between different timesteps:^ f i f j&50 if i
Þ j . The time-integral of the force is the momentum chan
of the particle. Since this is, up to a friction factor, equal
the displacement~the random force induces a random wa!
the mean square value of the time integral of the force m
be proportional to the square distance travelled in a diffus
process, i.e., proportional to time

^F2&5K S E
0

t

f ~ t8!dt8D 2L
5K S (

i 51

N

f i D 2S t

ND 2L 5s2t2/N5t3s2Dt. ~10!

As the number of intervalsN increases~i.e., Dt5t/N de-
creases! this average would go to zero if, as initially a
sumed,^ f i

2& is independent ofDt. As the mean diffusion
over any physical time-interval must have a finite value t
is independent of the stepsize of the integration, we m
conclude that in actualitŷf i

2&5s2/Dt is appropriate. Thus
the spread of the random force increases as we divide a g
physical time interval up in more and more timesteps. T
step-size dependence of the random force is precisely ge
ated by the factor ofDt21/2 in Eq. ~8!.

At this point the reader may wonder why it is so impo
tant that Eq.~5! relating the dissipative and noise weig
functions is satisfied. To answer this question, consider
distribution functionr(r i ,pi ,t), which gives the probability
of finding the system in a state where the particles h
positionsr i and momentapi , at any particular timet. The
time evolution of this distribution is governed by the Fokke
Planck equation derived by Espan˜ol and Warren15

]r

]t
5LCr1LDr, ~11!

whereLC and LD are evolution operators that can be e
tracted from the time-evolution governing the motion of t
J. Chem. Phys., Vol. 107, No
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particles. The first is the Liouville operator of the Ham
tonian system interacting with conserved forcesFC, the sec-
ond operatorLD contains the dissipative and noise term
Now if the dissipative and random forces are put at zero,
are left with a Hamiltonian system. In the canonic
ensemble, the Gibbs-Boltzmann distributionreq(r i ,pi)
5 exp(2(ipi

2/2mkBT2U/kBT) is a solution of

]req

]t
5LCreq50. ~12!

If we turn on the drag force and the noise, we don’t want
equilibrium distribution to move away from this distribution
This condition is satisfied only ifLDreq50 also. This is
precisely what Eq.~5! is designed for. If we do not choos
the drag and noise weight functions according to Eq.~5!, the
simulation will move away from the equilibrium Gibbs
Boltzmann distribution when the drag and noise terms
turned on. In that case, although a steady state may
achieved, it may not be related to any recognized thermo
namic equilibrium distribution; there may not even be a re
ognizable Hamiltonian.

It is highly desirable to have a simulation in which th
equilibrium distribution corresponds to the Gibbs-Boltzma
distribution. It means for instance that all the standard th
modynamic relations~for example, for the pressure! can be
transferred to the new situation.

Now the reader may be wondering what is the point
dissipative particle dynamics, if all it achieves is to simula
a Hamiltonian system in the canonical ensemble. After
this can be done by any one of a number of NVT molecu
dynamics methods.16 Indeed DPD can be viewed as a nov
thermostatting method for molecular dynamics. Note thou
that DPD is an NVT method thatpreserves hydrodynamics.
It has recently been suggested that the presence of hydr
namics is important in annealing defects in order
mesophases.19 Thus DPD has an intrinsic advantage ov
other methods such as dynamic density functional the
~which are purely diffusive! or Monte Carlo methods, in try-
ing to evolve a system towards an ordered thermodyna
equilibrium state.

As compared to usual molecular dynamics simulatio
for example with Lennard-Jones atoms, the major advant
of the new method is its soft interaction potentialFC. The
particles represent molecules or liquid elements rather t
atoms, and the soft potential allows for a much larg
timestep than is commonly used in usual MD simulatio
The question of the connection from atomistic parameter
mesoscopic parameters will be addressed in the remaind
this paper. Such soft interaction potentials could, of cour
also be used in a standard MD type algorithm~given by the
present algorithm with the noise and dissipative turned
s5g50), or in a Monte Carlo algorithm.

Soft interactions have been proposed recently by For
and Suter.20 Their approach is to start off bottom-up wit
atomistic ~Lennard-Jones! interaction potentials, and to re
place these by effective potentials between centres of m
These effective potentials were obtained in a systematic
by averaging the molecular field over the rapidly fluctuati
. 11, 15 September 1997
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4426 R. D. Groot and P. B Warren: Dissipative particle dynamics
motions of atoms during short time intervals. This approa
leads to an effective potential similar to our Eq.~3!. It does
not diverge atr 50, and it no longer shows the characteris
minimum of the Lennard-Jones potential. This result s
ports our choice of a soft repulsive interaction force.

Although the approach of Forrest and Suter looks v
promising, there are a number of comments to make. Fir
their procedure to obtain the effective ‘‘time-averaged’’ p
tentials involves complicated integrals, analogous to the
culation of virial coefficients in a low density expansio
Therefore, no explicit analytical expression can be obtai
for the effective interaction potential. Furthermore, their n
merical procedure neglects the correlation in the local d
sity fluctuations, which involves the time-dependent pair c
relation function. As such an approach becomes exceedi
complicated~though formally exact! we have chosen for a
pragmatic alternative way to address the problem.

In the remainder of this paper we approach the conn
tion between the atomistic potential and the mesoscopic
teraction forces in a top-down approach, in which we s
from the mesoscopic side. The strategy will be to match
thermodynamics of the DPD simulation to that of the und
lying atomistic system.

