1 Introduction

Lipid bilayers are thin polar membranes composed of two monolayers of lipid molecules.
These membranes are flat, flexible and usually tension-free sheets that form a continuous
barrier around all biological cells. The cell membranes of almost all living organisms and
many viruses are made of a lipid bilayer, as are the membranes surrounding the cell nucleus
and other sub-cellular structures. The architecture or behavior of these membranes have
been tested experimentally, as well as in different in silico experiments. In this report, we go
further into the study of a classical bilayer membrane using the Dissipative Particle Dynamics
(DPD) technique. The method itself and various aspects of the simulations are introduced
in 2l Results concerning the behavior of the bilayer membrane under diverse conditions (tail
length, tail angle, polarity) are then given in |3, Finally, a short discussion on the interesting
aspects of the results, as well as on the limiting aspects of the method is given in

2 Methods

2.1 Dissipative Particle Dynamics

All the simulations in this report were made using DPD. DPD is a stochastic simulation
technique developped in 1992 by Hoogerbrugge et Koelman. In DPD, the particles (a.k.a
'beads’) represent part of or whole molecules, or even fluid regions, rather than single atoms. It
was primarily designed for rheology but has now been used in many different fields. It enables
to simulate the moves of complex polymers in a solvent composed of way smaller particles.
This type of system is indeed hard to simulate with classical methods since it couples phases
having very different timescales. DPD allows for the modelling of these multi-scale systems
by keeping only the information considered relevant to the simulated phenomenon. See [1] for
more information about the technique and the last progresses made.

2.2 Why is DPD is appropriate for simulating a bilayer

Simulating a bilayer membrane is not a trivial task. Indeed, a cell membrane is usually made
of millions of lipids interacting together, and it’s therefore completely impossible to take into
account the interactions of all the atoms composing these polymers, using for instance a
molecular dynamic simulation. Moreover, we don’t necessarily know the precise force fields
in play on the system, and are generally interested in the global behavior of the system
(i.e. not every chemical detail). On the other side, methods which are too coarse-grained
aren’t necessarily well suited either. Indeed, their level of detail is usually too low to catpure
phenomena interesting at the mesoscopic level (e.g. a membrane would be simulated as a
deformable 2D sheet with finite elements method, bringing no information about, for instance,
its time fluctuations). DPD is therefore an intermediate method which allows to make the link
between the microscopic and macroscopic scale. The use of beads instead of atoms enables
the simulation of relatively large systems, and the fact that soft potentials are used instead of
hard ones (e.g. Lennard-Jones potential) makes the system compatible with large integration
steps, therefore to run simulations for long time scales.



2.3 Interactions and associated parameters

The choice of a DPD method has a few drawbacks, notably when it comes to defining the
parameters ruling the interactions of the system we simulate. Indeed, the interaction between
beads consist of three forces requiring two parameters for each pair of beads. These three
forces are as follow.

First, there’s the conservative force (giving an ’identity’ to the beads) which is defined as
(here for two beads of type i and j):

F{ = aij(1 = rij/ro)rsy
The parameter a;; therefore sets the maximum repulsion between beads of type ¢ and j. Note
that it is only defined for a distance r;; < 7q.

Second, there’s the dissipative force (creating relative momentums between the beads),
which is:

Fi = —ij(1 = rij/10) (i) - vij)Eys
The parameter v;; can therefore be understood as the strength of dissipation between two
beads. v;; is the vector of relative speeds between the two beads.

Finally, there’s the random force (destroying relative momentums betweend beads), writ-
ten as:

Ffl = \/27;kpT (1 — r4/0)Gijr3
Two supplementary constraints between beads are then added to handle polymers, each

of them adding two parameters for each pair of beads. There’s first the Hookean springs that
tie beads together. The equation of their potential for bead ¢ and 7 4+ 1 is:

Ug(i, 1+ 1) = O.5/€2(|I‘Z‘Z‘+1‘ — l0)2

ko must therefore be interpreted as a spring constant, while [y should be understood as the
unstretched length of the spring. Note that the parameters are here not subscripted with
bead indexes (e.g. k2,;) since we choose to keep them identical for all pairs of beads.

