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We critically review dissipative particle dynami¢®PD) as a mesoscopic simulation method. We

have established useful parameter ranges for simulations, and have made a link between these
parameters ang-parameters in Flory-Huggins-type models. This is possible because the equation
of state of the DPD fluid is essentially quadratic in density. This link opens the way to do large scale
simulations, effectively describing millions of atoms, by firstly performing simulations of molecular
fragments retaining all atomistic details to derjigparameters, then secondly using these results as
input to a DPD simulation to study the formation of micelles, networks, mesophases and so forth.
As an example application, we have calculated the interfacial tensibetween homopolymer

melts as a function of andN and have found a universal scaling collapse whépkgT x°* is

plotted againstyN for N>1. We also discuss the use of DPD to simulate the dynamics of
mesoscopic systems, and indicate a possible problem with the timescale separation between particle
diffusion and momentum diffusiofviscosity. © 1997 American Institute of Physics.
[S0021-96087)51335-3

I. INTRODUCTION are capable of forming lamellar structur@s more general
mesostructurgsand are candidates to form weak gels. Some
Many systems of academic and industrial interest argyolymer zones may form micelles, and if these micelles are
examples of soft condensed matter: They are neither comtonnected by polymer strings a network is formed.
pletely solid nor completely liquid. When we take a closer  Ajthough the behavior of these networks on larger
look at the background of these systems a common featuligngth-scales is now reasonably well understood, we still
arises, namely the existence of a relevant length-scale in bgznnot make the full connection from atomistic length-scale
tween the atomistic scale and the macroscopic scale. In somg§ he macroscopic world. In simulations of associative
cases, when we consider polymer gels, this length-scale is Sﬁ(ﬁuidsl*z the associated atoms are moved together as one
by the distance between the cross-links in the gel. Simulatiopq,,, shecies. This implies that the order of association is
on this length-scale, using a simple bead-and-spring mOd‘gefined at forehandn this case binary associatiprConse-

has proviad app.ro.pnate to analyze _the phasg d'agram and t ﬁently, properties defined on a smaller length-scale than an
rheology. Surprisingly, the linear viscoelastic behavior that . . . : -

. . S effective cross-link, like how many chains are joined to-
results from this model shows a universal behavior similar to

. ; . ; gether in a micelle, cannot be predicted. Furthermore, hydro-
what is found in many experimental systéneven without o . .
) . o : L dynamic interactions are not accounted for. To bridge the
the incorporation of hydrodynamic interactions. This in itself ap between atomistic simulations and these large scale net-
indicates that for polymer gels the nature of the chemistry igap betw ISUC simulfati 9

not important, but life-time and structure of the polymer con-V_vork S|mu_lat|on§, we therefore seek an intermediate simula-
nections i< tion technique aimed at a length-scale larger than the atom-

If we now draw attention to other types of systems istic scale, but smaller than the network connection scale.

where surfactant mesophases form the structuring mecha- A few years ago Hoogerbrugge and Koelman introduced
nism, a similar universality is found. In this case the flexibil- @ NeW simulation technique for hydrodl3{nl:;1m|c_ behavior,
ity or bending rigidity of a lamellar bilayer leads to a meso- c@lled dissipative particle dynamid®PD).”** This tech-
scopic length-scale: the wavelength of undulations of thdldue is based on the simulation of soft spheres, whose mo-
lamellar sheeté The precise value of the rigidity of bilayers tion is governed by certain collision rules. By introducing
is a subject of debate, and by no means trividbwever, an  bead-and-spring type particles, polymers can be simulated
analysis in terms of lamellar sheets presupposes their exidith the same methot:** As applications of the method
tence, whereas in reality many self assembled structures capound, it is necessary to create a firm basis from which we
occur®’ The available techniques to predict these phase§an interpret what the simulation means, before we go into
range from Monte Carlo methods of lattice polym@rlf-  any detail on the results of the simulations. The aim of the
consistent field theory, to dynamic density functional present article is to provide such an interpretation. The start-
theory’® A problem with these techniques is that they all ing point of this analysis will be the formulation of DPD by
describe polymers confined to lattice conformations, and ar&spaml and Warrert? who studied the fluctuation-
not very well suited to describe branched polymers. Multi-dissipation theorem in connection with this method. In their
block copolymers and branched polymers are molecules thérmulation all particles interact by three forces: a conserva-
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tive forceFC, a dissipative forc&P, and a random forcBR. Espail and Warref showed that one of the two weight
They showed that the dissipative force and the random forcBInctions appearing in Ed4) can be chosen arbitrarily and
have to satisfy a certain relation in order that the system haidat this choice fixes the other weight function. There is also
the statistical mechanics corresponding to the canonical er relation between the amplitudes akyl. In summary
semble with a temperature related to the relative amplitudes D/n e Ryun12 5
of the random and dissipative interactions. WA =IWHNTF, - o7=27keT. ®
In the present article the physical interpretation of thisAs a simple choice we take
relation is discussed, and algorithms formulated for arbitrary )
timesteps. The negative consequences of not satisfying this wO(r)=[wR(r)]2= (1-n% (r<1)
relation are elucidated, and the statistical mechanical validity 0 (r=1)
of the method is checked explicitly as a function of the .

R . - - .
timestep size. Once the validity is established, the thermod i-e., wi(r) is the same function as in the conservative

namic basis of the model is investigated. A simple scalin force). Unlike Hoogerbrugge and Koelméwe choose not

relation is found, which leads to the interpretation of the?[0 include r?ormallzat_lonlgactor_s in these functions. .
In previous studies'!® a simple, Euler-type algorithm

underlying model in terms of the well known Flory-Huggins - .
ying y-rugg was used to advance the set of positions and velocities. For

theory of polymers. This opens the way to bridge the gap i . L . . i
from atomistic simulations, where solubility parameters cart! arblltrary timestep 't. Is found by Integrating _the equauons
f motion over a short interval of tim&t over which neither

be calculated, to mesoscopic simulations where mesophast Se ositions nor velocities of particles chanae very much
and network formation can be studied. Finally, as an ex=_, P . . P 9 y '

. C . This algorithm is
ample of a practical application, we examine the surface ten-

(6)

sion between homopolymer melts. r(t+At)=r(t)+Atvi(t),
vi(t+At) =v;(t) + Atf(1), @)
Il. THE DPD SIMULATION METHOD fi(t+ At =f,(r(t+At),v(t+At)).

A set of interacting particles is considered, whose timecare must be taken with the random force which becomes
evolution is governed by Newton’s equations of motion

dl’i dVi

dt '’ dt
For simplicity the masses of the particles are put at 1, so that
the force acting on a particle equals its acceleration. Th
force contains three parts, each of which is pairwise additive:

Fii=owR(r) & At (8)
fi- @ where(j; is a random number with zero mean aumut vari-
nce, again chosen independently for epain of interacting
articles and at each timestep. The appearancktot’? in
is expression will be discussed below.

