User Guide to Osprey Dissipative Particle Dynamics
Simulation Code

Author: Julian C Shillcock

Version History: 1.0 June 2019
Updated: 1.01 August 2020
Updated: 1.1 October 2020
Updated: 1.2 July 2021
Updated 1.3 December 2022

Contents

—

Introduction

N

Code and File conventions

W

Installing the code

N

Running the code at the command line

Input file
Initial state types

Output files
Issuing commands to a simulation

(<2}

o N

S— S N N N N N S~ ~—

©

Command Targets

0) Analysing the results of a simulation
1

— ok

) Overview of dissipative particle dynamics simulation technique

1) Introduction

This document describes the OSPREY-DPD Dissipative Particle Dynamics simulation code. It
should be read through in sequence to learn how to use the code. A short introduction to the
theory of DPD is given at the end, but a longer description, and detailed applications, can be found
in these references:

R.D. Groot and P. B.Warren, | Chem. Phys. 107:4423-4435 (1997)

P. Espagnol and P. B.Warren, J. Chem. Phys. 146:150901 (2017)

J. C. Shillcock and R. Lipowsky, J. Chem. Phys. 117:5048-5061 (2002)

J. C. Shillcock and R. Lipowsky, Nature Materials 4:225 - 228 (2005)

J. C. Shillcock, Langmuir 28:541-547 (2012)

J. C. Shillcock, M. Brochut, E. Chénais, . H. Ipsen, Soft Matter 16:6413 (2020)

2) Code and file conventions

The executable code will be referred to as dpd although you may rename it.

The single input file is called the Control Data File or just the input file. Its name must be of the
form:

dmpci.nnn

where nnn is referred to as the runID and should be replaced by a user-defined alphanumeric
string. Throughout this document, any field of the form “nnn” must be replaced by a user-specified
alphanumeric string that contains a combination of letters and numbers, the underscore _ and
hyphen - characters. No other characters are allowed - especially not spaces. Sometimes this
string must start with a letter and this will be made clear at that point.

All output files produced by the code will have the string nnn embedded in their names. Files that
are produced more than once during a simulation will also have the simulation time at which they

were produced in their names.

Commands that should be entered into a terminal window are shown as follows (text after the //
sequence is a comment in this document and should not be typed)

> s /I lists the contents of the current directory on linux
> cd myDir // change to the directory containing the dpd code
> /dpd 123 /] execute the dpd code using the input file “dmpci.|23”

Important points in this guide are printed in red.

3) Installing the code

Download the source code from github: https://github.com/Osprey-DPD/osprey-dpd
Compile and link it for your platform according to the instructions in the README file, and
place the executable in a directory that is in your path or in the directory where you will be
executing it.

See the README.md in the github repo for details.

4) Running the code at the command line

The dpd executable is executed at the command line. How to do this differs for each platform.

Linux

Open a Terminal Window, navigate to the directory containing the executable, and enter the run
command at the prompt as described below under 1) Single run”.

Mac OS X

Open a terminal window (double-click the Terminal application in “Macintosh HD/Applications/
Utilities), navigate to the directory containing the executable and enter commands described
below under 1) Single run”.

Windows

Open a Command Window, navigate to the directory containing the executable and enter
commands described below under) Single run”. See this web page for discussion of command

windows:

https://www.lifewire.com/how-to-open-command-prompt-26 1 8089

1) Single run

On all platforms, the input file must have a name of the form “dmpci.nnn” where “nnn” is a user-
defined alphanumeric string - called the runld - used to name the output files.

NB. Only letters, numerals (0-9) and “-“ and “_” characters are allowed in the
runid. Definitely no spaces.

The code is executed by entering its name and providing the runld of an input that is in the
current directory as an argument to the command.

Example

if the input file”dmpci.123” is in the current directory, the simulation is started by executing the
following command at the prompt (Note that the prompt is represented here by the > character).

> /dpd 123

NB ONLY the extension of the input file must be specified in the run
command, i.e., the user-defined string after the “.” character.

All output files are produced in the same directory as the input file and will have the user-specified
extension embedded in their names to identify them.

To place the simulation in the background on linux/Mac, so you can continue to use the terminal
window, place an ampersand character “&” after the command before pressing “Enter”:

> /dpd 123 &

If the code is executed without arguments it will prompt for an input file as follows; enter the
extension and hit return:

> ./dpd
DPD Experiment Code 1.5
Enter a runId (nnn):

> 123

A rough estimate of how long a simulation will take is to multiply the total number of beads by the
total simulation time (i.e., Density*Lx*Ly*Lz*Time) and divide by 5 10'0. The result is the number
of DAYS on a single core to run the simulation. This timing is based on an AMD Ryzen 3970X
processor.

