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• There’s no free lunch in coarse-graining a system

• Can multiscale simulations overcome L, T challenges?

• How to coarse-grain atoms and molecules
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Take-home message
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Why coarse-grained simulations?
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Very cheap computationally

Very forgiving of non-equilibrium initial states and force law details

Large system sizes (microns) and long times (milliseconds) accessible whilst retaining  

near-molecular resolution

Provides insight into dynamics on scales well beyond molecular, e.g., long wavelength  
membrane fluctuations, easy to visualize 

Advantages of coarse-grained simulations like DPD for complex fluid simulations:

If QM or Molecular Dynamics is so good, why do anything else? 

Several reasons:  don’t know the force fields, system considered is too large or too slow, don’t 
need picosecond accuracy,  interested in genera chemical features not specific chemicals

Although it might be nice to simulate a billion Lennard-Jones particles, interacting via a 
hugely complicated force field for10 minutes of real time - it ain’t gonna happen. We have to 
choose an accuracy we can live with and see how to attain it.
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What are coarse-grained simulations?
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Setting up a simulation requires asking questions about what exactly is “the system” we want to 
study, what are its fundamental entities, what do we want to learn, and how accurate do we need 
the results (most accurate is not always desirable):

H. J. C. Berendsen Faraday Discussions 144:467 (2010)

We do not simulate a real system, 
but only a model of a real system;  
we first construct a model (particles 
+ forces) and, second, solve it on a 
computer.
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What about multiscale simulations
on multicore machines?
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See the paper by Yu et al. on today’s moodle page for a multiscale model of the 
SARS-CoV-2 virus



Characteristics of single-scale simulations

In single-scale simulations:

• all dynamics outside a limited space-time range are clamped or equilibrated;  
i.e., much slower or faster than the processes of interest

• dynamics involves signals whose speeds are all comparable (except MC)

• lumped parameters obscure details from finer scales

• energy dissipation is ignored: systems relax to equilibrium or have no energy cost 

• cannot push them beyond a characteristic scale as execution time scales as Ld with d ≥ 3

a scale is a range in length and time  
where distinct physical processes dominate the behaviour of matter

e.g., Brownian motion is important for bacteria but not for cars; inertia is irrelevant for 
protein interaction networks; lipid diffusion is unimportant for Action Potentials, ...



Simulation techniques relevant to brain modelling

Dan Keller, EPFL
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Claim:  multiscaling may work for some ranges of L, T but 
fails at atomic scale

7

Remember how many water molecules are in a neuronal synaptic spine 
10**9 and 10**15 time steps using 1 fs step size.



Computational gain

Goal:  to simulate 1 sec of activity in ~1 sec of real time at all scales in a multi-scale simulation

In order to simulate 1 sec per sec at any given level (L,T), we must update  

Dcomp ~ (Typical volume / vol of smallest unit) x ( 1 / δt ) 

degrees of freedom in 1 second of REAL TIME.  This is a computational distance.

Define a computational velocity (cp. FLOPS) for any scale:

Vcomp (N) = No. of dof updated per second using N procs

In order to achieve 1 sec of activity per sec, we must satisfy two conditions: 

Dcomp / Vcomp(N) ≤ 1  and  Vcomp(1) x δt ≥ 1

Dcomp

We can approach these conditions by reducing Dcomp or increasing Vcomp e.g., by increasing number 
of processors N or the speed of the code



NEURON’s differential eqns. have 
                     Dcomp ~ 300 x (1 ms / 0.05 ms) = 6000 
                      Vcomp ~  1 GFLOP             

Dcomp/Vcomp ~ 6.10-6 

Vcomp x δt ~ 109 x 0.05 ms / 1 sec = 5.107

Gain mismatch between simulation scales

DPD has 
                     Dcomp ~ (1 μm3 / 1 nm3) x (1 μs / 0.01 ns) = 1014 
                      Vcomp ~ 1010 bead.steps / cpu-day            

Dcomp/Vcomp ~ 104

Vcomp x δt ~ 1010 x 0.01 ns / 86,400 sec = 10-6  << 1

MD has 
                     Dcomp ~ (100 nm)3 / (0.1 nm)3 x (1 μs / 0.01 ps) = 1017 
                      Vcomp ~ 1010 bead.steps / cpu-day            