Rather than using the Euler algorithm as utilized by pre-
vious author§"*?in the context of DPD, a modified version

— C D R
fi_; (Fij+Fj+Fp, (2) of the velocity-Verlet algorithrtf is used here:

where the sum runs over all other particles within a certain  r,(t+At)=r;(t)+Atvi(t)+ 3(At)2f(t),
cutoff radiusr.. As this is the only length-scale in the sys-

tem, we use the cutoff radius as our unit of length=1. Vi(t+At):vi(t)+)\Atfi(t),
The conservative force is a soft repulsion acting along the _ ©)
line of centres and is given by fi(t+At)=f;(r(t+At),v(t+At)),

c_)ai(l=ripry (<1 3 Vi(t+AD =V (1) + AL (D) +F (t+AD)).

Dolo (r=1) ’

If the force were independent of velocity, the actual velocity-
where a;; is a maximum repulsion between partidleand  Verlet algorithm would be recovered far=1/2. Because the
particle j; and rij=r;—rj, rj=|rjl, Fij =r;/|rjj|. The re-  force does depend on velocity, we make a prediction for the
maining two forces are a dissipative or drag force and &ew velocity, which we denote by, and correct for this
random force. They are given by afterwards in the last step. In this more sophisticated algo-
P rithm, the force is still updated once per iteratifter the

e second stepthus there is virtually no increase in computa-
wherew®P andwR arer-dependent weight functions vanish- tional cost. All physical measurements that depend on coor-
ing forr>r =1, v;j=v;—v;, and;;(t) is a randomly fluc- dinate differences are also taken after the second step; the
tuating variable with Gaussian statisticgd;;(t))=0 and temperature is measured after the last step.
(6i(1) B (t)) = (i 8 + 6 6j) 6(t—t'). These forces also If there were no random or dissipative force, this algo-
act along the line of centres and conserve linear and angulaithm would be exact t@(At?) at A=1/2. Because of the
momentum. There is an independent random function fostochastic nature of the process, the order of the algorithm
eachpair of particles. becomes unclear; this is discussed more fully kgirQer,

Fo=—yWP(r)(r Vi)t Fii=owR(ri)) 6;

J. Chem. Phys., Vol. 107, No. 11, 15 September 1997

Downloaded 10 Dec 2007 to 130.226.87.177. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



R. D. Groot and P. B Warren: Dissipative particle dynamics 4425

for example'’ The variable factok, introduced empirically, particles. The first is the Liouville operator of the Hamil-
appears to account for some of the additional effects of théonian system interacting with conserved foréés the sec-
stochastic interactions. In practice, all simulations reported irond operator£P contains the dissipative and noise terms.
this paper were carried out with= 1/2 with the exception of Now if the dissipative and random forces are put at zero, we
some investigations of the effect af on the steady state are left with a Hamiltonian system. In the canonical
temperature reported in the next section. ensemble, the Gibbs-Boltzmann distributiop®qr;,p;)

The factor At~Y2 appearing in the expression for the = exp(—=;p%/2mksT—U/kgT) is a solution of
random force in Eq(8) will now be discussed. It can be
derived by integration of the underlying stochastic differen-
tial equations and interpreting the random force as a Wiener
process;? but a heuristic argument as to wiyt ~ 2 appears  |f we turn on the drag force and the noise, we don’t want the
is useful for a correct understanding of the method. Considegquilibrium distribution to move away from this distribution.
therefore the motion of a particle in a liquid over a fixed This condition is satisfied only iz°p®=0 also. This is
time-span. Due to collisions with other particles, a randonbrecisew what Eq(5) is designed for. If we do not choose
force f(t) acts on the particle. The mean value of this forcethe drag and noise weight functions according to Gj.the
is zero, but its variance is non-zero. To calculate this wesimulation will move away from the equilibrium Gibbs-
divide the time axis ifN intervals. In each of these intervals Boltzmann distribution when the drag and noise terms are
suppose the force has a random vafyewith zero mean turned on. In that case, although a steady state may be
(f;)=0 and variancéf’)= o2, where, initially, we suppose achieved, it may not be related to any recognized thermody-
the variance has no dependence on the timestep. We will findamic equilibrium distribution; there may not even be a rec-
that this leads to unphysical behavior. The random force iggnizable Hamiltonian.
uncorrelated between different timestepd;f;)=0 if i It is highly desirable to have a simulation in which the
# ]. The time-integral of the force is the momentum changeesquilibrium distribution corresponds to the Gibbs-Boltzmann
of the particle. Since this is, up to a friction factor, equal todistribution. It means for instance that all the standard ther-
the displacementthe random force induces a random walk modynamic relationgfor example, for the pressurean be
the mean square value of the time integral of the force mustansferred to the new situation.

be proportional to the square distance travelled in a diffusive  Now the reader may be wondering what is the point of

ap®

= £Cp®%=0. (12)

process, i.e., proportional to time dissipative particle dynamics, if all it achieves is to simulate
. 2 a Hamiltonian system in the canonical ensemble. After all,

<|:2>:< ( f f(t/)dt') > this can be done by any one of a number of NVT molecular

0 dynamics method¥ Indeed DPD can be viewed as a novel

2 thermostatting method for molecular dynamics. Note though
> = o 2t2/N=t X o2At. (10) that DPD is an NVT method thaireserves hydrodynamics

It has recently been suggested that the presence of hydrody-
namics is important in annealing defects in ordered
. i L mesophase¥. Thus DPD has an intrinsic advantage over
creasep ”;'S average would go to zero i, as |n|?|ally_ 85" other methods such as dynamic density functional theory
sumed,(f7) is independent oft. As the mean diffusion (which are purely diffusiveor Monte Carlo methods, in try-

over any physical time-interval must have a finite value thal'ing to evolve a system towards an ordered thermodynamic
is independent of the stepsize of the integration, we muséquilibrium state

conclude that in actualityf{) = o/At is appropriate. Thus As compared to usual molecular dynamics simulations,

the spread of the random force increases as we divide a givqer example with Lennard-Jones atoms, the major advantage
physical time interval up in more and more timesteps. This

e d d fth dom f . ol of the new method is its soft interaction potentid. The
stez-zlzeh eFen engeiollzt.eirzan gm OrCe IS precisely gen€larticles represent molecules or liquid elements rather than
ated by the factor olit in Eq. (8). . . atoms, and the soft potential allows for a much larger

At this point the reader may wonder why it is so impor-

hat Ea.(5) relati he dissipati d noi h timestep than is commonly used in usual MD simulations.
tant t at : a.( ). re ating the |SS|p§1t|ve and noise weig ' The guestion of the connection from atomistic parameters to
functions is satisfied. To answer this question, consider th

. . . ) " esoscopic parameters will be addressed in the remainder of
d'St_”bqt'on func'uonp(ri., pi 1), which gives the pro.babmty this paper. Such soft interaction potentials could, of course,
of f!r?d'”g the system in a state Where_ the partlcles ha\’%ﬂso be used in a standard MD type algoritfgiven by the
posmonsri _and mo_me_ntepi ' E_it any particular timg. The present algorithm with the noise and dissipative turned off:
time evolution of this distribution is governed by the Fokker-~_ _ : ;

. . —~ o=1y=0), or in a Monte Carlo algorithm.