First it is necessary to set length, time and mass sc
for the simulation. The length and mass scales have alre
been set by specifying that particles have mass 1, and
cutoff distance for interactions is also 1~obviously, these
could be relaxed for mixtures!. Rather than specify a unit o
time, as Hoogerbrugge and Koelman do,11 we choose to
work in units such thatkBT51, which effectively specifies a
unit of time since the rms velocity of the particles isA3 from
the Maxwell-Boltzmann distribution. Working in these uni
is useful since the conservative interaction potentials are
tomatically in units ofkBT without having to be rescaled.

III. HOW TO CHOOSE THE TIMESTEP AND NOISE
LEVEL

The timestep size has to be chosen as a comprom
between fast simulation and satisfying the equilibrium co
dition. We monitor this by monitoring the temperature of t
system. Using Eq.~5! for a given noise amplitude and pu
ting kBT51, the equilibrium temperature was measur
from the velocities, as a function of the step-size

kBT5^v2&/3, ~13!

where ^ . . . & is a simple average over all particles in th
simulation.

Two types of noise have been used, uniformly distr
uted random numbers and Gaussian distributed random n
bers of the same variance. Results obtained from simulat
of a system containing 4000 particles in a cubic box of si
10310310, repulsion parametera525 @see Eq.~3! for its
definition#, averaged over 200 time steps are shown in Fig
Several versions were examined. For all data points the n
level was taken equal ats53. The error bars indicate th
spread in the temperature.
J. Chem. Phys., Vol. 107, No
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Several things are to be noted here. Firstly, no statist
difference was found between the simulations using unifo
random numbers and the simulations using Gaussian ran
numbers. Since uniform random numbers take less CPU t
to generate than Gaussian random numbers do, a choic
uniform noise is made. Secondly, the choice of the times
is now determined by the amount of artificial temperatu
increase one is willing to accept. For the Verlet algorith
@l51/2 in Eq.~9!#, with step sizeDt50.04 this increase is
2%, and at stepsize 0.05 it is 3%. Stepsize 0.04 thus see
safe choice, and 0.05 an acceptable upper limit. To obtain
same degree of accuracy for the Euler algorithm would
quire timesteps of orderDt'0.001, i.e., the Verlet algorithm
gives a factor of 50 or so improvement in performance.

Thirdly, it is also found that stable temperature control
obtained only when the term1

2 (Dt)2f(t) is included in the
position update@see Eq.~9!#. If this term is left out, the
results are nearly as bad as the Euler algorithm~see Fig. 1!.
Inclusion of this term in the Euler algorithm~not shown in
Fig. 1! was found to improve temperature control to appro
mately the extent the Verlet algorithm without this term
Therefore inclusion of this term and the adoption of the V
let algorithm arebothessential to facilitate the use of a larg
timestep.

The reported temperature control holds for noise am
tudes53 and forl50.5 in Eq.~9!. When the noise ampli-
tude is reduced, the timestep range over which the syste
stable does not change by much, but the speed at which
system reacts on temperature variations is reduced. For
sity r53 and Dt50.04 the system relaxes exponentia
from temperaturekBT510 to kBT51, where the relaxation
time is some 10 timesteps. However, with noise amplitu
s51 this relaxation time is some 90 timesteps, because
friction factor is a factor of 9 smaller in the latter case. If w
study the temperature as a function of the noise amplitud
plot similar to Fig. 1 is obtained: A slow increase ofkBT
with s is found up tos'8 beyond which the temperatur
grows rapidly and the simulation may itself become unstab
Thus as a reasonable compromise between fast temper
equilibration, a fast simulation and a stable, physically me
ingful system, simulation with stepsizeDt50.04 and noise

FIG. 1. Temperature as a function of timestep fors53, r54. Curves are
shown for the Euler-like algorithm Eq.~7! ~Eu!, the Verlet-like algorithm
Eq. ~9! ~Ve! for two values ofl, and the Verlet-like algorithm without the
acceleration term~Ve(2)).
. 11, 15 September 1997
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4427R. D. Groot and P. B Warren: Dissipative particle dynamics
amplitudes53 is recommended withl50.5 in the Verlet-
type algorithm Eq.~9!.

By empirically adjustingl further gains are possible
For r53 ands53, for example, we find the optimum valu
is l50.65. For this value ofl we find that the timestep ca
be increased toDt50.06 without significant loss of tempera
ture control~see Fig. 1!. The simulations in the remainder o
this paper were all carried out withDt50.04 andl50.5
though.

IV. HOW TO CHOOSE THE REPULSION PARAMETER

Having established the parametersDt ands, which are
related to the simulation method itself, we now turn to t
parameters related to the simulated model. Inspecting
~3!, it is clear that there is only one parameter in this mod
namely the repulsion parametera. If the thermodynamic
state of an arbitrary liquid is to be described correctly by
present soft sphere model, the fluctuations in the liq
should be described correctly. These are determined by
compressibility of the system, hence, analogously to
Weeks-Chandler-Anderson perturbation theory of liqui
we ought to choose our model such that

k215
1

nkBTkT
5

1

kBTS ]p

]nD
T

~14!

has the correct value. The parametern appearing in Eq.~14!
is the number density of molecules, andkT is the usual iso-
thermal compressibility. For water at room temperature~300
K! this dimensionless compressibility has the numeri
valuek21515.9835.

