
BIO-692 Symmetry and Conservation in the Cell

Core Concepts

1

Many cellular phenomena are affected by random thermal motion of 
fluids, e.g., Brownian motion of particles in water


Langevin introduced a stochastic differential equation that contains a 
wildly fluctuating (random) term representing the fast, short length scale 
effects of the (watery) environment, and a damping term representing the 
viscosity of the fluid


Langevin’s solution is the basis for Brownian dynamics simulations


Several microscopy techniques use “thermal noise” to measure diffusion 
and size of cellular objects (proteins, vesicles, nanoparticles, etc)


Cell uses noise to do work
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Homework - natural scales

Before the 2nd lecture: calculate the following quantities from Mass, Length and Time 
scales given (or the table); and write what the answer tells you about a cell or the 
process:

Ex. 1 Cell diameter/membrane thickness (~ 2 * lipid end-to-end length)

Ex. 2 How many vesicles would fit into a single cell? i.e., have the same volume

Ex 3. What is the ratio of the area of all the vesicles in Ex. 2 to the plasma membrane area? How does this value 
compare to the experimental result that the PM is 2% of all membranes in a cell?

Ex. 4 How long does a lipid take to diffuse its own diameter in the PM due to thermal motion?
Assume D ~ 1 micron2/sec, and area per lipid ~ 0.7 nm2 

Ex. 5 How long does an Na ion with Q = +e take to move through a passive ion channel in the PM under the applied 
electric field of the membrane? 

Assume Vmem = 65 mV and dmem = 5 nm, mass of Na = 3.8.10-26 Kg

What is its speed at the end?

Is relativity important for ion channels? ( Relativity is important if (v/c)2 is not negligible ) 

How long would it take to diffuse across without the electric field?

2
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History of Brownian Motion

3

In1827, Robert Brown observed pollen grains in water, and noticed how they moved 

continuously and erratically.  At first, he thought they were alive….. but pieces of glass and rock 

also showed similar motion. It was long thought to be an experimental artifact.

In 1908, Perrin and others did experiments with more precision: different materials, size, size 

distribution, fractionation, counting (Perrin received Nobel Prize, 1926, for this work).

This helped establish the molecular nature of matter which was still controversial at the time.

Jean-Baptiste Perrin, Les Atomes, 1909

P. Langevin Comptes. Rendues 146:530 (1908)
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Take-Home message

4

The phenomenon of Brownian Motion 

and the Equipartition Theorem 

are the most important physical factors in the existence of life.

If you remember nothing else in this course…. remember this.

Dis
cus

s
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Hypothesis or description?

5

In Brown’s time (1820s) up to late 19th C, the existence of molecules was controversial: they 

were seen as a calculational tool to predict macroscopic thermodynamic quantities like pressure, 

temperature, etc., but they couldn’t be verified.  (cp. electron spin angular momentum): scientists 

couldn’t measure anything directly related to molecules at that time. 

Also note that the 1st law of thermodynamics was not known until ~ 1849 (Joule)

It took a long time before scientists were convinced that Brownian motion was not an effect of 

external causes (vibrations, temperature differences, illumination, surface tension, microscopic 

currents, …) but a fundamental physical property of the fluid itself.

Q. How can one exclude that the observed Brownian motion is the result of temperature 

fluctuations in the fluid, chemical reactions at the particle’s surface, microscopic currents, etc.?
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1d Discrete Random Walk

6

A simple, discrete model of a Brownian particle in 1d, that may be symmetric or 

asymmetric,  is the following:

Let a particle start at the origin X = 0, and make a sequence of steps, each of length d, 

moving right with probability p, and left with 1-p (a symmetric walker has p = 1/2).

What is the mean position <X> and its variance <X2> - <X>2  after N steps? 

Note that this is identical to the question: if a fair coin is tossed N times, what is the 

difference between the numbers of heads and tails as N increases?

(Required Derivation 1: derive the expressions for <X> and <X2> on the next page, and 

therefore the variance)
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2d, 3d Random Walks

7

What changes for a Brownian particle in 2d or 3d?