Planck equation derived by Esfurand Warrerr Soft interactions have been proposed recently by Forrest
. . and Su_te?.o Their approach is to start off bottom-up with
st LptLop, (1))  atomistic (Lennard-Jonésinteraction potentials, and to re-

place these by effective potentials between centres of mass.
where £€ and £P are evolution operators that can be ex- These effective potentials were obtained in a systematic way
tracted from the time-evolution governing the motion of theby averaging the molecular field over the rapidly fluctuating

N

~{[20)

As the number of interval®\ increasedi.e., At=t/N de-
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motions of atoms during short time intervals. This approach

leads to an effective potential similar to our E§). It does 10?

not diverge at =0, and it no longer shows the characteristic

minimum of the Lennard-Jones potential. This result sup- 100

ports our choice of a soft repulsive interaction force. "[_-:
Although the approach of Forrest and Suter looks very o 10+

promising, there are a number of comments to make. Firstly

their procedure to obtain the effective “time-averaged” po- 10°%

tentials involves complicated integrals, analogous to the cal-

culation of virial coefficients in a low density expansion. 10

Therefore, no explicit analytical expression can be obtained 10 107

for the effective interaction potential. Furthermore, their nu- At

merical procedure neglects the correlation in the local den-

sity fluctuations, which involves the time-dependent pair corF!CG- 1. Temperature as a function of timestep dor 3, p=4. Curves are
. . . hown for the Euler-like algorithm Ed7) (Eu), the Verlet-like algorithm

relatloln function. As such an approach becomes exceedmg&q. (9) (Ve) for two values of\, and the Verlet-like algorithm without the

complicated(though formally exagtwe have chosen for a eceleration terniVe, ).

pragmatic alternative way to address the problem.

In the remainder of this paper we approach the connec-  Several things are to be noted here. Firstly, no statistical
tion between the atomistic potential and the mesoscopic indifference was found between the simulations using uniform
teraction forces in a top-down approach, in which we startandom numbers and the simulations using Gaussian random
from the mesoscopic side. The strategy will be to match theyumbers. Since uniform random numbers take less CPU time
thermodynamics of the DPD simulation to that of the under-g generate than Gaussian random numbers do, a choice for
lying atomistic system. uniform noise is made. Secondly, the choice of the timestep

First it is necessary to set length, time and mass scalég now determined by the amount of artificial temperature
for the simulation. The length and mass scales have alreadyicrease one is willing to accept. For the Verlet algorithm
been set by specifying that particles have mass 1, and thfe.=1/2 in Eq.(9)], with step sizeAt=0.04 this increase is
cutoff distance for interactions is also (bbviously, these 29, and at stepsize 0.05 it is 3%. Stepsize 0.04 thus seems a
could be relaxed for mixturgsRather than specify a unit of safe choice, and 0.05 an acceptable upper limit. To obtain the
time, as Hoogerbrugge and Koelman ‘dowe choose to same degree of accuracy for the Euler algorithm would re-
work in units such thakgT=1, which effectively specifies a quire timesteps of ordekt~0.001, i.e., the Verlet algorithm
unit of time since the rms velocity of the particles\E from  gives a factor of 50 or so improvement in performance.
the Maxwell-Boltzmann distribution. Working in these units Thirdly, it is also found that stable temperature control is
is useful since the conservative interaction potentials are awbtained only when the ternd (At)2f(t) is included in the
tomatically in units ofkgT without having to be rescaled.  position updatdsee Eq.(9)]. If this term is left out, the

results are nearly as bad as the Euler algoriteee Fig. 1
Inclusion of this term in the Euler algorithifmot shown in
lIl. HOW TO CHOOSE THE TIMESTEP AND NOISE Fig. 1) was found to improve temperature control to approxi-
LEVEL mately the extent the Verlet algorithm without this term.
Therefore inclusion of this term and the adoption of the Ver-

The timestep size has to be chosen as a compromidet algorithm areboth essential to facilitate the use of a large
between fast simulation and satisfying the equilibrium contimestep.
dition. We monitor this by monitoring the temperature of the ~ The reported temperature control holds for noise ampli-
system. Using Eq(5) for a given noise amplitude and put- tudeo=3 and forA =0.5 in Eq.(9). When the noise ampli-
ting kgT=1, the equilibrium temperature was measuredtude is reduced, the timestep range over which the system is
from the velocities, as a function of the step-size stable does not change by much, but the speed at which the

ko= (V2 system reacts on temperature variations is reduced. For den-

sT=(Vv9)/3, (13 ; _ _ .
sity p=3 and At=0.04 the system relaxes exponentially
where( ...) is a simple average over all particles in the from temperaturé&gT=10 to kgT=1, where the relaxation
simulation. time is some 10 timesteps. However, with noise amplitude

Two types of noise have been used, uniformly distrib-o=1 this relaxation time is some 90 timesteps, because the
uted random numbers and Gaussian distributed random nurfriction factor is a factor of 9 smaller in the latter case. If we
bers of the same variance. Results obtained from simulatiorstudy the temperature as a function of the noise amplitude, a
of a system containing 4000 particles in a cubic box of sizeplot similar to Fig. 1 is obtained: A slow increase lofT
10X 10x 10, repulsion parametex=25 [see Eq.(3) for its  with ¢ is found up too~8 beyond which the temperature
definition], averaged over 200 time steps are shown in Fig. 1grows rapidly and the simulation may itself become unstable.
Several versions were examined. For all data points the noisehus as a reasonable compromise between fast temperature
level was taken equal at=3. The error bars indicate the equilibration, a fast simulation and a stable, physically mean-
spread in the temperature. ingful system, simulation with stepsizkt=0.04 and noise

T rTI T TTTOg ¥ VI T e T T

[ | 1 1 F IO T SR N T I | i
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amplitudeo=3 is recommended with =0.5 in the Verlet- 1.50
type algorithm Eq(9).

