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Take-home message

• Dimension dominates behaviour, membranes are not 

like random walks

• Membrane models on different scales can only exhibit 

properties present in the model

• Vesicle fusion exhibits competing relaxation processes 

under non-equilibrium membrane deformations
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Macroscopic membrane models

• Membranes as fluctuating surfaces

• Random walks and phantom membranes (1d and 2d)

• Elasticity theory of membranes

• Discretized membranes, triangulated surfaces, Monte Carlo simulations

• Polymerized membranes, auxetic materials, cytoskeleton

• Membrane as a barrier, multicomponent membranes

• Domains, budding and fusion in membranes

2



BIO-692 Symmetry and Conservation in the Cell 3

Membranes on macroscopic scale

How do we mathematically describe a membrane at this scale?

A 2-dimensional surface requires 2 in-plane coordinates (x1, x2).

But in 3D, each point has 3 coordinates.

Nearly flat membranes can be described by Monge representation,
where the height is specified at the projected (x,y) coordinates

h(x1, x2) = function of (x, y) in the projected plane.

e..g,   h(x, y) = h0*sin(kx x)*cos(ky y)

Now we have a coordinate system for the membrane surface, but 
what controls its dynamics?

Cell size / membrane thickness ~ 10 micron/4 nm = 2500 

the PM is a very thin, flexible fluid sheet when viewed on the scale of the whole cell. We can ignore 
the molecules and treat the membrane as an infinitely thin elastic sheet.
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Membrane models

The properties of each type of walk are determined by the energy (if non-zero) associated with 
conformations.

The shape of a 2d membrane (or surface) is similarly determined by the energy associated with its 
conformations (or entropy if there is no energy function). But there is extra connectivity in 2d.

We can construct a range of membrane models similar to the range of random walks (see 
Lecture 2 - random walk, Gaussian chain, self-avoiding walk, wormlike chain, rigid polymer)

RW

Gaussian chain

Wormlike chain

Rigid polymer

< Ree2> = N.a2  

p(R) = const. exp( -d.R2/2.N.a2 )

H( r(s) ) = κ/2 ∫ | ∂r/∂s|2 ds

p( {r(s)} ). ~ e-βH( r(s) )

< Ree> = N.a
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Membranes as random surfaces
In 1980s, a lot of interest in random surfaces, usually triangulated networks.

Quoting Kantor, Kardar and Nelson, PRL 57:791 (1986)

Statistical Mechanics of Membranes and Surfaces, eds. D. Nelson, 
T. Piran, S. Weinberg, World Scientific Publishing, Singapore, 2004

If the surface is self-avoiding, its radius of gyration is:

Rg ~ Lν

where Flory theory gives:  ν = 4 / (d + 2)        cp.  3 / (d + 2) for RWs

Flory theory gives: ν = D + 2 / (d + 2) for D-dim. objects embedded in d-dim. space.
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Phantom membrane

It has some unusual properties … 

… it can collapse … 

… it is non-volume preserving 
     (has a negative Poisson ratio)

more on this later today

 A phantom membrane or random surface is the generalisation of a simple RW to 2d

Random surfaces are not a 
good model for biomembranes
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Elasticity theory of membranes
To go beyond a random surface model, we need to know the energy of 
membrane conformations: biological membranes do not self intersect!

Canham-Helfrich Hamiltonian gives the energy cost of smooth near-planar 
shapes of the cellular plasma membrane in terms of two parameters:  a 
bending stiffness 𝛋 and spontaneous curvature c0

H = 𝛋/2 ∯ dA ( c1 + c2 -  c0 )2

where c1(x,y), c2(x,y) are the local curvatures at any point (x,y) of the 
surface. If c0 = 0, the preferred membrane conformation is planar.