To find this correspondence, we have to establish
equation of state. Thus the pressure is obtained from si
lation as a function of the density, for various repulsion p
rameters. Using the virial theorem, we obtain the pressur

p5rkBT1
1

3V K (
j . i

~r i2r j !–f i L
5rkBT1

1

3V K (
j . i

~r i2r j !–Fi j
CL

5rkBT1
2p

3
r2E

0

1

r f ~r !g~r !r 2 dr, ~15!

where g(r ) is the radial distribution function~see Fig. 2!,
and f i andFi j

C are the total and conserved parts of the fo
on particlei , respectively. In the simulation the second e
pression is used. Note that this expression is equal to the
only because our system has the correct Boltzmann distr
tion. If Eq. ~5! is not satisfied, these two expressions are
equal in general.

As an explicit check, we have also used the first expr
sion, and measuredg(r ) and calculated the pressure afte
wards using the third expression. This led to pressure dif
ences of some 0.7%, i.e., negligible in practice. As a fi
check on programming errors, the pressure was also m
sured by introducing a soft wall in the system, and averag
the mean force exerted on the wall. Again good corresp
J. Chem. Phys., Vol. 107, No
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dence was found: for two runs over 104 timesteps, for mean
densityr55, system size 83535 and repulsiona515, the
pressure with noise included was 50.8260.05, without noise
50.5960.05 and the wall pressure was 50.9260.05. Hence,
there is a small but finite difference between the two expr
sions for the virial pressure, but this difference does not
cur if we look at the stress across an interface: If we stu
pxx2(pyy1pzz)/2, there is no systematic difference betwe
the two methods. However, most importantly for measu
ments of surface tension~i.e., the integral over the stres
across an interface!, the error obtained when the noise is n
included is a factor of 2.5 smaller than when the first expr
sion from Eq.~15! is used.

To obtain the equation of state the density was var
from r51 to r58 in steps of 0.5 for repulsiona515, and
less extensive density variations were studied fora525 and
a530. After subtracting the ideal gas term it was found th
the excess pressure scales linearly with the repulsion pa
eter. Furthermore, the excess pressure is dominated b
singler2 term over a large range of densities. In Fig. 3 t
results are shown fora515 ~crosses!, a525 ~squares! and
a530 ~circles!.

A somewhat more insightful picture emerges when
plot the excess pressure divided byr2, which is shown in

FIG. 2. Pair correlation function for the present soft sphere model, forr53
anda525.

FIG. 3. Excess pressure obtained from simulation. The full curve is a
rabola fit.
. 11, 15 September 1997
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4428 R. D. Groot and P. B Warren: Dissipative particle dynamics
Fig. 4. The points forr50 have been calculated from the
virial expansion, Eq.~15! substituting the relationg(r )
5exp(2 1

2 a(12r)2/kBT!. We find the virial coefficients
0.0509, 0.0384, and 0.0343 fora515, 25 and 30, respec-
tively. What Fig. 4 now indicates is that for sufficiently larg
density, e.g., forr.2, all systems fall on the same curve
indicating a simple scaling relation. Furthermore, since t
curve in Fig. 4 levels off to a constant value byr53, the
excess pressure is really proportional tor2.

A good approximation for the pressure that holds f
sufficiently high density (r.2) is:

p5rkBT1aar2~a50.10160.001!. ~16!

This implies that the dimensionless compressibility, as intr
duced in Eq. ~14!, is given by k215112aar/kBT
' 110.2ar/kT. Combining this with the known compress
ibility of water, kwater

21 '16 we findar/kBT'75. In principle
the density chosen for the simulation is a free parameter,
since the number of interactions for each particle increa
linearly with the density, the required CPU time per timest
and per unit of volume increases with the square of the d
sity. For efficiency reasons one would thus choose the low
possible density where the scaling relation still holds. Fro
Fig. 4 it now follows thatr53 is a reasonable choice; to
have the compressibility of water, we need the repulsion p
rametera525kBT. For other densities we usea575kBT/r.

V. MAPPING ONTO FLORY-HUGGINS

One objective to use the DPD method could be the sim
lation of liquids at interfaces. An obvious interface is th
liquid-vapor interface, but here we have a problem. Since
repulsive pressure is so softly increasing with density, lea
ing to the apparent absence of ar3 term at high densities, the
model cannot produce liquid-vapor coexistence. If the co
servative force@Eq. ~3!# is changed in such a way that th
force is repulsive at smallr , and attractive at larger , this
attraction causes a reduction in the pressure proportiona
r2, which depends on temperature. This means that, wh
the temperature is chosen at a critical value, the press
vanishes for a very broad range of densities as repulsive
attractive pressure exactly compensate. For temperatu

FIG. 4. Excess pressure divided byar2 for three values of the repulsion
parameter, showing scaling.
J. Chem. Phys., Vol. 107, No
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above this point the pressure is positive for all densities, a
for temperatures below this point the system collaps
Hence, there is no real liquid vapor coexistence in th
model. One may be tempted to change the repulsive force
introducing a steep repulsion at smallr , but in doing so the
temperature control is lost unless very small timesteps
taken. The whole advantage of the method is then lost.

While liquid-vapor interfaces cannot be simulated, on
can simulate liquid-liquid and liquid-solid interfaces. In thi
way the method is similar to the Flory-Huggins theory o
polymers, and can in fact be viewed as a continuous vers
of this lattice model. In the Flory-Huggins theory molecule
of different length are confined to a lattice. The internal e
ergy is described as a perturbation from ideal mixing, i.e
only the excess over pure components is taken into acco
For two components this leads to the free energy per latt
site

F

kBT
5

fA

NA
ln fA1

fB

NB
ln fB1xfAfB , ~17!

wherefA and fB are the volume fractions of theA and B
components,NA andNB are the number of segments perA
andB molecule, and the implicit condition is that the lattic
is filled completely, hencefA1fB51. Under this condition
fB512fA , andfA is the only degree of freedom.