Momentum is conserved in each dimension, so the particle experiences independent kicks 
in each dimension; the particle makes independent random moves in each dimension and 
the net MSD is the sum of the 3 independent ones:

<R2> = <x2> + <y2> + <z2>

Assuming isotropy of space:  <x2> = <y2> = <z2> = 2.D.t

<R2> = 6.D.t

so in a d-dimensional isotropic space, the mean-square displacement of a RW at time t is:

<R2> = 2.d.D.t 

<X> = Nd (2p - 1)

<X2> = (Nd)2 (2p - 1)2  + 4 N d2 p(1 - p)

and so <X2> - <X>2 = 4 N d2 p(1 - p)
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Simple insoluble extension?

8

A “simple” generalisation of a Brownian particle in 1d is to allow 3 states:

• move right with probability p

• move left with probability q

• remain stationary with probability (1 - p - q)

What is now the mean position and its variance after N steps?   

Let the walker take j steps to the right, k steps to the left and (N - j - k) stationary “steps”

<X> = ∑ N! / j! (N-j)!  (N-j)! / (k! (N-j-k)! ( pj qk (1-p-q)N-j-k ) ( j.d - k.d + (N-j-k).0 )

How to solve this?

A simulation would be easy to do (as would a direct summation of all possible states).
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Langevin’s solution of Brownian Motion
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Langevin in 1908 explained Brown’s observations starting from the equipartition 

theorem that a particle of mass M in equilibrium should have a mean KE of:  <1/2 Mv2> =  

1/2 kBT  (in 1d, and 3/2 kBT in three-dimensional space).

He assumed two forces act on the particle of mass M in water (where M >> mW): 

1) a viscous drag force (Stokes’ law) ~ -6.π.η.a.dx/dt 
 
η      = viscosity  
a       = particle radius 
dx/dt = particle velocity 

2) a rapidly fluctuating force X(t) subject to:

      <X(t)> = 0    but   <X(t)2> ≠ 0 

      <x.X(t)> = 0

Newton’s EOM is:   M.d2x/dt2 = -6.π.η.a.dx/dt + X(t)

Behind an equation are physical assumptions
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Langevin’s solution of Brownian Motion

10

Langevin’s solution for the mean-square displacement of a particle in solution is:

<x2> - <x02> = ( kBT/3πηa) t

The mean-square displacement (MSD) increases linearly with time, so the mean displacement 
varies with the square-root of time

  √<x2> ~ √t
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Langevin’s solution of Brownian Motion

11

Note that  <x2> ~ t means that the particle’s instantaneous velocity is not well defined:

Ballistic motion:  x = v.t,                       v(t) = dx/dt = v

Brownian motion: √<x2> ~ √t,           v(t) = d/dt (√<x2>) = 1/2 t-1/2  

which caused many problems in the original experiments as they first tried to measure the 
particles’ velocities from graphs of displacement versus time, but eventually used the MSD. 

Question: Can one formulate a theory of Brownian motion that does NOT require 

molecules? i.e., the fluid is continuous.  The particle should still exhibit an erratic path but 

there are no molecules to kick the particle. Note that the drag force can have the same 

form for a continuum fluid, but what causes the random force?
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Brownian motion and molecules

12

M. D. Haw, J. Phys. Cond. Mat. 14: 7769 (2002)

In Perrin’s words (quoted in Haw 2002):
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Langevin’s solution is an SDE

13

Langevin’s equation is an example of a stochastic differential equation (SDE), in which there is a 
rapidly-fluctuating random term X(t). 

Each solution of an SDE represents a different random trajectory, but their average properties 
can be calculated if properties of the random function X(t) are defined.

Contrast this with a deterministic differential equation that has a unique solution.

A Langevin equation looks like:

dx(t) = x(t + dt) - x(t) = A(x, t)*dt + B(x, t)*X(t)

where A(x, t) is called the Drift term, and B(x, t) the diffusion term.

A and B have distinct physical interpretations, and X(t) is a random noise term that will be 
defined more carefully later.
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Integrating a Langevin equation

14

How would we integrate an equation that had X(t) in it on a computer?