For symmetric lipid membranes 𝛋 ~ 10 - 25 kBT,  c0 ~ 0

This is the first term in an expansion of the energy in powers of the 
curvature, recall definition of curvature: let a curve be defined 
parametrically by  r(s) and the local tangent t(s)

c(s) = dt / ds = d2r(s) / ds2
P. B. Canham, The minimum energy of bending as a possible explanation of the 
biconcave shape of the human red blood cells,  J. Theor. Biology 26:61-81 (1970)

W. Helfrich, Elastic properties of lipid bilayer membranes: theory and possible 
experiments,  Z. Naturforschung C 28:693-703 (1974)
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Red blood cells are dominated by symmetry
RBCs take up a wide variety of shapes controlled 
by physical constraints arising from environment 
and the energy of deforming the PM:

Inner volume is fixed
Plasma membrane area is fixed (# lipids constant)

(at constant temperature, osmolarity)

Canham-Helfrich Hamiltonian gives the energy 
cost of near-spherical shapes of the cellular 
plasma membrane:

8

U. Seifert,  Advances in Physics, 46:13-137 (1997)

H = 𝛋/2 ∯ dA ( c1 + c2 -  c0 )2

where c1(x,y), c2(x,y) are the local curvatures at any point (x,y)of 
the surface, c0(x,y) is the spontaneous curvature, and 𝛋 is the 

bending rigidity (units of energy); for pure lipid membranes 𝛋 ~ 10 - 
25 kBT

P. B. Canham, The minimum energy of bending as a possible explanation of the 
biconcave shape of the human red blood cells,  J. Theor. Biology 26:61-81 (1970)

W. Helfrich, Elastic properties of lipid bilayer membranes: theory and possible 
experiments,  Z. Naturforschung C 28:693-703 (1974)

RBC Lifetime ~ 120 days, 
     circulation ~ 20 sec,  
bend through capillaries 1/2 its 
diameter;  

polystyrene balls of the same size 
fall apart after ~10 deformations
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Theory or Monte Carlo simulations?

Given a Hamiltonian,  we can do two things:

1) Try and find an analytic solution to membrane properties

2) Try doing Monte Carlo simulations of the membrane

The first one has the advantage that we can understand the 
whole range of membrane behaviour for all parameter values;

The MC simulations have the advantage that we can apply them 
even when we cannot find solutions to 1).

But we need to discretize the membrane if we want to go 
beyond very simple (i.e., symmetric) shape calculations and 
particularly if we want to do simulations.
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Discretized membranes

Planar membrane

• Consider a 2d tethered (i.e. non-fluid) hexagonal membrane (e.g. fish net)

• NV vertices (x, y) connected by NE  = 3 NV  Hookean springs to 6 neighbours

• Applied pressure p (p < 0 stretches the membrane)

• Use NpT Monte Carlo simulations to study the membrane properties

What does it do?

MC Moves

Each vertex (x, y) moves in plane ~ e-βH( {x,y} )

Area changes ~ e- β ΔA

Analytic theories of membrane shape are only useful for highly symmetric cases. 
MC simulations have been used for many purposes because they are general and powerful.
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Springs in 1d and 2d

11

Before we look at a network, let’s compare simple Hookean springs in 1 and 2 dimensions. 

We just need to calculate the partition function to get mean values.

 
Z = ∫dx e-βH({x})                           <A> = 1/Z ∫dx A({x}) e-βH({x})

1) 1d Hookean spring with an unstretched length sh =  0 under tension subject to thermal 
fluctuations?

What are <s>, <s2>? (Blackboard calculation)

Z = √( kBT / 2k )

<s> = √( 2 kBT / πk )

 <s2> = kBT / k

which predicts: 1) average length increases with increasing temperature, 2) decreases with 
increasing spring constant.  This is just an elastic spring subject to thermal fluctuations.

2) With a non-zero unstretched length or applied force we cannot calculate it in closed form in 1d.
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Collapse transition of phantom network in 2d

12

p

p

p p

Lim P →ε > 0

Network collapses at a finite (stretching) pressure because it 
can maximise its entropy while not costing energy by allowing 
springs to overlap and produce “lines” of equal length springs
M. F.  Thorpe and E. J. Garboczi, Elastic properties of central-force networks with 
bond length mismatch,  Phys. Rev. B. 14:4771 4775 (1990)
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A 1d Hookean spring under a (finite) tension F simply oscillates about a mean length. But even this is 
hard to calculate.

Given H(x, F) = 1/2 k x2 - F x

when F = 0,      <x> = kBT / k

F > 0,               <x> = exp( βF2 / 2k ) . ∫ dy exp( -1/2 βky2 )    from  y = -F/k to ∞

where y = x - F/k.   But this integral cannot be done in closed form because of the lower limit. But 
<x> remains finite for any finite force.