The last potential to be defined is the chain stiffness acting between adjacent bead triples
in a chain:

Us(i — 1,1, 4+ 1) = k3[1 — cos(¢p — ¢o)]

ks must therefore be interpreted as a bending constant, while ¢q is a preferred angle.

This means that for a system with three different beads like ours (water, hydrophobic tail
and polar head), assuming we don’t vary 7;;, k2 and k3, nine different interaction parameters
must be defined. In this work, we choose to parametrize the interactions of our system using
the work of both Groot and Warren 2] and Grafmiiller and al. [3], with sometimes ad hoc
corrections. Note that the great majority of the parameters values were obtained by trial and
error, showing the heuristic side of DPD. The values are as follow:



Qi W | H T
W | 25 35|75
H | 35| 25|50
T | 75 | 50 | 25

The hookean spring parameters ko and [y are always set to resp. 128 and 0.5 while the
chain bending stiffness k3 is set to 15 and ¢g to 0. 7;; is kept at 4.5.

Note that some of these parameters (e.g. preferred angle, polarity of the last tail bead)
will be changed further in the reports for experiments.

2.4 Simulation parameters

We simulate the system in a box of size 323r8’ where rg is the elementary unit of length
(computed in next subsection). Since we choose a density of 3 beads per unit 7“8, this makes a
total of 98304 beads. We then simulate the systems for 200000 timepoints, with an integretion
step of value 5-1073. Data is sampled every 100 timepoints and used to construct the values of
the observable every 100000 timepoints. These values should be large enough because of the
soft potentials used in DPD, causing the correlation times for bead properties to be usually
very short (cf. [4]).

However, we need to be sure that the system is at equilibrium state after the first 100000
timepoints, at least in a classical case. We therefore simulate a bilayer made of Hs(Ty)s with
a lipid beads density of 0.02, which we know should yield a perfect bilayer at equilibrium. We
then plot the evolution of the (adimensional) pressure, temperature and diffusion coefficients
of each bead with time. Results are given figure
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Figure 1: Evolution of the (adimensional) pressure and temperature (left) and diffusion co-
efficients of tail, head and water beads (right) for a lipid bilayer made of polymers with the
architecture Hs(Ty)o

Temperature and pression are cleary stabilized after just a few hundreds timepoints.
Things take more time for the diffusion constants, but we can consider that the system is
more or less at equilibrium after 200000 timepoints. However, since the simulations are very
time-consuming, we make a large approximation and say that the system is at termodynamical



equilibrium after only 1000000 timepoints. We therefore ignore the first 1000000 timepoints
in further results, in order to let the system relax to its (quasi) equilibrium state.

2.5 Computation of reduced units

Since DPD does’t deal with real ’objects’ but rather beads, the units we obtain must be
rescaled to correspond to real quantities. If we manage to find the elementary unit of length
(ro) and of time (%p), it’s then possible to find all the other units, namely that we are studying
a system at equilibrium in the canonical ensemble.

In order to find rg, we follow the following procedure: we generate simulation with pro-
gressively increasing area per lipid (computed as the quotient of the membrane surface, i.e.
product of the first two coordinates of the box size, and the number of lipids in the box).
From this we get a result corresponding to an area per lipid in units of 73. We then look at
simulations corresponding to a null surface tension, meaning that the membrane is at equilib-
rium (as in biological conditions). Now, from experiments, we already know that a lipid area
from a tension-free cell membrane should be around 0.65nm? (of course, this depends on the
lipid, but we keep this value as we’re only interested in qualitative results). Therefore, the

formula to obtain r¢ is simply:
ro = Aexp
A/N

Where A is the simulated area of the box, N is the number of lipids simulated and A, is the
experimental area of a lipid.
Similarly, we know that the dimensionless diffusion constant can be written as:

Dty
/
D — TT
0
Since we know from the literature that a typical lipid diffusion constant is about 1um?/s
(see |5]), we can quite easily compute the value of ¢ if rg is already known.