Consider the deterministic differential equation:

dx/dt = A(x, t)

we discretise this for use on a computer:

x(t + dt) - x(t) = A(x, t).dt

Now consider the corresponding discretised Langevin equation (taking B(x,t) = √D = const.):

x(t + dt) - x(t) = A(x).dt + √D.X(t)

How would we implement this on a computer?
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We have been a bit loose with the function X(t) that represents random solvent collisions.   

All we have said is that <X(t)> = 0, <x.X(t)> = 0 and <X2(t)> ≠ 0, but what is X(t)?  

It turns out that X(t) has to satisfy some strict conditions to be mathematically sensible - see the 
Gillespie reference for details.

A normal or Gaussian random variable X = N(m, σ), with mean m and variance σ2, is one for which 
X takes a value x with probability:

p(X = x) = 1/√(2.π.σ2). exp( -(x - m)2 / 2.σ2 )

And the only well-defined, continuous, memory-less, stochastic process (Langevin equation) is:

dx(t) = x(t + dt) - x(t) = A(x).dt + √D. N(0, 1).√dt

where N(0, 1) is the unit normal random variable with mean 0 and variance 1.  The square-root of dt 
is crucial.

D. T. Gillespie, The mathematics of Brownian motion and Johnson noise,  Am. J. Phys. 64:225 (1996)
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Implementing a Langevin equation

16

Our original noise term must therefore have the form:

X(t) = N(0, 1)√dt

and the Langevin equation that we can implement on a computer is:

dx(t) = x(t + dt) - x(t) = A(x).dt + √D. N(0, 1).√dt

where N(0, 1) is a Gaussian random variable with zero mean and unit variance that we 
sample at each time step to find the next point.

Note
1) We cannot ignore dt wrt √dt because the term N(0, 1) is equally often positive and 

negative which reduces the magnitude of the sum of many random samples.
2) The square root is necessary to reproduce <X2> ~ D.T for a diffusive process. No other 
power will do. D is the diffusion constant.
3) This equation forms the basis for the Brownian Dynamics simulation technique:

D. L. Ermak, and J. A. McCammon, Brownian Dynamics with Hydrodynamic Interactions,  J. Chem. Phys. 69:1352 (1978)
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Einstein’s solution of Brownian Motion

17

Earlier, in 1905, Einstein produced a different solution based on similar assumptions to Langevin.

1) each particle’s (e.g., pollen grain) motion is independent of the others and is caused by 

frequent impacts on the particle of the constantly moving water molecules in which the 

particle is suspended; its motion in different time intervals are independent provided these 

intervals are not too small

2) consider a time interval τ that is short compared to observation times but large enough that 

in successive intervals of τ,  the motions executed by the particles are independent of each other 

A. Einstein Ann. Phys. 17: 549 (1905)
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Einstein’s solution of Brownian Motion

18

Let n particles be suspended in a liquid, and let their X coordinates change by an amount Δ in 

time τ, where Δ is different for each particle and is equally likely to be positive or negative (we 

work in 1d for simplicity).

There is a frequency law for Δ that says the number dn of particles whose X coordinates 

change by Δ to Δ + dΔ in a time τ is

dn = n.Φ(Δ).dΔ      

where Φ(Δ) is normalised to unity,  symmetric, Φ(Δ)  = Φ(-Δ), and only non-zero for small Δ.

Let  f(x, t) the number of particles per unit volume at (x, t), then f satisfies:

f(x, t + τ).dx = dx.∫ f(x - Δ, t).Φ(Δ).dΔ 
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Einstein’s solution of Brownian Motion

19

This makes the predictions that diffusion a) increases with temperature, b) decreases with 
increasing particle size, and c) decreases for higher viscosity fluids.

The differential equation satisfied by f(x, t) is the Diffusion Equation

df / dt = D.d2f / dx2

where D = 1/(2τ)∫Δ2 Φ(Δ) dΔ is the diffusion coefficient.