Unlike the 1d RW case, the 2d phantom network has unusual behaviour because the energy density 
due to the stretched springs can be less than the (negative) energy density of the applied (stretching) 
tension. This is a result of the phase space factor in 2d (dA = s ds ) compared to 1d (dx).

But a 2d network is even harder to calculate … this is the partition function:

Expansion of 1d spring
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Bulk modulus K = -1/A ∂A / ∂p

Shear modulus

Poisson ratio = K - μ / ( K + μ )

This is the ratio of the  transverse strain to the 
longitudinal strain and is usually positive for, e.g., 
rubber or steel.

(K and μ must be positive for stability)

_
p  = p / √3 k ,   p < 0 for tension

<s> →∞ when p = √3 k

Expansion instability of 2d network



BIO-692 Symmetry and Conservation in the Cell 15

The Poisson ratio does NOT have to be positive for stability; a negative ratio means that a 
substance expands transversely when stretched longitudinally.  Such materials are called “auxetic”.

A crumpled newspaper 
has a negative poisson ratio!

Auxetic materials

R. Cuerno et al.  Universal behaviour of crystalline membranes: Crumpling transition and Poisson ratio of the flat hase, 
Phys. Rev. E 93:022111 (2016)
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Cellular cytoskeleton is a polymerized network
Beneath the plasma membrane is a 2d, polymerized network of “springs” made of spectrin/
actin/ankyrin, etc.   Although the contour length of spectrin is ~ 200 nm, the vertex-to-vertex 
distance is only about ~50 nm in the RBC (Nans et al. 2011)

It provides shear rigidity and compression resistance to the fluid lipid bilayer and has a negative 
Poisson ratio!

Simulations of RBC membranes (lipid bilayer + spectrin network) have been done, and 
micropipette experiments have been simulated.

Relevance of negative poisson ratio???
D. Discher, D. H. Boal and S. K. Boey, Simulations of the erythrocyte 
membrane at large deformation, Biophys. J.  75:1584 - 1597 (1998).

A. Nans, N. Mohandas, and D. L. Stokes, Natice ultrastructure of the 
red cell cytoskeleton by cryo-electron tomography, Biophys. J.  
101:2341-235- (2011).
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Breaching the barrier

17

Cellular membranes form an impermeable barrier for good reason:

• ionic concentrations inside and out are different (esp. for neurons)
• Lysosomes contain low pH and would kill itself, endosomes carry materials, 

mitochondria need a large electron gradient
• bacteria and viruses would invade and kill cell
• DNA, RNA and proteins would diffuse away
• osmotic stress or other gradients would swell or shrink the cell

But the cell still needs to breach membranes for its own purposes:

• uptake of nutrients (endocytosis)
• expulsion of waste products (exocytosis)
• fusion (sperm and agg)
• transport vesicle fusion (ER to Golgie transport)

So, how does a cell stop unwanted pores appearing but create them when necessary?
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Endocytosis

Retrograde transport, C. Wunder, Ludger Johannes, Curie Inst. France

How can we quantify the energy cost of pore formation?  What work is done?

Transmembrane proteins span the bilayer and some peptides (e.g., magainin, mellitin are anti-
bacterial agents) enable pore formation, how?

• exert force on surrounding membrane - “tear it apart”?

• modify lipid environment and so reduce the hydrophobic effect, membrane “dissolves”?

• interact with each other and form a pore, e.g., barrel stave?
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Classical theory of pore formation

19

Litster in 1975 proposed a simple theory for how pores should behave in the plasma membrane 
of cells.   A pore in a flat membrane has an area and circumference.  Assume:

• Membrane is flat and incompressible
• Pore is circular with radius R
• Pore is energy dominated (temperature is irrelevant)
• Membrane is under tension Γ (energy/area)
• Pore rim has energy cost λ (energy/length)

Energy cost of a pore is then

E(R) = 2πRλ - πR2Γ 

Minimising this gives a critical pore radius:

R* = λ / Γ

Pores smaller than this shrink while larger ones grow until they rupture the membrane. But there 
is an energy barrier to the pore growing:

E(R*) = πλ2 / Γ
Litster, J. D. 1975. Stability of lipid bilayers and red blood cell membranes. Phys. Lett. A.  53: 193-194.
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Classical theory of pore formation
Relevance to biological membranes?