Dcomp/Vcomp ~ 107

Vcomp x δt ~ 1010 x 0.01 ps / 86,400 sec = 10-9  << 1

NCC has ~ 104 neurons

1 neuron has ~ 104 synapses

1 synapse has 1 μm3 of space ~ 
109 water molecules
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Shillcock et al. , Coupling Bulk Phase Separation of Disordered Proteins to Membrane Domain Formation in Molecular 
Simulations on a Bespoke Compute Fabric, Membranes 12: 17 (2021)

POETS = partially-ordered  
event-triggered systems

https://poets-project.org/
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Coarse-grained simulation types
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m.dv/dt = F

m.dv/dt = FC + FD + FR

m.dv/dt = FC - mγ.v + √(2mγkBT).ζ(t)

0 = FC - γ.v + σ.ζ(t)

MD

DPD

Langevin

Brownian

  Finer 

Coarser

The difference lies in what constitutes a “particle” and how complex the forces are. 

In MD, the particles are atoms but in coarse-grained techniques, the particles are groups of 
atoms, molecular groups, even molecules.

In these cases, once the particles are defined (mass, radius), and the forces are given (bonds, 
non-bonded, electrostatics), we integrate Newton’s 2nd law as in MD.

Allen, MP, and Tildesley, DJ, Computer Simulation of Liquids, Clarendon Press,  Oxford, 1987 
Frenkel, D and Smit, B, Understanding Molecular Simulation, Academic Press, 2002 
Berendsen, HJC, Faraday Discussions 144:467 (2010)

All based integrating some form of Newtonian equations of motion
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Popular coarse-graining schemes  
(in order of decreasing resolution) are:

United atom            - include H atoms in definition of C atoms, etc.
Coarse-grained MD  - replace methyl group by a C3 particle, etc
Dissipative Particle Dynamics - lump atomic groups into fluid particles that carry momentum
Implicit solvent MD  - replace water molecules by special potentials that mimic hydrophobic effect
Brownian Dynamics - particles of interest are much larger than water, so replace water molecules    
by an implicit representation in the force field

Coarse-graining atoms and molecules
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Marrink, S. J.  J. Phys. Chem. B 111:7812 (2007)

Molecular Dynamics is accurate at atomic length scales, but sometimes we want to simulate far 
above this scale, e.g., membranes and vesicles.

The process of replacing atoms by groups of atoms
particles is called coarse-graining. It has two advantages:

several atoms ⇒ one bead so fewer d.o.f to integrate

Lennard-Jones forces ⇒ softer forces so larger Δt

This means cheaper, faster simulations!

For coarse-graining lipids, a good review is:   Bennun et al., Chem and Physics of Lipids 159:59-66 (2009)
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Lipids in DPD simulations
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As an example: consider a dimyristoylphosphatidyl choline (DMPC) lipid bilayer and measure its 
material properties. This is a (very simplified) model of the plasma membrane. 

1  = Head particle

2 = Chain of tail  
      particles

For DMPC and lipids that differ only in tail length (lauryl, myristoyl, palmitoyl, stearoyl, ...). We find 
the relation that each DPD tail bead represents 3-4 methyl groups.  So cgDMPC has ~11 beads.  
Ambiguity comes from the fact that a DPD bead is a rather fuzzy concept, based on a volume of 
material, and may not divide neatly into a hydrocarbon chain’s number of monomers.   
                                Groot and Warren, J. Chem. Phys. 107:4423 (1997) and Marrink et al.  J. Phys. Chem. B 111: 7812 (2007)

Headgroup must be large enough to balance the cross-sectional area of the tails  
(Israelachvili’s packing param. ~ 1): 3 or 4 head beads is sufficient for a tail of length 4 - 6.

H3(T4)2 

Shillcock, JC,  and Lipowsky, R,  J. Chem. Phys. 117:5048 (2002)
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Real lipid cg lipid
Lipid bilayer

Headgroup area ~ 1 nm2

Tail length ~ 0.154 + 0.126*n nm
where n = # carbons in tail

Bead size r0 ~ 1 nm

How many CH2 per tail bead?
- not known a priori, but we can 
guess ~ 2-5.