The solution to this equation is well-known:

f(x, t) = n /√(4.π.D.t) exp(-x2/4.D.t)

From this, the mean-square displacement is found to be:

<x2> = 2.D.t

and by comparing this to Langevin’s solution we find the diffusion coefficient is:

D = kBT/ 6.π.η.a
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Particle diffusion with drift

20

The diffusion equation for f(x, t) is translationally invariant in space. How can we introduce 
a net drift to the particles?

e.g., charged pollen grains in water subject to a weak spatially-varying electric field.

Recall that the frequency law Φ(Δ)  was assumed to be a symmetric function of Δ. 

Suppose we add an anti-symmetric part:

Φ(Δ) = Φs(Δ) + Φas(Δ)

where Φs(Δ)  = Φs(-Δ)

and     Φas(Δ) = -Φas(-Δ)

How does this change the solution?
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Particle diffusion with drift

21

The new differential equation satisfied by f(x, t) is:

df(x, t) / dt = -d(A.f) / dx + D.d2f / dx2

where A(x) = 1/(τ)∫Δ Φas(Δ) dΔ

and as before D = 1/(2τ)∫Δ2 Φs(Δ) dΔ

This equation has a drift (represented by A(x)) superimposed on the diffusing particles.

A simple case is to choose A(x) = -k.x

df(x, t) / dt = d(k.x.f) / dx + D.d2f / dx2

This is the Ornstein-Uhlenbeck process which represents a random walk with a “memory” 
that is quantified by the parameter k.
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Stationary State of OU Equation

22

We can find the stationary state of this equation easily by setting df(x, t) / dt = 0

d(k.x.f) / dx + D.d2f / dx2 = 0

d/dx (k.x.f + D.df/dx) = 0

k.x.f + D.df/dx = const

with solution f(x) = (k / 2πD)1/2.exp( - k x2 / 2D )

which is a Gaussian with mean 0 and variance D/k.  No matter what the initial 
distribution f(x, t) is, the long-time solution tends to a Gaussian.

Contrast this with the simple Diffusion Equation that has no stationary state: the 
density everywhere tends to zero as time increases.
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Langevin or Einstein?

23

It can be shown that every Langevin equation can be equivalently written as a Fokker-Planck 
equation, but that is beyond our scope.

We now have two apparently different solutions for the same Brownian motion.

The differential equation for the probability function f(x, t) for finding particles at a point (x, t) 
(which is an example of a Fokker-Planck equation):

df(x, t) / dt = -d(A.f) / dx + D.d2f / dx2

is equivalent to the Langevin equation for the trajectory of a single particle x(t):

dx = A(x).dt + √D(x). X(t)

where A(x) is called the drift term and D(t) the diffusion term, and the random noise term must 
satisfy: <X> = 0,  <X2> = δ(dt),  so X(t) = N(0, 1).√dt

Depending on how we choose A(x) and D(x) we get different models.

C. W. Gardiner, handbook of Stochastic Methods, 2nd ed. Springer, 1997
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Where do RWs appear in a cell

24

Bulk diffusion in cytoplasm (3d)

Lipid and protein diffusion in membranes (2d)

Ion diffusion through channel proteins (1d)

Actin monomers diffuse and bind to form filaments (3d)

Motor protein diffusion along filaments (1d)

DNA binding proteins, transcription and translation (1d)

(Reaction coordinate in chemical reactions, 1d)

(Membrane potential on a neuron, 1d)

Now we have a model for RWs, we can see them everywhere
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Other Random Walks

25

We have viewed the RW as the track of a particle moving in space, but there are many other 
applications.  We can use it to represent, e.g., the membrane voltage u(t) of a “noisy neuron”. 

The membrane voltage for a leaky integrate-and-fire neuron is:

τ. du(t)/dt = -u(t) + R. I(t)

where τ is the “time constant” (or memory), R membrane resistance, I(t) current. The voltage 
u(t) varies and when it crosses a threshold a “spike” is generated and u(t) reset.