• Cells can be under osmotic stress ⇒ tension

• Lipid bilayer can only stretch a tiny amount before it ruptures

• A pore requires that lipids on the boundary rearrange 

⇒ edge energy or line tension (stretched and tilted)

• What is the effect of temperature?

• Are holes stationary? Can they merge?

R*     = λ / Γ     ~ 1/3 10-6 cm ~ 3 nm

ΔE(R*) = πλ2 / Γ ~ 10-19 J ~ 24 kBT

From experiments:  

Γ ~ 3  dyn/cm for SOPC1,  10 dyn/cm for RBCs2

λ ~ 10-6 dyn for SOPC3

1Evans and Needham, J. Phys. Chem.  91:4219-4228 (1987)

2Needham and Hochmuth, Biophys. J.  55:1001-1009 (1989)

3Zhelev and Needham, BBA.  1147:89-104 (1993)

So, spontaneous pores are very unlikely 
in an unperturbed SOPC membrane.
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Extended theory of pore formation

• Litster’s theory assumed circular pores so only energy is relevant: at finite temperature, the 
membrane fluctuates both in plane and out of plane, so the pore boundary can change shape 
and may not be circular; the free energy is then important:  G = E + PV - TS

• Lipids on the boundary have greater freedom to move than those in the bulk membrane, so 
the entropy of their extra configurations reduces the pore edge energy

• Proteins and peptides may bind to/insert into the membrane and nucleate pores or aggregate 
at their boundary modifying the edge energy, this can stabilise membrane or make pores grow

• Nothing prevents spontaneous pore formation so multiple pores can appear

• Lipid membrane is a fluid, so pores can “diffuse” and merge to form larger ones

Revisit the assumptions

Can we extend the theory to multiple pores and include the effects of 
temperature, pore shape fluctuations and proteins?
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Thermodynamics of pores in lipid bilayers

22

Consider an MC simulation of a 2d network of N vertices 
connected by fluid edges

- pores are formed by removal of a single edge with a 
probability e-βq controlled by a barrier height q.

- pores grow/shrink by removal/addition of edges around 
their rim with an edge energy cost  λL  controlled by a 
line tension parameter λ

Gibbs free energy of a single pore:

G(λ, p, T) = λ<L> + p<A> - TS(<L>)

  λ = line tension around pore edge ( J / m )
  p = stretching pressure (tension) ( J / m2 )
  T = temperature ( J ) 

  L = length of pore edge
  A = area of membrane including pore
  S(<L>) = entropy of fluctuations of pore edge

Pores in membrane:
a) q large, λ large
b) q small, λ large
c) q large, λ small
d) q small, λ small

Network has a 2d phase space controlled by 
the probability of pore creation, and the edge 
energy of the pore boundary.
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Pore edge is a self-avoiding random walk

23

Once a pore appears what does it do? Will it 
grow or shrink and disappear?

To answer this, we need to calculate the free 
energy of a pore and minimise it.  Assume a 
single pore for now and let it fluctuate in 
shape and size in two dimensions. Its energy 
is just proportional to the edge length.

From lattice calculations,  the number of 
configurations of a pore with n steps is1:

where n is the length (L/a0) of the edge, z is the 
lattice coordination number, α is an exponent 
and Ω0 is a prefactor independent of n.

What is the Gibbs free energy of the pore? 
(Blackboard calculation)

1 D. S. McKenzie Physics Reports 27:35-88 (1976)



BIO-692 Symmetry and Conservation in the Cell 24

Barrier height against pore growth

βG = n ( βλa0 - ln z ) - ( α - 2 ) ln n - ln Ω0

We have a similar behaviour to the Litster theory 
but now a pore can appear without any stretching 
tension if the line tension is small enough.

The entropy of the shape fluctuations of the pore’s 
edge destabilises the membrane.

The Litster theory is a zero temperature theory, 
and here we include entropy. What are the finite 
temperature equivalents to the barrier height and 
critical hole size?