By empirically adjusting\ further gains are possible.
For p=3 ando= 3, for example, we find the optimum value 1.00
is A =0.65. For this value ok we find that the timestep can
be increased tdt=0.06 without significant loss of tempera-
ture control(see Fig. 1L The simulations in the remainder of 0.50
this paper were all carried out witht=0.04 and\=0.5
though.

g

0.00 : * *
0.00 0.25 0.50 0.76 1.00
IV. HOW TO CHOOSE THE REPULSION PARAMETER

Having established the parametérs and o, which are

related to the simulation method itself, we now turn to the , _ _
. . FIG. 2. Pair correlation function for the present soft sphere modeh 08

parameters related to the simulated model. Inspecting EqQ, .~ o
(3), it is clear that there is only one parameter in this model,
namely the repulsion parameter If the thermodynamic
state of an arbitrary liquid is to be described correctly by thedence was found: for two runs over“fimesteps, for mean
present soft sphere model, the fluctuations in the liquiddensityp=5, system size 8 5X5 and repulsiora=15, the
should be described correctly. These are determined by tharessure with noise included was 5082.05, without noise
compressibility of the system, hence, analogously to thé0.59+0.05 and the wall pressure was 50:92.05. Hence,
Weeks-Chandler-Anderson perturbation theory of liquidsthere is a small but finite difference between the two expres-

we ought to choose our model such that sions for the virial pressure, but this difference does not oc-
cur if we look at the stress across an interface: If we study

1 1 1 (dp ) L
= — " (14) Pxx— (Pyyt P2 /2, there is no systematic difference between
nkgTrr kgTion/, the two methods. However, most importantly for measure-

has the correct value. The paramateappearing in Eq(14) ments of surface tensiofi.e., the integral over the stress
is the number density of molecules, arg is the usual iso- 2€r0SS an interfagethe error obtained when the noise is not

thermal compressibility. For water at room tempera@@0 included is a factor of 2.5 smaller than when the first expres-
K) this dimensionless compressibility has the numericafion from Eq.(15) is used. _ _
value x~1=15.9835. To obtain the equation of state the density was varied

To find this correspondence, we have to establish th&f0M p=1 10 p=8 in steps of 0.5 for repulsioa= 15, and
equation of state. Thus the pressure is obtained from simJ€SS €xtensive density variations were studiedafer25 and

lation as a function of the density, for various repulsion pa-2=30- After subtracting the ideal gas term it was found that

rameters. Using the virial theorem, we obtain the pressure ége excess pressure scales linearly with the repulsion param-
eter. Furthermore, the excess pressure is dominated by a

_ 1 single p? term over a large range of densities. In Fig. 3 the
P=pkeT+ W< JE>. (ri_rj)'fi> results are shown foa=15 (crossey a=25 (squares and
L a=30 (circles.
_ A somewhat more insightful picture emerges when we
=pkgT+ o= r—r)-FS - o ;
P78 3V<j2>i (ri=rj) 'J> plot the excess pressure divided p¥, which is shown in
2 1
=pkgT+ ?pZJ rf(r)g(r)r?dr, (15
0

whereg(r) is the radial distribution functiorisee Fig. 2,

andf; and Fﬁ are the total and conserved parts of the force o
on particlei, respectively. In the simulation the second ex- =
pression is used. Note that this expression is equal to the firs1%_
only because our system has the correct Boltzmann distribu- 2

tion. If Eq. (5) is not satisfied, these two expressions are not S
equal in general.

As an explicit check, we have also used the first expres-
sion, and measured(r) and calculated the pressure after-
wards using the third expression. This led to pressure differ-
ences of some 0.7%, i.e., negligible in practice. As a final
check on programming errors, the pressure was also mea P
sured by introducing a soft wall in the system, and averaging. 3. excess pressure obtained from simulation. The full curve is a pa-
the mean force exerted on the wall. Again good corresponrabola fit.

10
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FIG. 4. Excess pressure divided by? for three values of the repulsion

- > FIG. 5. Free energy and chemical potential in the Flory-Huggins model for
parameter, showing scaling.

Na=Ng=1. Points S are spinodal points; points B are binodal points of
coexisting compositions.

Fig. 4. The points fop=0 have been calculated from the

virial expansion, Eq.(15 substituting the relatiorng(r) ) ) _ . .
—exp(—la(l-r?kgT). We find the virial coefficients above this point the pressure is positive for all densities, and
0.0509, 0.0384, and 0.0343 far=15, 25 and 30, respec- for temperatures below this point the system collapses.

tively. What Fig. 4 now indicates is that for sufficiently large Hence, there is no real liquid vapor coeX|stenF:e in this
density, e.g., fop>2, all systems fall on the same curve, model. One may be tempted to change the repulsive force by

indicating a simple scaling relation. Furthermore, since thé'ntroducing a steep repulsion at smallbut in doing so the

curve in Fig. 4 levels off to a constant value py 3, the tekmper_ﬁwure (r:]o?troldls lost unlfeshs veryhsrge_lll t;}meslteps are
excess pressure is really proportionalpfo taken. The whole advantage of the method is then lost.

A good approximation for the pressure that holds for While quui_d-v_ap_or i_nterfac_es _cann(_)t be simulated, one
sufficiently high density §>2) is: can simulate I|quu_j—llq_uu_j and liquid-solid mterfaces. In this
way the method is similar to the Flory-Huggins theory of
p=pksT+ aap?(«=0.101+0.00)). (16)  polymers, and can in fact be viewed as a continuous version
This implies that the dimensionless compressibility, as introf this lattice model. In the Flory-Huggins theory molecules
duced in Eq. (14), is given by x ‘=1+2aap/kgT of d|ff_erent Iepgth are confined tq a Iattlce.. The mj[e_rnal en-
~ 1+0.2ap/kT. Combining this with the known compress- €9y is described as a perturbation from ideal mixing, i.e.,
ibility of water, x; 1.~ 16 we findap/kgT~75. In principle only the excess over pure components is taken into account.
the density chosen for the simulation is a free parameter, bf®" tWo components this leads to the free energy per lattice
since the number of interactions for each particle increased/t
linearly with the density, the required CPU time per timestep F DA B
and per unit of volume increases with the square of the den- = N_Aln dat N—B“’\ Pt XxPads, 17
sity. For efficiency reasons one would thus choose the lowest
possible density where the scaling relation still holds. Fromvhere ¢, and ¢g are the volume fractions of thé and B
Fig. 4 it now follows thatp=3 is a reasonable choice; to componentsN, andNg are the number of segments pler
have the Compressib”ity of water, we need the repu|5ion paandB molecule, and the |mpI|C|t condition is that the lattice

rametera=25kgT. For other densities we use=75gT/p. Is filled completely, henceps+ ¢g=1. Under this condition
dg=1— 5, and ¢, is the only degree of freedom.