When A and B are two components that do not favo
contact the parameterx is positive; when they favor each
other overAA or BB contacts, then it is negative. For suffi
ciently large x-parameters the free energy develops tw
minima, separated by a maximum, see Fig. 5. IfNA5NB the
minimum free energy is found atm5]F/]fA50. In Fig. 5
these points are indicated by aB. Their location follows from
the implicit equation

xNA5
ln@~12fA!/fA#

122fA
. ~18!

If x is positive but too small, no segregation will take plac
but when it exceeds a critical valueA-rich andB-rich do-
mains will occur. This criticalx-parameter is found from the
condition that the spinodals~S in Fig. 5! coincide. This im-

FIG. 5. Free energy and chemical potential in the Flory-Huggins model
NA5NB51. Points S are spinodal points; points B are binodal points
coexisting compositions.
. 11, 15 September 1997
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4429R. D. Groot and P. B Warren: Dissipative particle dynamics
plies that the first and second derivative of the chemical
tential with respect tofA vanish, which leads to the critica
point

xcrit5
1

2S 1

ANA

1
1

ANB
D 2

. ~19!

Since the present simulated system is fairly incompress
(k21516), and since the excess pressure is quadratic in
density, the soft sphere model is by nature very close to
Flory-Huggins lattice model. The free energy density th
corresponds to the pressure of a single component, Eq.~16!,
is

f V

kBT
5r ln r2r1

aar2

kBT
, ~20!

hence for a two component system of chains one expec

f V

kBT
5

rA

NA
ln rA1

rB

NB
ln rB2

rA

NA
2

rB

NB

1
a~aAArA

212aABrArB1aBBrB
2 !

kBT
. ~21!

If we chooseaAA5aBB and assume thatrA1rB is approxi-
mately constant,

f V

~rA1rB!kBT
'

x

NA
ln x1

~12x!

NB
ln~12x!1xx~12x!

1constants, ~22!

where we have setx5rA /(rA1rB) and made the tentativ
identification

x5
2a~aAB2aAA!~rA1rB!

kBT
. ~23!

Apparently we have the correspondence~soft spheres!
f V /(rA1rB)5F ~Flory-Huggins!, with a x-parameter map-
ping given by Eq.~23!.

To test this relation simulations have been performed
binary mixtures of both monomers and polymers,
r5rA1rB53 and r55, for repulsion parameter
a5aAA5aBB525 anda515, respectively. When the exce
pressure was measured as a function of the fractionx of A
particles it was found that it is indeed proportional
x(12x). However, unlike the assumption in Eq.~22! it was
found that the prefactor ofx(12x) is not simply linear in
Da5aAB2a when Da is 2 to 5. In practice we are no
interested in small differences in the repulsion, but syste
will rather be chosen where segregation takes place,
x.xcrit. Now if x is much larger than the critical value
mean field theory is expected to be valid. This means that
can use Eq.~18! as the defining equation for the correspon
ing Flory-Huggins parameter.

Adopting this strategy, a system of size 838320 con-
taining 3840 monomers was simulated. Half the partic
were of typeA and in the initial configuration they wer
placed in the left half of the system, the other particles,
typeB, were placed in the right hand side. For these syste
J. Chem. Phys., Vol. 107, No
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the density profiles ofA andB particles were sampled acros
the interface. Averages of the density were taken over5

timesteps; the mean value ofx over a slab where the densit
is homogeneous was then taken to compute the corresp
ing Flory-Huggins parameter. An example of such a bina
density profile is shown in Fig. 6. Note the small dip in th
sum of the densities at the interface.

When the measured segregation parameterx is substi-
tuted for fA in Eq. ~18!, the Flory-Huggins parameter fo
monomers is found. Now, when we are close to the criti
point (x52), we cannot expect this mean-field expression
hold, but when we calculate forx.3 this value should be
reliable. The calculatedx-parameter is shown in Fig. 7 fo
two densities as a function of the excess repulsion param
We find that forx.3 there is a very good linear relatio
betweenx andDa. Explicitly, we have

x5~0.28660.002!Da~r53!,

x5~0.68960.002!Da~r55!.
~24!

These results partly confirm Eq.~23! in that x is linear in
Da, but the constant of proportionality is far from linear
the density. Nevertheless, we can choose a fixed density,
henceforth use Eqs.~24! as an effective mapping on th
Flory-Huggins theory.

FIG. 6. Density profile forr53 at repulsion parametersaAA5aBB525 and
aAB537.

FIG. 7. Relation between excess repulsion and effectivex-parameter.
. 11, 15 September 1997

P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



e
t

e
th
m

er
e
o

ei
in

am
s

a

-

a

g
on
t

cu

ual
is a
tes
A
e
al

gth,
n

n-
n-
ral,
.

of a
ar-
be-

the
r
the
bic

en

s,

s
the
e

e
that

ula-
ress

f

4430 R. D. Groot and P. B Warren: Dissipative particle dynamics
Polymer systems were studied next. To make a polym
monomers are threaded together in linear chains, using
interaction force

f i
~spring!5(

j
Cr i j , ~25!

where the sum runs over all particles to which particlei is
connected. The spring constant is chosen such that the m
distance between connected particles coincides with
point where the pair correlation function has its maximu
see Fig. 2. Forr53 anda525, this occurs forC'2. If we
chooseC much larger, the particles are tied together at v
short distance and we get very stiff chains, and if we tak
much smaller we get a longer distance between the c
nected particles than between unconnected nearest n
bors. HenceC52 seems a reasonable choice. This spr
force is similar to the ‘‘weak spring’’ of Schlijperet al.14

Between particles of the same type the repulsion par
eters are taken asaii 575kBT/r for all types, and the cros
terms are again chosen as

ai j 575kBT/r1Da ~ iÞ j ! ~26!

which defines the excess repulsionDa. The polymer length,
N5NA5NB was varied from 2 to 20, and the repulsion p
rameter was varied fromDa51 to 40.