3 Results

3.1 Initial model

Out of simplicity, we start by simulating a simple amphiphile architecture for which interesting
results could be obtained in the past. In this architecture, the lipid polymer is composed of
three polar heads and two hydrophobic tails, each of which being attached to a different head.
We denote this architecture by Hs(T})s.

The first experiment we lead is to look for the fraction of lipid beads (which, out of sim-
plicity, we’ll abusively call lipid beads density from now on) required to find a membrane with
no surface tension (as observed in biological membranes). We therefore follow the procedure
explained in and launch a grid-search on a cluster which allows to explore the lipid beads
density space.

Figure [2| gives the evolution of the adimensional surface tension, i.e. % with the fraction
of beads lipids in the simulation (from which we can easily extract the corresponding number
of lipids, the size of the box remaining constant of size (32r¢)3).



Several observations can be made from this plot. First, we acknowledge that the surface
tension gets close to zero for a lipid fraction of about 0.02, corresponding to an area per lipid
of 1.2557“(2]. This yields the value 0.72nm for ry.
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Figure 2: Evolution of the (adimensional) surface tension with the lipid bead density for the
polymer architecture Hs(Ty)2

What is interesting is that the evolution of the surface tension is not linear at all. In
order to have a better understanding of the situation, we plot the membrane for a lipid beads
density of 0.01, 0.02 and 0.03. Results are given figure[3] The strange evolution of the surface
tension can thus be explained by the following phenomena: when the lipid density is too low,
then pore(s) start(s) forming and the tension can remain reasonably low as the total volume
occupied by the membrane is smaller than required. However, as the density increases, pores
starts resealing, and a compromise must be found between the tail hydrophobicity and the
still low number of lipids, eliciting a large area per lipid and therefore a large surface tension.
The area per lipid then starts decreasing until a perfect bilayer is formed. Sill increasing the
density firsts provoke a bending of the membrane, the area per lipid becoming low. If the
density keep increasing, the a third layer start assembling so that the total free energy of the
system remains reasonable.



Figure 3: Representation of the membrane for the polymer architecture Hs(T} )2 for lipid bead
density of 0.01 (left), 0.02 (middle) and 0.03 (right).

If we know get interested in the diffusion constant of the lipids for the tension free mem-
brane, we find D’ = 6.4 - 1073, which yields the approximate value 3ns for t,.

Finally, if we look at the density and stress profiles of the tension-free membrane, we get
results very similar to what can be found in the literature. The results are given figure
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Figure 4: Representation of beads density profile (left) and the stress profile (right, std. in
light red) for the tension-free bilayer made from the lipid polymer H3(Ty)s.

As expected, when progressing along the axis normal to the membrane plan, the density is
first high in water beads (out of the bilayer), then the head bead density peaks (at the surface
of the bilayer) while the water density drops, and finally the tail bead density increases a lot,
even exceeding the one of water outside of the membrane. We also notice the small dip in
the middle of the membrane, due to the fact that the lipids from both side of the membrane
do not interdigitate. As for the stress profile, the results are also very conform to previous
literature: the stress is more or less null in pure water areas, then increases a lot in the water-
head area, and then get completely reversed in the head-tail area, to finally decrease again in
the hydrophobic area composed uniquely of lipid tails. Note that there’s a small difference
with, for instance, what can be found in [4] as the central trough is missing. It’s reasonable
to hypothesize that this difference is due to the use of different lipid polymers.