Triangular lattice
z = 4.15 
α = 0.5
McKenzie, 1976

R* = λ / Γ

ΔE(R*) = πλ2 / Γ

Litster model:  T = 0 Free energy model with T > 0

n* = (α - 2) / (βλa0 - ln z) = 1.5 / (ln z - βλa0)

ΔβG(n*) = (α - 2)( 1 - ln( (α - 2) / (βλa0 - ln z) )
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Single pore shape dynamics

25

βλa0 ~ 1.24βλa0 ~ 1.24βλa0 ~ 0.8

Fluctuations grow at the critical value of  βλa0

⇒ phase transition from stable membrane to 

ruptured membrane as βλa0 decreases
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Multiple pores in a membrane
If we allow multiple pores,  whose number is controlled 
by a barrier height βq, and whose subsequent growth by 
βλa0, we can calculate the phase diagram as shown.

There are two limiting cases:

1) Ideal pore “gas”

Assume:  q > qrupt but also not too large, so lots of 
holes, but βλa0 is large so each hole is small, circular and 
unlikely to merge with others but can have a range of 
sizes.

J. C. Shillcock and U. Seifert,  Biophys. J. 74:1754-1766 (1998)

2) Chemical reaction of multiple interacting pores

Assume:  pores are of two types: small hydrophobic pores 
form spontaneously and can shrink and disappear, or 
transform into hydrophilic pores and grow and/or merge.
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Biological significance

27

What does this imply for a cell?

Clearly a cell is always at T > 0, and cannot easily change its temperature.

But the model says that the only important parameters are the dimensionless barrier height to 
pore formation βq, and the line tension of the pore boundary, βλa0.

So a cell can modify the number of pores, and their subsequent behaviour by modulating βq and 
βλa0. It can do this by changing the composition of the membrane:  lipids with shorter tails or 
larger headgroups weaken the lamella state, and molecules that can easily change their 
orientation (single tailed lysolipids or peptides) reduce the energy cost of the pore boundary.

Animals use this mechanism to kill bacteria; they secrete peptides that pack in the bacterial 
membrane and lower the barrier height against pore formation and expansion.

Synaptic vesicle fusion relies on being able to create a pore “on demand” so that the 
neurotransmitter packed inside a vesicle can be released swiftly and reliably.
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Ideal pore “gas”
Assume:  q > q* ~ 3.3 so lots of holes and βλa0 > 2 so each hole is small, circular and unlikely 
to merge with others but can have a range of areas.

Hamiltonian of one pore = 

Partition function 
of “gas” of pores = 

Grand potential =

Horizontal arrows show predictions of the average 
pore perimeter for βλa0 = 4 and 2.

We calculate the thermodynamic properties 
from derivatives of Ω(T,  A, μ, λ):

    <L> = ∂Ω / ∂λ

    <N> = -∂Ω / ∂μ



BIO-692 Symmetry and Conservation in the Cell

Chemical reaction model of pores

29

Assume:  q ~ q* ~ 3.3 so lots of holes and βλa0 < 2 so holes fluctuate in shape, grow/shrink and 
merge/break up. Small (< 1nm) hydrophobic pores spontaneously appear and can transform into 
hydrophilic ones where the lipids rearrange at the pore edge to minimise the exposure of 
hydrophobic tails to water; only hydrophilic pores grow larger and merge.

Hydrophobic pore HO Hydrophilic pore HI

N1(t) = # lipids around HO pores at time t

N2(t) = # lipids around HI pores at time t

c = HO creation

d = HO resealing
x = HO-HI conversion

y = HI-HO conversion r = HI-HO merging
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Steady state solutions

30

We assume that HO pores must cross an energy barrier to transform into HI pores, so x ≤ y,
and N2* < N1* and the membrane is stable against HI pores growing (NB N2 is number of lipids 
on pore edge not number of pores)

But when the non-linear term is included, HI pores can grow without limit:

N1* = c / d 

N2* = x N1* / ( y - r N1* )

The key parameter is r, which we can relate to the line tension as it controls the rate of 
absorption of HO pores by HI pores due to the shape fluctuations of HI pores.

Consider the linearised steady state, and set rN1N2 = 0, then

dN1/dt = 0  and dN2/dt = 0

gives:
N1* = c / d   and N2* = x/y N1*



Synapses

Synapses are chemical connections between 
neurons (often between an axon and a 
dendrite). 