The Flory-Hugginsx-parameter for polymers was ob
tained via the observed segregation. The result forxN/Da is
plotted as a function ofN in Fig. 8. We find that theN51
results all lie systematically below the line of theN.1 re-
sults, but the difference is only some 7%. The best estim
obtained for 2,N,10 is

xNkBT

Da
5~0.30660.003!N. ~27!

A possible off-set atN50 has been investigated. Includin
the N51 results the off-set defined in the equati
xNkBT/Da}(N2N0) is N050.03860.11, and if we neglec
the N51 results the off-setN0520.00260.2 is found.
Hence in either case the off-set is zero well within the ac
racy of the fit.

FIG. 8. Simulation results for the effectivex-parameter as a function o
polymer length.
J. Chem. Phys., Vol. 107, No
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VI. SURFACE TENSION BETWEEN HOMOPOLYMER
MELTS

The surface tension between unlike polymers of eq
length is also determined in the simulations above. This
case where few results are available, thus it also illustra
the application of the method to a real polymer problem.
very useful scaling relation is found, which facilitates th
extrapolation of simulations on small polymers to the re
world of very long polymers.

For very long chains the ln terms in Eq.~17! drop out,
leading to a free energyF/kBT5xfAfB . In this case the
surface tension becomes independent of the polymer len
for which case Helfand has derived the analytic expressio21

s5 1
2kBT~xm!1/2@11~11x!x21/2 tan 21x1/2#, ~28!

wherem is the fraction of contacts a lattice site has perpe
dicular to the interface, relative to the total number of co
tacts it has. This equation has two limiting results. In gene
the surface tension equalsx times the width of the interface
At small x the width is proportional tox21/2, and hence the
surface tension is proportional tox1/2. As x increases, the
interface narrows, and at a certain stage it has the width
single lattice cell. Beyond that point the interface cannot n
row down any further, hence the surface tension must
come simply proportional tox. In this limit the specific lat-
tice nature of the approximation becomes apparent. In
smallx limit, where the width of the interface is much large
than a lattice spacing, the result should not be affected by
lattice approximation, the surface tension on a simple cu
lattice iss5kBT(x/6)1/2.

The surface tension for finite polymer length has be
derived only as an asymptotic expansion inN in the form

s5kBTS x

6D 1/2S 12
k

xN
1OS 1

~xN!2D D . ~29!

Brosetaet al.22 find k5p2/6 whereas Helfandet al.23 find
k52ln2. The prefactor (x/6)1/2 is Helfand’s earlierN5`
result, and the difference in the prefactor of 1/xN is caused
by slight differences in the approximation used.

At this point it should be noted that for simple liquid
the surface tension near the critical point behaves as24

s;~12T/Tc!
m, ~30!

where the exponentm53/2 in classical van der Waal
theory, whereas the renormalization theory result for
critical exponent ism51.26 for the Ising model. Since th
x-parameter is a Gibbs free energy divided bykBT, we can
make the identificationT→1/xN. It can thus be expected
that we can use Eq.~30! with this substitution to replace th
1/xN expansion given above, and obtain an expression
is valid up to the critical point.

To measure the surface tension in the present sim
tions, the difference between the normal and tangential st
was integrated across the interface

s5E @pzz~z!2 1
2~pxx~z!1pyy~z!!#dz. ~31!
. 11, 15 September 1997
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4431R. D. Groot and P. B Warren: Dissipative particle dynamics
The components of the stress tensor were obtained from
tensor equivalent of the second line of Eq.~15!.

First we study the surface tension for the caseN.1. In
general we can expect that the surface tension is given
some scaling function ofxN, i.e.,

s;xag~xN!. ~32!

As in Flory-Huggins theory of polymers it has been fou
that for large arguments the scaling functiong(x) is linear in
1/x, we plot the simulated surface tension against 1/xN in
Fig. 9. For each data set the polymer lengthN was varied,
while Da ~and hencex) was kept fixed. To eliminate the
x-dependent pre-factor in Eq.~32! all surface tensions wer
rescaled so that they would best fit the surface tensio
Da55 ~i.e., x51.53). The functional relation in Fig. 9 i
thereforeg(x).

It is now a fitting exercise to obtain an explicit function
form. A three parameter fit of the formg(xN)
5 k(12xcrit/xN)m gives xcrit51.9460.14 and
m51.6260.17, i.e., within the error we find the mean-fie
critical point and the classical Van der Waals exponent. If
force xcrit52, we find from a two parameter fi
m51.5560.03, confirming the classical value of the exp
nent.

