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Take-home message

• don’t expend work if you can get it for free (Self-assembly) 

• minimise energy by re-using whatever you can (Conservation) 

• symmetry can minimise free energy (Symmetry)

You want to move stuff around?  Use diffusion as it’s free, and only for longer distances where 
it doesn’t work use a motor that costs energy; and even then make the motor use diffusion too.

You want stuff to react?  Let thermal motion randomly jiggle reactants around until they find 
each other

You want to heal a hole in a membrane? hydrophobic effect will do it

You need to bring stuff in or out of the cell?  Create vesicles containing the material and 
pinch them off, then re-use the materials

be lazy
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Membranes on different scales

How do we mathematically describe a membrane at this scale?

A 2-dimensional surface requires 2 in-plane coordinates (x1, x2).

But in 3D, each point has 3 coordinates.

Nearly flat membranes can be described by Monge representation,
where the height is specified at the projected (x,y) coordinates

h(x1, x2) = function of (x, y) in the projected plane.

e..g,   h(x, y) = h0*sin(kx x)*cos(ky y)

Now we have a coordinate system for the membrane surface, but 
what controls its dynamics?

Cell size / membrane thickness ~ 10 micron/4 nm = 2500 

the PM is a very thin, flexible fluid sheet when viewed on the scale of the whole cell. We can ignore 
the molecules and treat the membrane as an infinitely thin elastic sheet.
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Self-assembly - Oil

Consider N0 oil molecules initially, uniformly dispersed in a 
closed box of bulk water with volume V =  L3 .

We intuitively expect the oil to form droplets that coalesce 
and grow in time, but how precisely do the radius and mass 
change with time?

Assumptions

1) energy cost of the interface drives droplets spherical

2) at any time, all droplets are spheres with radius R(t)

3) droplets of radius R diffuse with a coefficient that is 
given by the Stokes-Einstein relation: D = kBT/6πηR 
according to <X2> ~ 6 D t
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Droplets diffuse around and grow by coalescing when they touch, and we assume that the 
merging time is short compared to the diffusion time.

( L / N1/3(t) )2 ~ 6 (kBT/6πηR(t)) . t

But the number of oil molecules is constant, so:

N(t).4πR(t)3/3 = constant    or   N(t) ~ 1 / R(t)3

πηR(t)L2/kBT = N(t)2/3.t ~ t / R(t)2

 R(t) ~ (kBT / πηL2) t1/3

M(t) ~R(t)3 ~ t

Let N(t) = mean number of droplets at time t
      R(t) = mean radius of droplets        “

<vol/droplet> ~ L3 / N(t)

<separation> ~ L / N(t)1/3 
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Self-assembly - lipids

How does this change if we have N lipid molecules in bulk water?

We expect the lipids also form aggregates that coalesce 
and grow in time, but how do the radius and mass 
change with time now?

Assumptions

1) at any time, all aggregates have same mean size

2) aggregates of radius R diffuse with a coefficient that 
is given by the Stokes-Einstein relation:  
D = kBT/6πηR according to <X2> ~ 6 D t

The difference now is that lipids don’t form solid droplets but hollow spheres, or vesicles, and the 
number of lipids in a vesicle is proportional to its area not its volume.
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Aggregates diffuse around and grow by coalescing when they touch, and we assume that the 
merging time is short compared to the diffusion time.  Aggregates are now bilayer fragments 
that form closed vesicles when they are large enough.
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L2 / N2/3(t) ~ (kBT/6πηR(t)) . t

Number of lipid molecules is constant, so:

N(t).4πR(t)2 = constant

N(t) ~ 1 / R(t)2

πηR(t)L2/kBT = N(t)2/3.t ~ t / R(t)4/3

R(t) ~ (kBT/6πηL2) t3/7

M(t) ~R(t)2 ~ t6/7 ~ t0.86

Let N(t) = mean number of aggregates at time t
      R(t) = mean radius of aggregates        “

Lipid aggregates also diffuse around and grow by coalescing when they touch but they are now 
bilayer fragments that can form closed vesicles when they are large enough.  Again, the mean 
separation grows as ~ L / N(t)1/3 

JC Shillcock, Spontaneous vesicle self-assembly: a mesoscopic view 
of membrane dynamics,  Langmuir 28:541-547 (2012)
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Thermodynamics of self-assembly

Amphiphiles self-assemble because of the hydrophobic effect, but what determines the size and 
shape of the resulting aggregates?