When A and B are two components that do not favor
contact the parametey is positive; when they favor each

One obijective to use the DPD method could be the simuother overAA or BB contacts, then it is negative. For suffi-
lation of liquids at interfaces. An obvious interface is theciently large y-parameters the free energy develops two
liquid-vapor interface, but here we have a problem. Since th&inima, separated by a maximum, see Fig. SNAf= Ng the
repulsive pressure is so softly increasing with density, leadminimum free energy is found at=dJF/d¢,=0. In Fig. 5
ing to the apparent absence qf)%term at high densities, the these points are indicated byBa Their location follows from
model cannot produce liquid-vapor coexistence. If the conthe implicit equation

V. MAPPING ONTO FLORY-HUGGINS

servative forcdEq. (3)] is changed in such a way that the IN[(1= ¢ p)/ ba]
force is repulsive at small, and attractive at large, this XNA:T (18
attraction causes a reduction in the pressure proportional to Pa

p?, which depends on temperature. This means that, whelf y is positive but too small, no segregation will take place,
the temperature is chosen at a critical value, the pressufgut when it exceeds a critical valu&-rich andB-rich do-
vanishes for a very broad range of densities as repulsive andains will occur. This criticaly-parameter is found from the
attractive pressure exactly compensate. For temperaturesndition that the spinodals$ in Fig. 5 coincide. This im-
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plies that the first and second derivative of the chemical po-
tential with respect tap, vanish, which leads to the critical

point
1 1\?
. (19

W N

Since the present simulated system is fairly incompressible
(k~1=16), and since the excess pressure is quadratic in the
density, the soft sphere model is by nature very close to the
Flory-Huggins lattice model. The free energy density that
corresponds to the pressure of a single component(15j. x-coordinate
is

crit__ E

X735

densities

f aap2 FIG. 6. Density profile fop=3 at repulsion parameteag ,=agg=25 and
\ —

—=plnp—p+-—, 20 ag=37.

keT P PP LT (20)

hence for a two component system of chains one expects the density profiles of andB particles were sampled across

fyv  pa Ps Pa  Ps the interface. Averages of the density were taken ovér 10
kB_T_ N_Aln pat N_Bln P~ N_A - N_B f[imesteps; the mean value xfover a slab where the density
is homogeneous was then taken to compute the correspond-
ing Flory-Huggins parameter. An example of such a binary
density profile is shown in Fig. 6. Note the small dip in the
sum of the densities at the interface.

When the measured segregation parameté substi-
tuted for ¢, in Eq. (18), the Flory-Huggins parameter for

a(apapat2aappaps+ asePs)
+ .
kgT

If we chooseasp=agg and assume that,+ pg is approxi-
mately constant,

(21)

fy X (1—X) monomers is found. Now, when we are close to the critical

Ww N—In X+ N IN(1—x)+ xx(1—x) point (y=2), we cannot expect this mean-field expression to
PaT Pe/ts A B hold, but when we calculate fop>3 this value should be
+ constants, (22 reliable. The calculateg-parameter is shown in Fig. 7 for

two densities as a function of the excess repulsion parameter.
We find that fory>3 there is a very good linear relation
betweeny andAa. Explicitly, we have

- 2a(aag—aaa)(patps) 23 y=(0.286+0.002Aa(p=3),
kgT )
® x=(0.689+0.002Aa(p=5).

where we have set=p,/(patpg) and made the tentative
identification

(24)

Apparently we have the corresponden¢soft spheres ) ) o i
fu/(pat ps)=F (Flory-Hugging, with a y-parameter map- These results partly confirm E(_423) in that)( is I|ne.ar in
ping given by Eq(23). Aa, but t.he constant of proportionality is far .from Imegr in
To test this relation simulations have been performed foth€ density. Nevertheless, we can choose a fixed density, and
binary mixtures of both monomers and polymers, athenceforth use Eqs24) as an effective mapping on the
p=pa+pe=3 and p=5, for repulsion parameters FlOry-Huggins theory.
a=app=agg=25 anda= 15, respectively. When the excess
pressure was measured as a function of the fractiof A
particles it was found that it is indeed proportional to
X(1—x). However, unlike the assumption in E®2) it was 8t
found that the prefactor af(1—x) is not simply linear in
Aa=apg—a when Aa is 2 to 5. In practice we are not
interested in small differences in the repulsion, but systems
will rather be chosen where segregation takes place, i.e.
x>x“™. Now if y is much larger than the critical value,
mean field theory is expected to be valid. This means that we 2l 50
can use Eq(18) as the defining equation for the correspond-
ing Flory-Huggins parameter. , . : .
Adopting this strategy, a system of siz&x8x 20 con- 0 5 10 15 20 25
taining 3840 monomers was simulated. Half the particles
were of typeA and in the initial configuration they were 8,578,
placed in the left half of the system, the other particles, of
type B, were placed in the right hand side. For these systems FIG. 7. Relation between excess repulsion and effeggiyarameter.

X-parameter
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VI. SURFACE TENSION BETWEEN HOMOPOLYMER
MELTS

The surface tension between unlike polymers of equal
length is also determined in the simulations above. This is a
case where few results are available, thus it also illustrates
the application of the method to a real polymer problem. A
very useful scaling relation is found, which facilitates the
extrapolation of simulations on small polymers to the real
world of very long polymers.

For very long chains the In terms in E@L7) drop out,
leading to a free energlf/kgT= xydadg. In this case the
surface tension becomes independent of the polymer length,
FIG. 8. Simulation results for the effective-parameter as a function of for which case Helfand has derived the analytic expre§§i0n
polymer length.

xNJ/Aa

o= 3kgT(xmM M1+ (1+x)x "2 tan " x'?], (28

wherem is the fraction of contacts a lattice site has perpen-

Polymer systems were studied next. To make a ponmetdiCUIar to the interface, relative to the total number of con-

monomers are threaded together in linear chains, using tht’@cts it has. This equation has two limiting results. In general,
interaction force the surface tension equajstimes the width of the interface.