3.2 Self-assembly of the bilayer

Self-assembly of lipids bilayer has already extensively been studied with DPD in the past (cf.
e.g. [6]). It felt interesting to see if was possible to observe such a thing with our current set
of parameters. Indeed, previous simulations in this report were made with beads disposed
in an initial state such that the lipid bilayer was already formed. But what if we start from
a completely random initial condition? Since the bilayer corresponds to the system state
with the least free-energy, the membrane should spontaneously assemble if we simulate it for
enough time. But things did not work as planned, as illustrated by figure

Figure 5: Spontaneous structure formation with the polymer architecture H3(Ty)2 at time
t = 1000 (left), ¢ = 10000 (middle) and ¢ = 200000 (right)

Clearly, the system tends to form pseudo-spheroidal vesicles instead of a bilayer. This
shape probably corresponds to a local equilibrium in which the simulation is stuck. Increasing
the temperature, or manually perturbing the system could maybe improve the results. It is
also very likely that a way longer simulation time is necessary to obtain a membrane. There
are actually a lot of reasons which could explain why the simulation did not work, and some
interesting points are raised in the reference [6], but this is not the object of this report.

3.3 Impact of the tail length

We now get interested in the impact of the length of the lipid tails. In order to see how the
number of tails beads (which seems like a good proxy for tail length) impacts the results, we
study polymers of the type Hs(7;)2 with ¢ ranging from 0 to 19. These configurations lead
to stable membranes for ¢ > 3, with, as expected, an increasing hydrophobic volume in the
membrane. Density profiles for ¢ = 1,7 = 8 and ¢ = 19 are shown figure [6]
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Figure 6: Representation of the membranes and associated beads density profile for the bilayer
made from the lipid polymer H3(T})2 (left), H3(T3)2 (middle), Hs(T19)2 (right).

These profiles are very expectable, but two interesting phenomena can be noted. The
first one is that the dip between the two tails end almost disappear for very long tails (as
illustrated on figure @ bottom right). The second one is that the membrane structure become
less homogeneous with long tails. This can be observed on both figure [6] top middle, and on
the density profile on bottom right.

Figure [7| (left) shows that the end-to-end length of the lipid polymers increases linearly
with the number of beads. And as shown in the literature, the end-to-end length of the lipid
polymers is more or less half the membrane size (note however that the results are biased
toward a ratio of about 1.6 instead of 2, with no obvious reason why), as shown on figure
(middle). It is important to mention here that the surface tension is affected by the tail length,
and since the lipid bead density was no adapted to keep it constant, the previous results were
not obtained on tension-free membranes. As illustrated on figure (7] (right), the only result
with a tension-free membrane was obtained for the previously used H3(7Ty)s. It was however
computationally too expensive to run the experiment varying both the bead density and the
number of tail beads at the same time.
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Figure 7: Left: Evolution of the lipid end-to-end length with the number of beads. Middle:
Evolution of the membrane width against the end-to-end length of the lipids. Right: Evolution
of the surface tension with the number of tail beads

3.4 Impact of the tail angle

To explore how the model behaves in less realistic conditions, it seemed interesting to see how
the tail angle impacts the membrane. We therefore vary the angle HTT (i.e. between the
head bead and the first and second tail beads) from 0° to 180°.

We first look at how the bead density profiles evolve. The results are shown figure
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Figure 8: Representation of the beads density profile for the bilayer made from the lipid
polymer Hg(T4)s with a tail angle of 0° (left), 80° (middle) and 160° (right).

From the density profiles, it seems that even for large angles, the membrane remains
stable, but that the central zone contains mixed heads and tails beads. A representation of
the membrane with angle 160° is given figure @ (left), confirming this hypothesis. We also
note that the structural stress is way lower than before in the central area of the membrane
(cf. @ (right)) but more peaked in the zones corresponding to the outer layers.
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Figure 9: Representation of the membrane made from the lipid polymer H3(T})2 with a tail
angle of 160° (left) and associated stress profile (right).

Finally, since the number of tail and head beads is the same, it is likely that the surface
tension is not really dependent on the tail angle. Is that really the case? The evolution of the
surface tension with the tail angle is given figure
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Figure 10: Evolution of the surface tension with the tail angle for the membrane made from
the lipid polymer Hs(T}y)s.