We can add noise to the voltage equation to get the Langevin equation:

τ. du(t)/dt = -u(t)+ R. I(t) + Γ(t)

where the white noise term is formally defined by: Γ(t) = Lim (dt → 0) N(0, 1) /√dt

< Γ(t) > = 0
< Γ(t) . Γ(t’) > = δ(t - t’)

Sect. 5.5,  W. Gerstner and W. Kistler, Spiking Neuron Models,  Cambridge University Press (2002)
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Measuring Brownian motion

26

Brown used light microscopy to measure the diffusion of single particles; what experimental 
techniques are available now?

1) SPT - single particle tracking

Updated version of Brown’s method that uses light microscopy to track a single fluorescently-
labelled particle, e.g., a quantum dot,  as it diffuses in space or on a cell’s surface

C. Manzo and M. F. Garcia-Parajo, A Review of progress in single particle tracking; from methods to biophysical insights.  
Rep. Prog. Phys. 78:124601 (2015)

Pros

complete trajectory

no ensemble averaging

Cons

tracks may reflect distinct 
processes; localisation 
errors (stuck particle ~ 
small D), diffusion and sub-
diffusion mixed

signal is inherently noisy

optical resolution

tracks may have gaps 
especially for blinking QDs
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Measuring Brownian motion

27

2) FCS - fluorescence correlation spectroscopy

Laser light is focussed on a spot, and the scattered intensity from the (dilute) fluorescing particles 
is measured as a function of time and the two-time correlation function is analysed to extract the 
diffusion coefficient of the particles.

Pros

Good statistics

Cons

Needs a (complex) 
model to extract 
diffusion constants

needs a dilute system

E. L. Elson, Fluorescence Correlation Spectroscopy: Past, Present and Future.  Biophys. J. 101:2855 (2011)
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Measuring Brownian motion

28

3) FRAP - fluorescence recovery after photobleaching

A region of membrane containing diffusing dye molecules is irreversibly bleached by intense 
light, and the gradual recovery of the fluorescence as unbleached dye diffuses back into the 
region carries information about the particles’ diffusion coefficient

E. A. J. Reits and J. J. Neefjes, From fixed to FRAP: measuring protein mobility and activity in living cells.
Nature Cell Biology 3:E145 (2001).

Pros

Measure the mobile 
fraction and 
diffusion constant

Measures diffusion, 
reactions, 
conformational 
changes

Cons

2D unless complex 
model used
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What use is noise in a cell?
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Noise = random thermal motion = unlimited source of energy

Do we have perpetual motion?

In a way, except that it is undirected motion that cannot do useful work without constraints 

The cell uses the random thermal noise to create structures of use and to search states of 
interacting particles, or explore (short-distance) space by diffusion, e.g., 

• membranes form spontaneously from amphiphilic lipids diffusing in water

• ions flow through a channel in a membrane to do work (but a pump maintains the gradient)

• filaments spontaneously assemble but to disassemble them requires energy consumption; 

• motor proteins pull vesicles along filaments, but ATP is required to make the motion directed

• two chemical reactants will randomly explore possible binding conformations, but to separate 

them requires expenditure of ATP

• noise allows systems to jump over energy barriers

A cell also needs energy to keep things constant (membrane potential, chemical gradient, etc).
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Conservation and transport in a cell
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The cellular cytoplasm is a fluid, so we might expect molecules and aggregates to diffuse around 
until there are no gradients. Unconstrained diffusion would be a problem for a cell as it would 
lead to high entropy and complete mixing.  

Equilibrium = Death
Fortunately,

cell is an active body - energy is expended to create gradients or keep things separate, e.g., 
neuron membrane potential maintained by Na-K pump.

cell contains organelles that separate constituents and maintain unequal concentrations, e.g., 
mitochondria that generate ATP.  These organelles spontaneously assemble their membranes so 
random thermal motion leads both to mixing and to segregation!

Conservation is related to transport:  continuity equation:

dρ/dt + div. (ρ.v) = 0

The simplest way to keep things separate (i.e, a gradient in concentration) is to segregate inside 
membrane-bounded organelles or to bind molecules together so they don’t separate.