To obtain thex-dependent prefactor in Eq.~32! the scal-
ing factors used to rescale all data to the same master c
in Fig. 9, are plotted as a function ofx in Fig. 10. All points
fall on a straight line of slope 0.40360.009 confirming the
power law assumption in Eq.~32!. However, the value of
this exponent is lower than expected, as mean-field Flo
Huggins theory predictsa51/2. The scaling law obtained
from the present simulations thus takes the form

s5~0.58360.004!rkBTrcx
0.4@122/~xN!#3/2 ~33!

which is shown in Fig. 11.
The scaling curve shown in Fig. 11 has been compa

to experimental data on PS/PMMA surface tension.25 The
data were read off Fig. 6 of this reference; the molecu
mass varies fromMn51700 up toMn543500. Since the
combination of surface tension in Fig. 11 has the dimens
length ~the DPD interaction radius! which is not known at

FIG. 9. Re-scaled surface tension as a function of 1/xN. For each data setN
is varied andx is kept fixed. The smooth curve is a fit to a 3/2 power la
J. Chem. Phys., Vol. 107, No
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forehand, and sincex-parameter and Kuhn length for thi
system are unclear, the experimental data were rescale
both x and y directions to match our universal curve. Th
experimental points are shown with error bars. Naturally,
this particular example only the shape of the curve is co
pared with the simulation results, rather than absolute val
but it does illustrate that the DPD simulation results can
used for quantitative predictions on real systems. By co
bining similar experiments and the present scaling curve
quantitative mapping of long polymers on relatively sm
DPD chains can thus be made.

Now we turn to the caseN51. If we use the function in
Eq. ~33! to fit the surface tension, we find a prefact
0.49560.006. The difference with the numerical factor
Eq. ~33! is clearly outside the estimated range of uncertain
hence theN51 case does not conform to this scaling la
Furthermore, we find the surface tension clearly to extra
late to a higher critical point thanxcrit52, see Fig. 12. This
implies that theN51 system behaves non-classically.
three parameter fit of the forms5kxa(12xcrit/x)1.5 gives
a50.2660.01 andxcrit52.3660.02. This confirms the non
classical value of the critical point. For consistency th
would imply that the Ising exponentm51.26 should be per-
tinent, which leads toa50.3160.01 andxcrit52.4960.02.

FIG. 10. Scale factors used in Figure 9 as a function ofx. The straight line
fit has slope 0.40360.009.

FIG. 11. Simulated polymer surface tension master curve. The points
error bars are experiments on PS/PMMA interfaces~Ref. 25!.
. 11, 15 September 1997
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4432 R. D. Groot and P. B Warren: Dissipative particle dynamics
Although the fit with m51.5 is slightly better than the fi
with m51.26, the difference is so small that we cannot d
tinguish between the two on the basis of this data.

To further investigate the nature of the exponent
N51, we also studied the width of the interface. The dens
profile was fitted to the functional form

r~z!5 1
2r0@ tanh~2~z2z0!/j!11#, ~34!

wherer0, z0 andj were free fit parameters, andj is a mea-
sure of the width of the interface. In general the correlat
length should diverge asj;(x2xcrit)2n, wheren51/2 if
the classical set of critical exponents is pertinent, a
n50.63 for the Ising model. Both for ther53 and for the
r55 data the width of the interface close to the critical po
is well described by

j5
3.2460.03

Ar~x2~2.3960.03!!
~35!

which is found by plottingj22 againstx. When we plot
j21.6 againstx ~assumingn50.63) we find a line that ex-
trapolates to zero byxcrit52.1060.04. This value is not con
sistent with the critical point found from the surface tensio
when non-classical exponents were assumed. The cri
point found from surface tension and from the width of t
interface are consistent with each other only when we
sume classical exponents. Therefore, we conclude that
though the value of the critical point is non-classical, t
behavior of theN51 system is still governed by classic
exponents, even quite close to the critical point. Our bes
of the surface tension is

s5~0.7560.02!rkBTrcx
0.2660.01

3@12~2.3660.02!/x#3/2. ~36!

It should be remarked that Fig. 13 contains data obtai
from r53 and fromr55, wherex was calculated from
x50.286Da for r53, and fromx50.689Da for r55 @see
Eq. ~24!#.

FIG. 12. Single bead surface tension. The dashed curve is a fit based o
mean field critical point and exponents, the full curve is a fit based on m
field exponents and a non-classical critical point.
J. Chem. Phys., Vol. 107, No
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VII. DYNAMICS

The previous sections were essentially concerned w
the equilibrium behavior of DPD. Here we discuss mo
briefly the dynamics of a DPD fluid, in particular with re
spect to polymer solutions. Apparently successful simu
tions have been reported in the literature,14 but here we in-
dicate a possible problem concerning the separation of
timescale for the propagation of hydrodynamic interactio
and the timescale for diffusion. More detailed investigatio
of the dynamics of a DPD fluid are being currently unde
taken. A quantity of key interest in this respect is t
Schmidt number Sc5n/D, wheren is the kinematic viscos-
ity and D is the diffusion constant. It is a dimensionle
parameter characterizing the fluid, and can be interprete
the ratio between the time for fluid particles to diffuse
given distance, to the time for hydrodynamic interactions
reach steady state on the same distance. Equivalently it m
sures the ratio of particle diffusion to momentum diffusio
In a typical fluid, water for instance, Sc is of order 103,
reflecting the fact that momentum is transported more e
ciently than particles, as a consequence of the caging e
of the interparticle potential. Since in DPD, very soft pote
tials are used, this caging effect is expected to be redu
and one might expect Sc to be reduced. A simple calcula
given below indicate that this is indeed the case.

The transport properties of the DPD fluid have been
vestigated by several workers.11,26 Simplified arguments
leading to these results are presented in the Appendix.
the self-diffusion coefficient of a DPD particle we fin
D'45kBT/2pgrr c

3 . For the kinematic viscosity we find
n'D/212pgrr c

5/1575, where the first term is a kinetic con
tribution and the second comes from the dissipative forc
Contributions from the conservative forces have been
glected. The Schmidt number follows from these as

Sc'
1

2
1

~2pgrr c
4!2

70875kBT
. ~37!