At small y the width is proportional to, ™2, and hence the
surface tension is proportional tg"2. As x increases, the
interface narrows, and at a certain stage it has the width of a
single lattice cell. Beyond that point the interface cannot nar-
where the sum runs over all particles to which particie oW down any further, hence the surface tension must be-
connected. The spring constant is chosen such that the meggme simply proportional tg. In this limit the specific lat-
distance between connected particles coincides with thg§ce nature of the approximation becomes apparent. In the
point where the pair correlation function has its maximum,gmajl y limit, where the width of the interface is much larger
see Fig. 2. Fop=3 anda=25, this occurs foC~2. Ifwe  {han a Jattice spacing, the result should not be affected by the
chooseC much larger, the particles are tied together at veryattice approximation, the surface tension on a simple cubic
short distance and we get very stiff chains, and if we take ijattice is o =KgT(x/6)Y2

much smaller we get a longer distance between the con- The surface tension for finite polymer length has been

nected particles than between unconnected nearest neigfarived only as an asymptotic expansiorNrin the form
bors. HenceC=2 seems a reasonable choice. This spring

force is similar to the “weak spring” of Schlijpeet all* 1
Between particles of the same type the repulsion param- 2
(xN)
eters are taken ag; = 75kgT/p for all types, and the cross
terms are again chosen as Brosetaet al?? find k= 7%/6 whereas Helfanat al?® find
o k=2In2. The prefactor ¥/6)"? is Helfand’s earlierN=c
a;j=7KgT/p+Aa (i#]) (26)  result, and the difference in the prefactor ofW/is caused

which defines the excess repulsiam. The polymer length, Py slight differences in the approximation used.

N=N,=Ng was varied from 2 to 20, and the repulsion pa- At this point it should be noted that for simple liquids,
rameter was varied froma=1 to 40. the surface tension near the critical point behavé$ as

f i(spring):; Crij ' (25)

1/2
X

6

k
o=kgT 1—X—N+O . (29

_ The.FIory—HugginsX—paramet_er for polymers was ob- o~(1-TITH)H, (30)
tained via the observed segregation. The resulyféfAa is . ]
plotted as a function oK in Fig. 8. We find that theu=1  Where the exponenu=3/2 in classical van der Waals
results all lie systematically below the line of the>1 re- theory, whereas the renormalization theory result for the

sults, but the difference is only some 7%. The best estimatg'itical exponent isu=1.26 for the Ising model. Since the
obtained for 2 N<10 is x-parameter is a Gibbs free energy dividedkyl, we can

make the identificatiolT — 1/yN. It can thus be expected
that we can use E30) with this substitution to replace the
1/¥N expansion given above, and obtain an expression that
) _ ) . is valid up to the critical point.

A possible off-set aN=0 has been investigated. Including 1, neasyre the surface tension in the present simula-

the N=1 results the off-set defined in _the equation tions, the difference between the normal and tangential stress
xNKkgT/Aacx(N—Nj) is Ng=0.038-0.11, and if we neglect was integrated across the interface
the N=1 results the off-setNy=—0.002-0.2 is found.

Hence in either case the off-set is zero well within the accu-
racy of the fit. o= f [P242)— %( Pxx(Z) + pyy(z))]d Z (3D

XN kBT
Aa

=(0.306=0.003N. (27)
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FIG. 10. Scale factors used in Figure 9 as a functiow.of he straight line
FIG. 9. Re-scaled surface tension as a function gNL/For each data sét fit has slope 0.4030.009.

is varied andy is kept fixed. The smooth curve is a fit to a 3/2 power law.

forehand, and sincg-parameter and Kuhn length for this
The components of the stress tensor were obtained from tHRystem are un_clea_r, the experimental dgta were rescaled in
tensor equivalent of the second line of E45). both x andy directions to match our universal curve. The
First we study the surface tension for the chel. In experimental points are shown with error bars. Naturally, in

general we can expect that the surface tension is given biiS Particular example only the shape of the curve is com-
some scaling function ofN, i.e ared with the simulation results, rather than absolute values,

but it does illustrate that the DPD simulation results can be

o~ x"9(xN). (32)  used for quantitative predictions on real systems. By com-
As in Flory-Huggins theory of polymers it has been foundPining similar experiments and the present scaling curve, a
that for large arguments the scaling functigx) is linear in ~ guantitative mapping of long polymers on relatively small
1/x, we plot the simulated surface tension againgtNLin ~ DPD chains can thus be made. o
Fig. 9. For each data set the polymer lendthwas varied, Now we turn to the casi=1. If we use the function in
while Aa (and hencey) was kept fixed. To eliminate the Ed- (33 to fit the surface tension, we find a prefactor
y-dependent pre-factor in E¢32) all surface tensions were 0.495£0.006. The difference with the numerical factor in

rescaled so that they would best fit the surface tension atd: (33) is clearly outside the estimated range of uncertainty,
Aa=5 (i.e., y=1.53). The functional relation in Fig. 9 is hence theN=1 case does not conform to this scaling law.
thereforeg(x). Furthermore, we find the surface tension clearly to extrapo-

. .. . t_ . .
Itis now a fitting exercise to obtain an explicit functional ate to a higher critical point thap®"=2, see Fig. 12. This

form. A three parameter fit of the formg(xN) implies that theN_= 1 system behaves non-classic_ally. A
= K(1—x“"yN)* gives y“"=1.04+r0.14 and three parameter fit of the form=k)(“(_1—)(°m_/)()1'5 gives
w=1.62+0.17, i.e., within the error we find the mean-field @=0-26+0.01 and)(c“‘=2.3§i 0.02. This confirms the non-
critical point and the classical Van der Waals exponent. If weflassical value of the critical point. For consistency this
force x“'=2, we find from a two parameter fit vyould |mply that the Ising exponem=1.26.tshould be per-
w=1.55+0.03, confirming the classical value of the expo- finent, which leads tar=0.31+0.01 andy“"=2.49+0.02.
nent.

To obtain they-dependent prefactor in E¢32) the scal-
ing factors used to rescale all data to the same master curve
in Fig. 9, are plotted as a function gfin Fig. 10. All points 0.60
fall on a straight line of slope 0.4@30.009 confirming the
power law assumption in Eq32). However, the value of
this exponent is lower than expected, as mean-field Flory-
Huggins theory predicter=1/2. The scaling law obtained
from the present simulations thus takes the form

0=(0.583+0.004 pkgTrx* 41— 2/(xN)]¥? (33

which is shown in Fig. 11.
The scaling curve shown in Fig. 11 has been compared 0.00 : ' : : :

to experimental data on PS/PMMA surface tensdihe 0 20 40 60 80 100

data were read off Fig. 6 of this reference; the molecular xN

mass varies fronM,=1700 up toM,=43500. Since the

combination of surface tension in Fig. 11 has the dimensiofg. 11. simulated polymer surface tension master curve. The points with

length (the DPD interaction radigiswhich is not known at error bars are experiments on PS/IPMMA interfagiRef. 25.

e
>
[=]

o/(pk,Tr, x4
o
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FIG. 13. Surface tension of single DPD beads, the fit is based on classical
FIG. 12. Single bead surface tension. The dashed curve is a fit based on te#ponents with a non-classical critical pofiqg. (36) in the texi. Crosses:
mean field critical point and exponents, the full curve is a fit based on meap=5; circles:p=3.
field exponents and a non-classical critical point.