Q How many ways can you maintain a gradient?
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All formed from long, flexible proteins
(Intrinsically-Disordered Proteins)

S. F. Banani et al. Biomolecular condensates: 
organizers of cellular biochemistry,  
Nat Rev. Mol. Cell Biol.  18:285 (2017)

But cells also maintain gradients without a lipid membrane
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Conservation and transport in a cell

32

Cellular cytoplasm is a fluid:  but what kind of fluid?    We should consider the question:

Do we underestimate the importance of water in cell biology?
M Chaplin, Nature Reviews Mol. Cell Biol.  7:861 (2006)

Abstract | Liquid water is a highly versatile material. Although it is formed from the tiniest of molecules, it can shape and 
control biomolecules. The hydrogen-bonding properties of water are crucial to this versatility, as they allow water to execute 
an intricate three-dimensional ‘ballet’, exchanging partners while retaining complex order and enduring effects. Water can 
generate small active clusters and macroscopic assemblies, which can both transmit information on different scales. 

As well as the membrane-bounded organelles, there are non-membrane bounded organelles - 
nucleolus, Cajal bodies, pot-synaptic density in synapses, etc. These are distinct from the 
cytoplasm in their composition and phase, but continuous with it.

As the cell uses random thermal motion to move things around, perhaps it also uses the 
physical state or phase of the cytoplasm to influence or control cellular functions?

This has led to the study of liquid liquid phase separation, we’ll return to it in a later lecture.
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Break  

10 mins.

33
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Exercise

34

1) Create a linear polymer in water and measure its equilibrium properties:

Steps involved:

Specifying multiple polymers in a DPD simulation

Defining bonds to connect beads into polymers

Specifying the polymer “shape” and concentration

Setting the aij parameters between beads

2) How does the end-to-end length of a polymer respond to an applied 
force?
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    Bead  W
    0.5
    25
    4.5

    Bead  B
    0.5
    30    25
    4.5   4.5

    Bond  B B 128.0  0.5

Polymer    Water    0.9995    " (W) "
Polymer.    PEG      0.0005     " (B (6 B) B) "

Each new bead type needs a value of aij for all 
preceding types and itself (the second line is the 
dissipative parameter which is always left at 4.5, see 
Groot and Warren 1997 for why).

This results in a lower-diagonal matrix of aij in 
which the final value for each bead type is its
 self-interaction

Hookean springs are used to tie beads together 
into polymers.  The parameters are:

Names of the two beads to connect (B B)
Strength of the bond (128)
Unstretched length (usually left as 0.5)

Instead of writing out B B B B B B one can use the 
shorthand (6 B) to create 6 B beads in a line. But 
the first and last beads MUST be explicitly named.

Groot and Warren, J. Chem. Phys. 107:4423 (1997)

(see dmpci.ex2 on moodle)

2) Polymer end-to-end length
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Use second 
analysis period

Std. dev.

Ignore these for now

Mean / Std. dev 

Mean

Where is the polymer end-to-end length?

dmpcas.nnn
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2) Stretching a polymer
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To Do:

1. Set a box size of 30 x 10 x 10; adjust the number fractions to have 1 polymer of 
type (BH (14 B) BT),  i.e., distinct head and tail beads so they can be selected.

2. Turn force on at  T = 1000 steps. How long should you keep it on?

3. How can you measure the extension?How does Lee change if you make the 
polymer longer?

4. How does it change if you raise the temperature? 

5. Now change the backbone to contain a new bead type that is “sticky”.  Try (BH B B 
B S S S S B B B BT), and give S the same interactions as B except for its self 
interaction that is reduced to make it sticky. Vary number of S beads.

Questions to answer

What is the stress/strain relation F(L) for the “molecular spring”?

Does it have different regimes for F(L) under different tensions? Why?

With sticky beads there are two new parameters: the number of sticky beads and their 

self-interaction. How can you select sensible values for these?

Discuss this first
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Use unique bead names so a force can 
be applied to them independently

(see dmpci.ex1 on moodle, entropic spring input file)

Select each end of polymer as a 
“Command Target”

Apply a force to the targets

Turn the force off