A tightly-regulated sequence of steps: 

•Arrival of AP at axon terminal 
•Opening of Ca channels 
•SNARE-mediated fusion of vesicles 
•Release of neurotransmitter (NT) into the 
synaptic cleft (20-50 nm wide) 
•Binding of NT to receptors 
•Modification of post-synaptic neuron’s  
membrane potential 
•Transport of membrane voltage to soma of 
post-synaptic neuron

Synapses are involved in: learning, memory, mental disorders, drug actions,… They 
appear to do computations depending on their state, and modify this state and produce 
new proteins from RNA located near dendritic spines.



SNARE proteins present in both membranes pull them together and drive the formation of 
the fusion pore. 
But… what do they actually do? Force, torque, displacement…?

Fusion in reality...

McNew JA et al. J. Cell Biology 150:105-117 (2000)

Vesicle fusion requires several steps:

• membrane bending
• membrane merging
• membrane rupture or fission

Pinot M et al. Science  345:693-697 (2014)

PUFAs in synaptic vesicle membranes lower the energy cost of bending, so facilitating fusion.



Exocytosis Machinery

Molecular machinery driving exocytosis in neurotransmitter release: the core 
SNARE complex (formed by four α-helices contributed by synaptobrevin, syntaxin 
and SNAP-25) and the Ca2+ sensor synaptotagmin.
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DPD simulation - water invisible, cut through vesicle and simulation box. 

Cyan beads are “glutamate”, stationary pink dots are “receptors”

100 nm

and in simulations …
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Vesicle fusion protocol: tension

35

Create a bilayer and a vesicle under tension
initially close together and let them evolve

50 nm

30 nm

Only 42 successful fusion events out of 93 
attempts

Shillcock JC and Lipowsky R, Nature Mat. 4:225 (2005) 

Bilayer and vesicle lipids: H3(T4)2

Relaxed Nves = 6542

Relaxed Nbil = 8228



BIO-692 Symmetry and Conservation in the Cell

Fusion time distribution

36

No fusion events between 350 ns and 1.6 μs 

Why not?
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Vesicle fusion protocol: proteins

37

Vesicle tethers then docks prior to fusion
(Mayer, TRENDS in Biochemical Sci.  26:717-723 (2001)

SNAREs hold the vesicle close to the membrane and promote fusion,
Knecht & Grubmueller,   Biophys. J. 84:1527-1547(2003)

Lipid tail beads are polymerised  
into “rigid” cylinders, of radius r

An external force, of magnitude Fext,  
pulls the barrels radially apart

We create a force protocol that applies forces to membrane-bound anchors (or barrels) to 
perturb it in order to drive fusion.
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“Protein-driven” vesicle fusion in DPD

Planar membrane ~ (100 nm)2  

                                                28,000 lipids 

Vesicle ~ 6000 lipids 

Duration ~ 500 ns 

6 proteins in a circle per membrane  
- area per protein matches expts. 

Schuette et al. PNAS 101:2858 (2004)

Shillcock & Lipowsky, J Phys Cond Matt.18:S1191 (2006)

Forces applied to membrane-spanning barrels bend and stretch the membrane leading to 
fusion.  Is this what SNARE complexes do?

Simulation Notes 

Water is present in all movies,  
but invisible to reveal dynamics  

Periodic Boundary Conditions  
are used,  which means that a  
molecule leaving one face of the  
simulation box re-enters at the  
opposite face. 

Lipids have a headgroup (red/orange) and oily tails (green/
yellow); proteins are blue; bending forces are applied to white 
lipids

Computa/onal resources:  50 cpu-hours per fusion event

Box = 100 x 100 x 42 nm3 

3.2 x 106 beads in total
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1
2
3
4

NB. Work done is for all 12 barrels

Yersin A et al, PNAS 100:8736-8741 (2003)

McNew JA et al. J. Cell Biology 150:105-117 (2000)

How much work is required for fusion?
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Müller M, Katsov K,  Schick M, Biophys. J. 85:1611-1623 (2003)       - MC

Stevens MJ et al, Phys. Rev. Lett. 91:188102 (2003)                          - MD

Shillcock JC and Lipowsky R, Nature Mat. 4:225 (2005)                   - DPD

Grafmueller, Shillcock and Lipowsky, PRL 98:218101 (2007)             - DPD

Kasson PM et al, PLoS Comp. Biol. 6:c1000829 (2010)                     - aaMD

Vesicle fusion simulation: a short history

“Our results thus suggest that the 
specific molecular properties of 
individual lipids are highly 
important to vesicle fusion…”