VIl. DYNAMICS

Although the fit with u=1.5 is slightly better than the fit The previous sections were essentially concerned with
with ©=1.26, the difference is so small that we cannot dis-the equilibrium behavior of DPD. Here we discuss more
tinguish between the two on the basis of this data. briefly the dynamics of a DPD fluid, in particular with re-
To further investigate the nature of the exponent forspect to polymer solutions. Apparently successful simula-
N=1, we also studied the width of the interface. The densitytions have been reported in the literattitdgut here we in-

profile was fitted to the functional form dicate a possible problem concerning the separation of the
timescale for the propagation of hydrodynamic interactions
p(2)= 3po[tan2(z—zy)/ &) +1], (39 and the timescale for diffusion. More detailed investigations

of the dynamics of a DPD fluid are being currently under-
wherep,, zy and§ were free fit parameters, addis a mea-  taken. A quantity of key interest in this respect is the
sure of the width of the interface. In general the correlationschmidt number Se »/D, wherev is the kinematic viscos-
length should diverge ag~(x—x“")"", wherev=1/2 if ity and D is the diffusion constant. It is a dimensionless
the classical set of critical exponents is pertinent, antharameter characterizing the fluid, and can be interpreted as
v=0.63 for the Ising model. Both for the=3 and for the  the ratio between the time for fluid particles to diffuse a
p=5 data the width of the interface close to the critical pointgiven distance, to the time for hydrodynamic interactions to

is well described by reach steady state on the same distance. Equivalently it mea-
sures the ratio of particle diffusion to momentum diffusion.
3.24+0.03 (35 In a typical fluid, water for instance, Sc is of order®10

B Jp(x—(2.39+0.03) reflecting the fact that momentum is transported more effi-
ciently than particles, as a consequence of the caging effect
which is found by plottingé 2 againsty. When we plot  of the interparticle potential. Since in DPD, very soft poten-
£ 18 againsty (assumingr=0.63) we find a line that ex- tials are used, this caging effect is expected to be reduced,
trapolates to zero by®"'=2.10+0.04. This value is not con- and one might expect Sc to be reduced. A simple calculation
sistent with the critical point found from the surface tension,given below indicate that this is indeed the case.
when non-classical exponents were assumed. The critical The transport properties of the DPD fluid have been in-
point found from surface tension and from the width of thevestigated by several workets?® Simplified arguments
interface are consistent with each other only when we adeading to these results are presented in the Appendix. For
sume classical exponents. Therefore, we conclude that, athe self-diffusion coefficient of a DPD particle we find
though the value of the critical point is non-classical, theD~45kBT/2wypr§. For the kinematic viscosity we find
behavior of theN=1 system is still governed by classical v~D/2+ 27Typr§/1575, where the first term is a kinetic con-
exponents, even quite close to the critical point. Our best fitribution and the second comes from the dissipative forces.
of the surface tension is Contributions from the conservative forces have been ne-
glected. The Schmidt number follows from these as
0=(0.75+0.02 pkgTroy 26001 4o
1 (2mypry)

X[1—(2.36+0.02/ 1% (36) Sc~ 5+ 7087%T " (37)

It should be remarked that Fig. 13 contains data obtainedVe have tested the accuracy of these estimates by simula-
from p=3 and fromp=5, where y was calculated from tions on single system only, witk=6.75 andp=3. From
x=0.288\a for p=3, and fromy=0.68%a for p=5 [see the simulations we find =0.306+0.006, v=0.305+ 0.005

Eqg. (29)]. and hence Se1.00+0.032%" Inserting the appropriate pa-
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rameters in the approximate theoretical expressions giv¥lll. CONCLUSIONS
D=0.354, »=0.258 and Se0.728 which are within
~10-30% of the measured results. The important point is  In this paper the DPD method is critically reviewed. It is
that the Schmidt number is about three orders of magnitudgescribed in detail how the noise amplitude, friction factor
lower than that of a real fluid. and timestep may be chosen. The method can be viewed
Such a small value implies that particles are diffusing agipon as a molecular dynamics method with added noise,
fast as momentum in the fluid. Contrast this with the Zimmsimilar to Brownian dynamics or Langevin dynamics. The
model for polymer dynamics for instance where, in order tomodel used to describe the liquid consists of very soft, re-
calculate the effect of hydrodynamic interactions, the Oseepulsive spheres; this is the reason why large timesteps can be
tensor is used® The use of the Oseen tensor amounts to théaken.
assumption that hydrodynamic interactions have reached a To describe the density fluctuations as they appear in a
steady state on the timescale of polymer motion. This is enmolecular liquid correctly, the compressibility in the simula-
tirely reasonable when the Schmidt number is large as it is iion model is matched to the compressibility of the liquid to
a real fluid, but is not clearly the case for DPD as discusse#fe studied. From this condition the repulsion parameters be-
here. The result for DPD would be that hydrodynamic inter-tween equal particles can be fixed. In the present model it is
actions are still developing on the timescale that the polymenot possible to have liquid-vapor coexistence; in this aspect
beads are diffusing, i.e., the dynamics of the polymer and théhe method is similar to the Flory-Huggins theory of poly-
fluid velocity field have become coupled. What the actualmers, and to regular solution theory. In these widely used
effect on the dynamics of a polymer in solution is at presentheories, molecular interactions between unequal segments
unclear. on a lattice are characterized fyparameters. In the present
It might be remarked that the relaxation of a polymerwork a relation between thesg-parameters and the repul-
chain is slowed down compared to the diffusion of isolatedsion parameters between unequal particles in the simulation
monomers. This is true, but it does not improve the situatiorhas been derived, by applying the condition that the solubil-
greatly. The slowest relaxation mode of a polymer chain idty of one phase into the other should be described correctly.
associated with diffusion of its center of massDlfis taken =~ The model described can be viewed as an off-lattice simula-
to be the diffusion constant associated with this mode, thetion method for Flory-Huggins models.
the Schmidt number is increased roughly by a fad®py, This work therefore opens the way to do large scale
where R is the hydrodynamic radius of the chafthis is  simulations, effectively describing millions of atoms, by us-
becauseD poymer= D monomed Riy). Since chain lengths are ing a two-stage approach. First, mutual solubility and com-
likely to be of order 10—100 monomers in a practical simu-pressibility of liquids consisting of parts ofmacrgmol-
lation, this enhancement factor may only be of order 5-10 oecules can be calculated using simulations retaining all
S0. atomistic details. Then these simulation results can be fed
The same remarks also apply to the simulation of colloi-into a mesocopic DPD simulation to study the formation of
dal particles. The value af/D for a colloidal particlgwhere  micelles, networks, mesophases and so forth. This effec-
D is now the diffusion constant of the colloidal particis  tively bridges the gap between the atomistic length scale and
often of order 10 in a real suspension. Similar to polymers, the mesoscopic length scale. It puts us in the position to
one may anticipat® o 1/a for large particles of radiuaina  predict the mesoscopic structure of surfactants and long
fluid of smaller particles. For a simulation where the colloid polymers, with arbitrary branching and loop structure, using
particle radius isa~5r; or so,»/D=<10 is expected. Again a direct simulation method.
it is not exactly transparent what the effect of such as low For instance, the micro-phase separation properties of
value for v/D has on the behavior of a simulated colloidal polymers of lengtiN=10* can be represented by the simu-
suspension, although it has been demonstrated by lattidation of polymers of lengtitN=10, if at the same time the
Boltzmann simulations that/D=750 is required in order y-parameter is increased by a facto? 18ssuming the origi-
that the short time diffusion in a colloidal suspension asympnal y-parameter was small Thus the driving force for
tote to the correct valu?. Ladd has noted that lattice gases (micro)-phase separation, the surface tension, increases with
suffer from the same defe#. a factor of 16. Furthermore the typical time for rearrange-
Equation(37) suggests a possible solution to this prob-ments in the polymer structure, the Zimm time which is pro-
lem since it indicates that Sc increases linearly withThat  portional toN®7?, is reduced by a factor #8~3x 10*. Com-
Sc should increase with might be expected intuitively since bining these factors show that we gain a factor of B in
an increase in the dissipation should lead both to a slowedimulation speed to arrive at the equilibrium state in this
diffusion and to an increased viscosity. Thus higher values oéxample.
the Schmidt number may be attainable by using larger values As an example of this, a scaling relation for the surface
of y than we have used in the main part of this paper. At théension between two phases of equal length polymers has
same time thought would have to be reduced to maintain been derived from DPD simulations, and presented in terms
the temperature control. Whether large enough Schmidof the Flory-Hugginsy-parameter. A difference is found be-
numbers can be achieved in a practical simulation for a sysween single DPD particles and DPD polymers. For single
tem to be in the correct regime of dynamic behavior is curparticles the criticaly is larger than predicted from mean-
rently under investigation. field theory, but for polymers the mean-field prediction for
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the critical point is correct within the simulation error. Also, p? 5 5 o