We have tested the accuracy of these estimates by sim
tions on single system only, withg56.75 andr53. From
the simulations we findD50.30660.006,n50.30560.005
and hence Sc51.0060.03.27 Inserting the appropriate pa

the
n

FIG. 13. Surface tension of single DPD beads, the fit is based on clas
exponents with a non-classical critical point@Eq. ~36! in the text#. Crosses:
r55; circles:r53.
. 11, 15 September 1997
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4433R. D. Groot and P. B Warren: Dissipative particle dynamics
rameters in the approximate theoretical expressions
D50.354, n50.258 and Sc50.728 which are within
;10–30% of the measured results. The important poin
that the Schmidt number is about three orders of magnit
lower than that of a real fluid.

Such a small value implies that particles are diffusing
fast as momentum in the fluid. Contrast this with the Zim
model for polymer dynamics for instance where, in order
calculate the effect of hydrodynamic interactions, the Os
tensor is used.28 The use of the Oseen tensor amounts to
assumption that hydrodynamic interactions have reache
steady state on the timescale of polymer motion. This is
tirely reasonable when the Schmidt number is large as it i
a real fluid, but is not clearly the case for DPD as discus
here. The result for DPD would be that hydrodynamic int
actions are still developing on the timescale that the polym
beads are diffusing, i.e., the dynamics of the polymer and
fluid velocity field have become coupled. What the act
effect on the dynamics of a polymer in solution is at pres
unclear.

It might be remarked that the relaxation of a polym
chain is slowed down compared to the diffusion of isola
monomers. This is true, but it does not improve the situat
greatly. The slowest relaxation mode of a polymer chain
associated with diffusion of its center of mass. IfD is taken
to be the diffusion constant associated with this mode, t
the Schmidt number is increased roughly by a factorRH,
whereRH is the hydrodynamic radius of the chain~this is
becauseDpolymer'Dmonomer/RH). Since chain lengths ar
likely to be of order 10–100 monomers in a practical sim
lation, this enhancement factor may only be of order 5–10
so.

The same remarks also apply to the simulation of col
dal particles. The value ofn/D for a colloidal particle~where
D is now the diffusion constant of the colloidal particle! is
often of order 106 in a real suspension. Similar to polymer
one may anticipateD}1/a for large particles of radiusa in a
fluid of smaller particles. For a simulation where the collo
particle radius isa'5r c or so,n/D&10 is expected. Again
it is not exactly transparent what the effect of such as l
value for n/D has on the behavior of a simulated colloid
suspension, although it has been demonstrated by la
Boltzmann simulations thatn/D*750 is required in order
that the short time diffusion in a colloidal suspension asym
tote to the correct value.29 Ladd has noted that lattice gas
suffer from the same defect.30

Equation~37! suggests a possible solution to this pro
lem since it indicates that Sc increases linearly withg2. That
Sc should increase withg might be expected intuitively sinc
an increase in the dissipation should lead both to a slo
diffusion and to an increased viscosity. Thus higher value
the Schmidt number may be attainable by using larger va
of g than we have used in the main part of this paper. At
same time though,Dt would have to be reduced to mainta
the temperature control. Whether large enough Schm
numbers can be achieved in a practical simulation for a s
tem to be in the correct regime of dynamic behavior is c
rently under investigation.
J. Chem. Phys., Vol. 107, No
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VIII. CONCLUSIONS

In this paper the DPD method is critically reviewed. It
described in detail how the noise amplitude, friction fac
and timestep may be chosen. The method can be vie
upon as a molecular dynamics method with added no
similar to Brownian dynamics or Langevin dynamics. T
model used to describe the liquid consists of very soft,
pulsive spheres; this is the reason why large timesteps ca
taken.

To describe the density fluctuations as they appear
molecular liquid correctly, the compressibility in the simul
tion model is matched to the compressibility of the liquid
be studied. From this condition the repulsion parameters
tween equal particles can be fixed. In the present model
not possible to have liquid-vapor coexistence; in this asp
the method is similar to the Flory-Huggins theory of pol
mers, and to regular solution theory. In these widely us
theories, molecular interactions between unequal segm
on a lattice are characterized byx-parameters. In the presen
work a relation between thesex-parameters and the repu
sion parameters between unequal particles in the simula
has been derived, by applying the condition that the solu
ity of one phase into the other should be described correc
The model described can be viewed as an off-lattice sim
tion method for Flory-Huggins models.

This work therefore opens the way to do large sc
simulations, effectively describing millions of atoms, by u
ing a two-stage approach. First, mutual solubility and co
pressibility of liquids consisting of parts of~macro!mol-
ecules can be calculated using simulations retaining
atomistic details. Then these simulation results can be
into a mesocopic DPD simulation to study the formation
micelles, networks, mesophases and so forth. This ef
tively bridges the gap between the atomistic length scale
the mesoscopic length scale. It puts us in the position
predict the mesoscopic structure of surfactants and l
polymers, with arbitrary branching and loop structure, us
a direct simulation method.

For instance, the micro-phase separation properties
polymers of lengthN5104 can be represented by the sim
lation of polymers of lengthN510, if at the same time the
x-parameter is increased by a factor 103 ~assuming the origi-
nal x-parameter was small!. Thus the driving force for
~micro!-phase separation, the surface tension, increases
a factor of 16. Furthermore the typical time for rearrang
ments in the polymer structure, the Zimm time which is pr
portional toN3/2, is reduced by a factor 109/2'33104. Com-
bining these factors show that we gain a factor of 53105 in
simulation speed to arrive at the equilibrium state in t
example.