1:1 would be atomistic

All:2 would be a dimer H-T

Box size ~ 32 r0

How many lipids?
- not known a priori

trial and error from simulations

Coarse-graining a lipid membrane

We need M, L, T

How?
How?
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Typical lipid tail length is ~ 2 nm for DMPC
Bilayer width ~ 4-5 nm
Area per molecule ~ 0.65 nm2

Assume that the mass of all bead types is the same

So, a simulation box (32.r0)3  where r0 is the diameter of one lipid bead, and a (dimensionless) 
bead density of ρ=3 contains N = 3.323 = 98304 beads.

For lipid bilayers, we typically use the area per lipid to determine the number of lipid molecules. 
Given an experimental value of 0.65 nm2  we calculate:

Nlipid = 2.( (32 r0 nm)2 / 0.65 nm2 ) molecules

Initially choose π (r0/2)2 ~ 0.65 nm2, so r0 ~ 0.91 nm and N ~ 2609 or A/Nr02 ~ 0.8 

For a lipid bilayer in equilibrium, we expect the surface tension to be zero.  We adjust the box 
size or number of lipids until the simulation gives zero tension, and then extract the equilibrium 
value of  aLipid for the bilayer.  That is, we obtain aLipid = A/(N. r02) from the simulation and from 
this we can extract an accurate value to r0.  If aLipid = 1.26, say, 
 

 r0  =  √( A/N / aLipid ) = √ (0.65 / 1.26 ) ~ 0.72 nm and Nlipid = 1633 in equilibrium

Reduced units for lipid bilayers
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We now have a length scale, but what about a time scale?

An obvious process involving time is the diffusion of the lipids in the membrane.  A 
dimensionless form of the diffusion constant is:

Dimensionless diffusion constant:  D’ = (D. t0/r02)

We measure D’ in the simulation, so if we know D from experiment and r0, we can derive a 
value for t0.  This gives us a natural time-scale for the motion of lipids in the membrane.  

A typical lipid diffusion constant is 0.1 - 10 μm2/sec ( H. Gaede and K. Gawrisch, Biophys. J. 85:1734 (2003) )

Suppose in a lipid bilayer simulation we find D’ ~ 0.01 and we have estimated r0  = 0.72 nm from 
the membrane’s area/lipid.

A typical time-scale for the lipids in the membrane is then (using D ~ 1 μm2/sec): 

t0 = 0.01.(0.72.10-9)2 / 10-12 ~ 5 ns

and, recalling that t0 is the self-diffusion time, a bead will diffuse its own size in this time.  A 
typical integration time step will then be 0.01 - 0.02.t0

NB. There may be other time-scales in the system NOT described by this, e.g., lipid flip-flop 
between monolayers and solvent transport across the bilayer: need judgement here.



BIO-692 Symmetry and Conservation in the Cell 17

Another example
Radial distribution function reveals the geometric structure of the dense 
phase: put in molecules, get out spatial structure of supramolecular 
aggregate.

Speed of enzymatic reactions depends on porosity and ability of client 
proteins to diffuse within droplet



BIO-692 Symmetry and Conservation in the Cell

DPD algorithm: Basics
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Particle based: N particles in a box, specify ri(t) and pi(t), i = 1…N.

Mesoscopic:        Each particle is a small volume of fluid with mass, position and momentum

Newton’s Laws: Particles interact with nearby particles; integrate Newton’s law F = ma

Three types of force exist between all particles: 

• Conservative FC
ij(rij) = aij(1 – |rij|/r0)rij / |rij|

• Dissipative  FD
ij(rij) = – γij(1 – |rij|/r0)2(rij.vij) rij / |rij|2

• Random  FR
ij(rij) = σij(1 – |rij|/r0)Γijrij / |rij|

forces are soft, short-ranged (vanish beyond r0), central, pairwise-additive, and conserve momentum 
locally. Note that γij and σij must be related by σij

2 = 2γijkBT (see Espagnol and Warren 1995)

(1853 citations) P. J.  Hoogerbrugge and J. M. V. A. Koelman,   Europhysics Letters 19:155 (1992)

(1366 citations) P. Espagnol and P. B. Warren                        Europhysics Letters 30:191 (1995)

(1994 citations) R. D. Groot and P. B. Warren                       J. Chem. Phys. 107:4423 (1997)
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DPD algorithm: Forces
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Conservative FC
ij(rij) = aij (1 – rij/r0) rij / rij