It therefore seems that the surface tension is indeed dependent on the tail angle, in a
negative way for low angles (i.e. inferior to 20°) and in a positive way for large angles.
However, we observe a phenomenon of saturation for very large angle (i.e. superior to 100°),
for which the surface tension seems to stagnate even if the angle keeps increasing.
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3.5 Impact of the polarity of the last tail bead

As a final experiment, we try changing the polarity of the last tail bead, from a water repulsion
coefficient of 0 (i.e. extremely hydrophilic) to 80 (hydrophobic). For reference, the value used
until now was 75. All the other interaction coefficients are kept similar to the ones of a normal
tail bead.

Very interesting results are obtained. For pretty much all cases, a stable structure looking
like a bilayer can be obtained. However, looking more closely at the results, it appears that
the outer and inner layers of the membranes have been switched for interaction coefficients
less than 30. This phenomenon seems actually quite logical since the last tail bead becomes
more hydrophilic than the hydrophilic heads themselves, leading to a reversion of the lipids.
Illustrations of the obtained membranes are given figure

Figure 11: Representation of the membrane made from the lipid polymer Hs(7y)2 with the
last tail bead having an increasing water interaction coefficient: 20 (left), 30 (middle) and 40
(right).

Figure [12| shows the progressive inversion of the membrane with time.

Figure 12: Progressive inversion of the membrane made from the lipid polymer H3(7T})2 with
the last tail bead having a water interaction coefficient of 20. Time shown (from left to right)
are: 1000, 3000, 10000, 50000 and 100000.

Since for stable membrane, the structure is exactly the same as before, we expect the
surface tension not to vary a lot with the polarity. Result is given figure confirming this
intuition. Note that the maximum surface tension is obtained when for the critical value 20,
for which the membrane get reversed but very slowly.
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Figure 13: Evolution of the surface tension with the last tail bead polarity for the membrane

made from the lipid polymer Hs(T})s.

Finally, as a matter of illustration, it seemed interesting to plot the bead density profile
of the reversed membrane. The following plot (figure was obtained for an interaction

coeflicient of 10, 20 and 30:

Figure 14: Representation of the beads density profile for the bilayer made from the lipid
polymer H3(Ty)2 with an interaction coefficient of 10 (left), 20 (middle) and 30 (right).

It’s interesting to acknowledge how, for very hydrophilic last tail bead, the water is pro-

gressively admitted inside the membrane.

4 Conclusion

Although DPD requires a little bit of tuning before being functional (heuristic derivation
of the elementary units, obtaining of the interaction parameters by trial and error, etc.), it
enables to simulate large systems quickly and for long time intervals, while keeping a good
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spatial resolution. Indeed, it was not only possible to get back most results from the literature
(e.g. beads density and stress profiles, evolution of the surface tension with the area per lipid,
membrane width increasing linearly with the lipid end-to-end length, etc.), but also to explore
a bit more in depth some parameters of the membrane. This enabled to discover that the
membrane structure is quite resilient to even large head-tail angles, althought the hydrophobic
area becomes filled with polar heads. Another interesting and not so intuitive phenomenon
was the reversal of the membrane when changing the polarity of the last tail bead.

However, due to the fact that simulation were quite time-consuming, it was not possible to
explore the system as in-depth as one could wish. Indeed, since grid-searches in two dimensions
are already extremely greedy, it was not possible to tune both at the same time the lipid bead
density and the tail length or tail angle. Yet this would have been extremely useful since
this would have allowed to study tension-free systems, and therefore eliminate confounding
factors due to the surface tension of the membrane. Similarly, we had to approximate the
fact that the system was at equilibrium after 100000 timesteps, which was clearly not the
case when looking at the evolution of the diffusion coefficient of the water beads. Finally,
trying to fit our results to some experimental data could have been interesting, but wasn’t
possible because we did not possess such data. Leading the same experiments but with longer
simulations, with tension-free membranes, and experimental data to compare our results to,
would therefore be a very interesting extension of this work.
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