for polymers the mean-field value for the surface tensiorﬁaﬁsz d¥r yWE(r)r o r gl f 5 €45

critical exponent f=3/2) is recovered within the simulation

error. For single particles the value of this exponent is less 2myp? (= 4D

certain, but combination with the divergence of the width of :TL dr r'wo(r)[€apt€pat Sapyyl.  (A3)
the interfacgthe correlation lengthshows that the behavior

is still governed by classical exponents<1/2, ©=3/2)  This allows identification of the dissipative contribution to

even quite close to the non-classical critical point. viscosity
We have also discussed dynamics briefly, which is a )
topic currently under investigation. We have indicated a pos- D_ 27yp

* 4.,,D
sible problem with DPD in that the rate of particle transport n 15 fo dr riw=(r) (A4)

due to diffusion is of the same order of magnitude as mo-

mentum transport. Practically, this means that the particles iand second viscosity®=57"/3. These results are in agree-
a polymer chain are liable to be changing position on thement with those derived by a more sophisticated techriue.
same timescale as hydrodynamic interactions develop bénserting the expression for the dissipative function gives the
tween them. This is in contrast to what is expected in a reatlissipative contribution to the viscosity used in the main text:
fluid. However, it should not affect the equilibrium behavior. vP= 77D/p=27rypr§/1575.

Indeed the presence of “soft” hydrodynamic deformation We now turn to a derivation for the self diffusion coef-
modes allows the polymers to reach equilibrium more easilfficient. Focus on the equation of motion of a single particle

than they would if they were to rely on pure diffusion. and ignore the conservative forces
dv, D R
ACKNOWLEDGMENTS ajzﬁ Fij+§i Fij - (A5)

Useful correspondence with G. H. Frederickson and Ape rag force is linear in the velocity difference and thus
J. C. Ladd is acknowlec_iged, as are many dlsgussmns With o part due to the motion of thieh particle may be sepa-
members of the modelling group at Port Sunlight and out4ieq out. Dropping the other part but retaining the random
colleagues in academia. force gives a Langevin equation for the motion of ittie
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APPENDIX; APPROXIMATE EXPRESSIONS FOR dv, v
TRANSPORT COEFFICIENTS at + P =FR, (A6)

In this Appendix we present simplified derivations for
viscosity and self-diffusion coefficient in which the physical Where
origin is hopefully transparent. Firstly, the viscosity of a -~ o~
DPD fluid has been derived independently by several E: Wo(r_,)rii'rij FRZE O_WR(r“)HHF”
workers!?26Consider a fluid undergoing uniform linear flow T YT e wem
Vo=@, 5. (In this section Greek indices indicate spatial (A7)
components, and summation convention is Us€de idea is
that the dissipative contribution to the stress is due to th
explicit friction force acting between particles moving on
different streamlines. The kinetic contribution is due to par-
ticles (i.e., momentum carrieydiffusing across streamlines 1 dayp (=
and is related to the particle self diffusion coefficient. It will —= —J dr r2wP(r),
be dealt with later. First though, the dissipative contribution 7 3 Jo
is [compare Eq(15)]

eplacing the sum for the drag factor by an integral, and
ikewise in the calculation of the statistics of the random
force FR, obtains

(FR)=0, (FR(1)-FR(t")
1
Tag=c| 2 TiaFla). (A1) »
B v< = ”ﬁ> =4770'2pf dr r3wR(r)28(t—t"). (A8)
0
The drag force is given in Ed4) and is
- A A A The Langevin equation is solved straightforwardly to obtain
D _ —
Fijﬁ_ 'yWD(rij )rijﬁrij 7Uij v 7WD(rij)rijBrij yey(grij (iAZ) <V|(O) . Vi(t)>: 3kBTe7t/T and therefore
In the second line the velocity of theh particle is taken to Y B
be that of the fluid at the same position. Inserting this in the D= 3/, dt(vi(0)-vi(t)) = 7kgT. (A9)
previous expression, replacing the sum ovandj with an
integral, and assuming a uniform densit({) =1), one ob- The fluctuation-dissipation theorem in this case takes the
tains form
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