As an example of this, a scaling relation for the surfa
tension between two phases of equal length polymers
been derived from DPD simulations, and presented in te
of the Flory-Hugginsx-parameter. A difference is found be
tween single DPD particles and DPD polymers. For sin
particles the criticalx is larger than predicted from mean
field theory, but for polymers the mean-field prediction f
. 11, 15 September 1997
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4434 R. D. Groot and P. B Warren: Dissipative particle dynamics
the critical point is correct within the simulation error. Als
for polymers the mean-field value for the surface tens
critical exponent (m53/2) is recovered within the simulatio
error. For single particles the value of this exponent is l
certain, but combination with the divergence of the width
the interface~the correlation length! shows that the behavio
is still governed by classical exponents (n51/2, m53/2)
even quite close to the non-classical critical point.

We have also discussed dynamics briefly, which is
topic currently under investigation. We have indicated a p
sible problem with DPD in that the rate of particle transp
due to diffusion is of the same order of magnitude as m
mentum transport. Practically, this means that the particle
a polymer chain are liable to be changing position on
same timescale as hydrodynamic interactions develop
tween them. This is in contrast to what is expected in a r
fluid. However, it should not affect the equilibrium behavio
Indeed the presence of ‘‘soft’’ hydrodynamic deformati
modes allows the polymers to reach equilibrium more ea
than they would if they were to rely on pure diffusion.
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APPENDIX; APPROXIMATE EXPRESSIONS FOR
TRANSPORT COEFFICIENTS

In this Appendix we present simplified derivations f
viscosity and self-diffusion coefficient in which the physic
origin is hopefully transparent. Firstly, the viscosity of
DPD fluid has been derived independently by seve
workers.12,26Consider a fluid undergoing uniform linear flo
va5eabr b . ~In this section Greek indices indicate spat
components, and summation convention is used.! The idea is
that the dissipative contribution to the stress is due to
explicit friction force acting between particles moving o
different streamlines. The kinetic contribution is due to p
ticles ~i.e., momentum carriers! diffusing across streamline
and is related to the particle self diffusion coefficient. It w
be dealt with later. First though, the dissipative contribut
is @compare Eq.~15!#

sab5
1

VK (
i . j

r i j aFi j b
D L . ~A1!

The drag force is given in Eq.~4! and is

Fi j b
D 5gwD~r i j ! r̂ i j b r̂ i j gv i j g5gwD~r i j ! r̂ i j b r̂ i j gegdr i j d .

~A2!

In the second line the velocity of thei th particle is taken to
be that of the fluid at the same position. Inserting this in
previous expression, replacing the sum overi and j with an
integral, and assuming a uniform density (g(r )51), one ob-
tains
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sab5
r2

2 E d3r gwD~r !r a r̂ b r̂ gr d egd

5
2pgr2

15 E
0

`

dr r 4wD~r !@eab1eba1dabegg#. ~A3!

This allows identification of the dissipative contribution
viscosity

hD5
2pgr2

15 E
0

`

dr r 4wD~r ! ~A4!

and second viscosityzD55hD/3. These results are in agree
ment with those derived by a more sophisticated techniqu26

Inserting the expression for the dissipative function gives
dissipative contribution to the viscosity used in the main te
nD5hD/r52pgrr c

5/1575.
We now turn to a derivation for the self diffusion coe

ficient. Focus on the equation of motion of a single parti
and ignore the conservative forces

dvi

dt
5(

j Þ i
Fi j

D1(
j Þ i

Fi j
R . ~A5!

The drag force is linear in the velocity difference and th
the part due to the motion of thei th particle may be sepa
rated out. Dropping the other part but retaining the rand
force gives a Langevin equation for the motion of thei th
particle

dvi

dt
1

vi

t
5FR, ~A6!

where

1

t
5(

j Þ i
gwD~r i j !

r̂ i j • r̂ i j

3
, FR5(

j Þ i
swR~r i j !u i j r̂ i j .

~A7!

Replacing the sum for the drag factor by an integral, a
likewise in the calculation of the statistics of the rando
force FR, obtains

1

t
5

4pgr

3 E
0

`

dr r 2wD~r !,

^FR&50, ^FR~ t !–FR~ t8!&

54ps2rE
0

`

dr r 2@wR~r !#2d~ t2t8!. ~A8!

The Langevin equation is solved straightforwardly to obta
^vi(0)•vi(t)&53kBTe2t/t and therefore

D5
1

3E0

`

dt^vi~0!•vi~ t !&5tkBT. ~A9!

The fluctuation-dissipation theorem in this case takes
form
. 11, 15 September 1997
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s2E
0

`

dr r 2@wR~r !#252gkBTE
0

`

dr r 2wD~r !, ~A10!

thus the temperature appearing in this analysis is the sam
that in the true fluctuation-dissipation theorem Eq.~5! de-
spite the approximations made. Inserting the expression
the dissipative function gives the self-diffusion coefficie
used in the main text:D545kBT/2pgrr c

3 . This result for
the self-diffusion coefficient is in agreement with that d
rived by more sophisticated means.26

Finally, the kinetic contribution to stress may now b
estimated. From simple kinetic theory31 the viscosity is
hK5r^v2&t/3, wheret is the mean time between collision
Since^v2&53kBT, and the velocity autocorrelation functio
derived above suggests a natural timescale, we expecnK

}tkBT5D. Here, the more sophisticated calculation26 gives
a numerical prefactor and shows thatnK5D/2. The kinetic
and dissipative contributions are simply added.
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