Israelachvili produced a thermodynamic argument that the molecular shape of the constituents 
(the packing parameter) controls the equilibrium  shape (rod, disk, sphere, etc) and size distribution 
of the aggregates.

This is a thermodynamic result: it does not depend on details of the interactions (ionic, hydrophobic, 
steric, charge), duration, history of the sample, etc. - only on free energy differences, P,   T,  
composition.  It will be valid for lipids, polymers, actin monomers, colloids, etc.  

But note that we ignore inter-aggregate interactions; and the mean lifetime of a molecule in a 
micelle is very short, around10-5 - 10-3 sec.  In TD terms, we have a dilute solution of aggregates 
that maintain their equilibrium state by fast exchange of molecules: they form an homogeneous 
phase.

It’s a powerful argument of the form:

Molecular shape  →  Free energy difference in solution/aggregate → Thermodynamic force 

driving aggregation → Aggregate shape and size distribution

J. Israelachvili,, Intermolecular and Surface Forces, Ch. 16, Academic Press 1992
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Consider aggregate formation as a “chemical reaction”:  N monomers combine into an N-mer.

In equilibrium, the rate of association and disassociation are equal:

k1 X1N = kN (XN / N)

where X1 = volume fraction of monomers in solution

          XN = volume fraction of monomers in N-mers

          k1 = association constant (forward reaction)

          kN = dissociation constant (backward reaction)

Now k1/kN = K = equilibrium constant = exp( -βN(μN0 - μ10) )

μN0 is the mean interaction free energy per molecule in aggregates 
of size N.

Let C be the total concentration of molecules in all aggregates:

C = ∑ XN = X1 + X2 + …. 
All XN and C ≤ 1.
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Combining the reaction equations leads to the equilibrium conditions:

μ10 + kBT ln X1 = μN0 + (kBT/N) ln (XN/N) for all N

or, equivalently:
XN = N X1N ( exp( -β(μN0 - μ10) )N 

The inter-molecular forces are wrapped up in the Chemical Potential - μ - a 
measure of the free energy of a substance in a given phase.  In Lecture 11 we 
saw how opposing forces between lipids in a membrane gave rise to a quadratic 
minimum of μ(a) on area/molecule.

Whether aggregates form and what fraction of monomers form N-mers is 
determined by how the function μN0 varies with N:

μN = μN0 + ( kBT/N ) ln( XN/N )

We can imagine that μN0 :

1. increases with N
2. is constant
3. decreases with N or has a more complicated relation
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XN = N X1N (exp( -β(μN0 - μ10) )N                     C = ∑ XN

Case 1.  μN0  increases monotonically with N

XN = N X1N (exp( -β(μN0 - μ10) )N  → zero as N increases because X1 < 1 and exponent is < 0

  ⇒ No aggregates or very few

Case 2.  μN0  independent of N

XN = const. N X1N  → zero as N increases because X1 < 1

 ⇒ No aggregates or very few

Case 3.  μN0  decreases with or has complex dependence on N.

XN = N X1N ( exp( -β(μN0 - μ10) )N  → large as N increases because the exponent is > 0.

XN depends on how μN0 varies with N which depends on the geometry of the aggregates.
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Rods

Case 3A.  N μN0  = -(N - 1) α kBT where α kBT is the “bond energy” of a monomer in the 
infinite aggregate.

μN0  = -α kBT + α kBT/N → μ∞  for N → ∞

so it decreases towards an asymptotic value μ∞  = -α kBT when adding a single monomer to 
the aggregate has the same free energy change as adding it in the bulk.

Rod

Lipid rodlike micelles
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Disks

Case 3B.  N μN0  = -(N - √N) α kBT

μN0  = μ∞ + α kBT /√N 

and again decreases towards an asymptotic value.

Lipid disklike micelles 
(imagine this is circular!)

Cohesive energy ~ Area = πR2

Unbonded energy ~ circumference  = 2πR
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Spheres or micelles

Case 3C.  N μN0  = -(N - N2/3) α kBT

μN0  = μ∞ + α kBT / N1/3 

and again decreases towards an asymptotic value.

Lipid micelles (imagine this 
is spherical!)

Cohesive energy ~ Vol = 4/3πR3

Unbonded energy ~ Area  = πR2
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General case

All three cases can be collected together if we define a parameter p that depends on their 
geometry and dimension.  The free energy per molecule in an aggregate of size N varies as:

μN0  = μ∞ +  α kBT / Np

A necessary condition for aggregates to form is that μN must decrease with N (at least for 
some range of N > 1).