Dissipative    FD
ij(rij) = – γij (1 – rij/r0)2 (rij.vij) rij / rij

2

Random        FR
ij(rij) = √(2γij kBT) (1 – |rij|/r0) Γij rij / |rij|

   Conservative force, aij, gives particles an identity, e.g. hydrophobic

Dissipative force, γij, destroys relative momentum between pairs of interacting particles

Random force, σij, creates relative momentum between pairs of interacting particles: 

  <Γij (t)> = 0        < Γij (t) Γij(t’)> = δ(t-t’)

  aij (t) = aji (t)    γij (t) = γji (t)    Γij (t) = Γji (t) which we implement as:  Γij ~ N(0,1) / √dt

The dissipative and random forces act as a thermostat keeping the system temperature 
constant on average (canonical ensemble). This thermostat is independent of the form of the 
conservative force and, in fact, the DPD thermostat is sometimes used with MD forces - 
Soddemann et al., PRE 68:046702 (2003). Its usefulness stems from the fact that it conserves 
momentum locally, so hydrodynamic modes of the fluid are preserved.
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DPD algorithm: Bond forces

F(rii+1) = -k2(| rii+1 | - li0) rii+1 /| rii+1 |

Hookean spring parameters: k2 = 128 kBT/r02,   li0 = 0.5  These parameters are chosen to keep 
the lipid tail length on average at the desired value. 

V(ijk) = k3(1 - cos(φijk - φ0) )

Chain bending stiffness parameters: k3 = 15 kBT,  φ0 = 0 

Chain stiffness is chosen to ensure lipids don’t interdigitate much. 

i j

k

H
T

W

aij H T W 
H 30 35 30
T 35 10 75
W 30 75 25

 Grafmüller et al. Biophys. J. 96:2658 (2009) 
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DPD algorithm: Integration

Most common: velocity-Verlet scheme of Groot and Warren -  J. Chem. Phys. 107:4423 (1997).

1. Update positions of all particles: r(t+dt) = r(t) + p(t).dt + 0.5.F(t).dt2

2. Calculate intermediate velocities: p’(t+dt) = p(t) +λ.F(t).dt

3. Update forces on all particles :     F(t+dt) = F(r(t+dt), p’(t+dt))

4. Update momenta of all particles : p(t+dt) = p(t) + 0.5*dt*(F(t) + F(t+dt))

Because we set m = 1, velocity (v) = momentum (p). 

Note that λ is a heuristic  parameter, typically ~0.5,  to take the stochastic force into 
account. It is used to estimate the effect of the time-varying force over the course of a 
time-step. It is needed because no matter how small the time-step is, the random force 
ought to change during the step, i.e., the stochastic force is not smoothly-constant as the 
discretized equations of motion assume.

Because of the stochastic force, we have to use special integration schemes for the 
equations of motion, e.g., the velocity-Verlet scheme above. These are not needed for MD.
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Choosing DPD interaction parameters

LX = LY = LZ = 10r0

ρ = 3 - 10 beads/volume

N = 3000 - 10000 beads

aww = 25

The dissipative and random forces form a thermostat that does not change when simulating 
different systems. We’ll ignore it, but see Groot and Warren (1997) for details.  If we have 
molecules like lipids or polymers, how do we set values for the Hookean springs that tie them 
together? or bond bending stiffness?  Basically, it’s Trial and Error!

But the conservative interaction parameters aij can be set from thermodynamics.

What is the equation of state of the one-component DPD fluid (= water)?

Recall an ideal gas:    PV = NkBT or P = ρkBT

Van der Waal’s gas:   P = ρkBT/(1-ρb) - aρ2

We measure the pressure of the fluid as a function of density 
and fix the value of the single parameter aWW.
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Density ρ = N/V
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aww = 15
aww = 25
aww = 35

Plot the excess pressure (P - ρkBT), scaled by the conservative repulsion parameter,  aww, and 
density.

Equation of state for DPD fluid

From the simulated DPD equation of state, we find numerically as the density increases:

    P  = ρkBT + α aWW ρ2                                   where  α = 0.10 ± 0.01
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Compressibility of DPD “Water”

The isothermal compressibility of water is defined as: κ-1 = (dp/dρ)T / kBT ~ 15.9835 at room 
temperature, and this fixes the conservative self-repulsion parameter “aWW” for a single-
component fluid if we want it to have the compressibility of water.