Now the questions are: 

1) At what concentration of monomers do aggregates start to form? 

2) What distribution of sizes will we get?

We have rearranged

μ10 + kBT ln X1 = μN0 + ( kBT/N ) ln ( XN/N ) = constant

to give the fraction of N-mers:

XN = N X1N ( exp( -β(μN0 - μ10) )N   
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Low monomer concentration

Given μN0  = μ∞ +  α kBT / Np

μ10 -  μN0 = α kBT(1 - 1 / Np )

and inserting this into XN = N X1N ( exp( -β(μN0 - μ10) )N   gives:

XN = N( X1 exp( α(1 - 1 / Np ) )N    ~ N( X1 exp(α) )N

as N-p ~ 0.

Now, if X1 is small so that X1 exp(α) << 1, we have

X1 > X2 > X3 …. > XN

and almost all the molecules occur as monomers, with a few dimers, trimers maybe, so that

X1 ~ C = total concentration
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High monomer concentration

But if X1 increases beyond X1 exp(α) ~ 1, then it has to stay constant because XN < 1.

Where do the extra molecules go?

Given X1 exp(α) ~ 1,

XN = N ( X1 exp(α (1 - 1 / Np ) )N

      ~ N ( X1 exp(α) exp(- α / Np ) )N

      ~ N ( X1 exp(α) )N exp( -α.N1-p )

       ~ N exp( -α N1/2 ) for disks   and N exp( -α N2/3 ) for spheres.

For any reasonable value of α, there are very few aggregates with N > 1, and all the molecules go 
into an infinite phase similar to oil separating from water.

The concentration X1 ~ exp(-α) is the Critical Micelle Concentration, it is the concentration at 
which monomers start forming aggregates (or the infinite phase) instead of staying isolated in 
solution.
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CMC calculation

Consider adding oil or alkane molecules to water. 

Treating each molecule as a small sphere with r ~ 0.2 nm, we have the interfacial energy from the 
hydrophobic effect:

 α = 4π r2 γ / kBT

where γ ~ 50 mJ/m2  is the surface tension for oil in water.  So the CMC is

exp( -α ) = exp( -4π r2 γ / kBT )

The free energy of transferring one molecule from bulk hydrocarbon to bulk water is then:

4.π.r2.γ = 2.5.10-20 J ~ 15 kJ/mol ~  6.1 kBT

so, α = 6.1 and the CMC ~ e-6.1 ~ 0.002  M or 2 mM.

cp. DOPC with two tails for which CMC ~ 10-10 M  (Q. Can one simulate the CMC with DPD?)

Phospholipids typically have 2 tails to ensure that membranes stay intact!
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Critical micelle concentration

What happens when p = 1, i.e., rods?  We have μN0  = μ∞ +  α kBT / N

XN = N ( X1 exp( α (1 - 1 / N ) )N

      ~ N ( X1 exp(α) )N exp( -α )

And now when X1 exp(α) ~ 1, this gives  XN ~ N exp(-α) and larger aggregates are possible.

Recall the total concentration: 

C = ∑ XN = exp( -α ) ∑ N( X1.exp(α) )N  

= exp(-α)( X1 exp(α) + 2 (X1 exp(α))2 + 3 (X1 exp(α))3 + … ) 

(Required derivation in the limits C << CMC and C > CMC 

  C  = X1 / (1 - X1 exp(α))2

Invert this equation to find how X1 varies with C, and plot it.
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Micelle size distribution

We can go further and find the mean aggregate size using

<N> =  ∑ N XN / ∑ XN =  ∑ N XN / C

and given that the total concentration C = ∑ XN , and XN = N ( X1 eα )N e-α

<N> = e-α / C ∑ N2 ( X1 eα )N

To solve this we need the following results (note that the sums start at N = 1 not 0):

 ∞
 ∑ xN  = x / (1 - x)
N=1

∞ 

∑ N xN  = x / (1 - x)2

N=1

∞
∑ N2 xN  = x (1 + x) / (1 - x)3

N=1

( Required derivation - find <N> in the two 
limits where C << CMC and C > CMC )
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Summary

Molecular shape propagates up to aggregate type/shape

Chemical potential of amphiphiles in aggregates determines 
aggregate size distribution

Cell membranes are stable against spontaneous pores unless 
embedded inclusions/peptides weaken their line tension

Derivation 3 due next week. 
Project presentations on 29th May.