If we differentiate the EOS above for the DPD fluid, we get

κ-1 = 1 + 2αaρ/kBT ~ 16

giving aWW = 75 kBT/ ρ.     Most DPD simulations use a bead density of ρ = 3,  so aWW = 25 kBT/r0

So, the single-component DPD fluid density is a free parameter as long as the beads are dense 
enough to interact and not have “holes” in the fluid. 

Higher densities mean more interactions, so we choose the lowest value that is consistent with 
the assumed EOS.

But what if we have a mixture of fluids - how do we choose the off-diagonal parameters aij?

24
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The off-diagonal elements of the force matrix set the repulsion or 
attraction of fluid elements of different types when they interact 
which is related to their solubility.

Note that all DPD forces are repulsive: the self interactions are 
repulsive because they represent the compressibility (resistance to 
being compressed) of a pure fluid, and the off-diagonal elements are 
repulsive because they represent the solubility of mixtures which are 
usually less cohesive than the pure fluid.

This is the price paid for having no hard core repulsion - you cannot 
have strongly attractive forces or the fluid will collapse on itself.

Off-diagonal conservative forces

aij H T W 
H 30 35 30
T 35 10 75
W 30 75 25
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Flory-Huggins/DPD equivalence
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Groot and Warren (1997) found a correspondence between the soft DPD fluid and the Flory-
Huggins theory of polymer mixtures.  FH theory is a mean-field theory of the free energy of a 
polymer mixture that predicts a phase separation for sufficiently repulsive polymers. 

The free energy of a mixture of two polymer types depends on their M.wt or length NA,  NB and 
volume fractions φA,  φB

It has the form:

βF = (φA/NA) ln(φA) + (φB/NB) ln(φB ) + χ φA φB

where β = 1/kBT and F is the free energy

Ni = No of monomers in polymers of  type i = A, B

φi = Volume fraction of polymer type i and  φA + φB = 1

χ = Mixing parameter or repulsion parameter ~ how much the polymer like/dislike each other

energy

entropy
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βFV = ρA/NA ln(ρA) + ρB /NB ln(ρB) - ρA/NA - ρB/NB+ βα(aAA ρA 
2 + 2aAB ρA ρB + aBB ρB

2)

where β = 1/kBT,     α ~ 0.1 from simulations

ρi = Number density of particles of type  i (= φA )

aAA = aBB= like-particle conservative force parameter

aAB = unlike-particle conservative force  parameter

yielding the relation:   χ = 2 βα(aAB - aAA )(ρA+ρB),  between the Flory-Huggins parameter and the 
relative DPD cross interaction aAB - aAA.  

As χ is known from experiment this allows DPD to be calibrated for polymer mixtures.

Now let x = ρA/(ρA + ρB) and assume that ρA + ρB ~ constant then:

βFV ~ x/NA  ln(x) + (1-x) /NB  ln(1-x) + χ x (1-x) + const.

Fig. 7 in Groot and Warren, 1997

The free energy of a DPD fluid of two components A, B is:
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Polymeric Fluid Mixtures: χN Parameter

Experimental χN values are tabulated for different polymers, so we have a way of setting the 
unlike-bead interaction parameters aij for any pair of (immiscible) DPD polymers at a given density.

χ = 2 βα(aAB - aAA )(ρA+ρB)

Alternatively, the aij are free parameters whose values are varied until the simulated system has 
some correct physical property, e.g., interfacial surface tension.

For lipids, the key parameters are the tail bead / water bead repulsion (the hydrophobic effect), 
and the head-head, head-tail repulsion parameters as these largely determine the equilibrium A/
N of a lipid bilayer. 

We have many properties of lipid bilayers that we can use to calibrate these parameters.

We aim to use a few properties to calibrate the DPD parameters, and then predict other 
properties using the simulations. Obviously, we need more experimental properties than we have 
parameters!

Other methods of fixing aAB are:  

Travis et al.  J. Chem. Phys. 127: 014019 (2007)
Sepehr and Paddison, Chem. Phys. Lett.  645:20-26 (2016)