Two other ways of executing the code follow.

2) Generating a default input file

If the runld "nnn" is passed to the code but NO corresponding input file is found in the current
directory, the code will create a default input file with the name dmpci."nnn".The user can then
edit this file as desired. This is useful in case you have no input file at hand. By default, this file has a
simulation that is only 20 time steps long so it should finish quickly.

3) Multiple runs in series

Multiple runs can be executed in series in one command by passing the list of runlds on the
command line separated by spaces:

> /dpd 100 101 102

This requires that input files dmpci.|00, dmpci.101, dmpci.l02 be present in the current directory.

5) Input file

The input file uses Keyword/Value pairs for the data items needed.

All keywords and values in the input file are case sensitive and must appear in the order
shown.

No comments or extra text can appear anywhere in this file except in the section for Commands,
where a special command is available to insert comments into the sequence of commands. See
Section 8 for more details.

When a string in the input file is enclosed in inverted commas, e.g., “ Water/surfactant bilayer “,
there MUST be a space before and after each inverted comma character. This includes the

polymer shape strings as well. The parser won’t recognise the start or end of a string without
these spaces.

Here is a complete input file for a lipid membrane self-assembly simulation followed by an
explanation of the various parameters needed. The contents of the input file are between the
starred lines. Note that the file MUST end in one or more newline characters.

Comments in red are NOT part of the file.

] FRRRRicieicliciiecleclicielleieeieiclicleiicieleeiclcieleieicieiclliieeieiclceiieleeieiclcleleieeeicleeeoeek

dpd // Selects the simulation type - don’t modify
Title " Water/surfactant bilayer "
Date 26/04/17 // Date format must be as shown

Comment " H3(T4)2 lipids.
Unstretched bond length of 0.5, k3 = 15
A/N = 1.255, 1631 1lipids
Box 32%*3 — Repeat of 1002 for consistency check "

State random // Name of the initial state type

// List of bead types, each line holds the following data:
// Name of bead must begin with a letter

// Radius of all beads is 0.5 - don’t modify

// Conservative force parameter

// Dissipative force parameter

Bead H
0.5
25
4.5

Bead T
0.5
50 25
4.5 4.5

Bead W
0.5
35 75 25
4.5 4.5 4.5

// List of bond types: Beads 1, 2 the Hookean spring constant
// and the unstretched length of the spring

Bond HH 128 0.5
Bond HT 128 0.5
Bond T T 128 0.5

// List of stiff bond types: Beads 1, 2, 3, the bending constant

// and preferred angle

BondPair HTT 20.0 0.0

BondPair T T T 20.0 0.0

// List of polymer types: Name, number fraction, and molecular
// shape of the polymer

Polymer Water 0.9801083 " (W) "

Polymer Lipid 0.0198917 " (HH (x (TTTT))HTTTT)"

Box 323232 1 1 1 // Box size and CNT cell size

Density 3 // Average bead density

Temp 1 // Temperature

RNGSeed -712094 // Seed for random number generator
Lambda 0.5 // Constant, see Groot/Warren paper
Step 0.005 // Integration step size

Time 1000 // Total simulation time

SamplePeriod 100 // No of steps between samples
AnalysisPeriod 500 // No of steps between averaging
DensityPeriod 1000 // No of steps between density fields
DisplayPeriod 100 // No of steps between snapshots
RestartPeriod 1000 // No of steps between restart states
Grid 10 10 256 // Size of analysis grid

Analysis // Turn analysis of bilayer on

Type bilayer
Times 0 1000
Polymer Lipid
Normal ©0 0 1
Slice 256
Grid 16 16
Solvent Water

// List of commands to execute during the run

Command ToggleBeadDisplay 1 W

Command SetCurrentStateCamera 1 0.5 -0.5 -0.5 0.5 0.5 0.5
Command SetCurrentStateDefaultFormat 1 Paraview

Command SetTimeStepSize 100 0.01

Simulation type and Header Information

The first string in the input file must be “dpd” in lower case (no blank lines before it).

The Title and Comment strings are for convenience, you can enter anything between the
inverted commas. The Date is useful for searching input files for runs executed at a certain time.

Initial State specification

See Section 6 for a description of allowed initial states.

Bead type specification

The set of bead types that are present in the simulation is specified next.

A bead type must specify its name, radius (fixed at 0.5), and the conservative and dissipative force
parameters for ALL previously-defined bead types and itself. Bead names must begin with a letter,

contain only letters or numbers, and must be unique.

NB While bead and polymer names are case sensitive, so that “W” and “w” represent different
bead types, it is NOT a good idea to name them like this.

Each new bead type added will have one more pair of interaction parameters than the previous
one. The last value on each line is the self-interaction. So the set of values looks like a lower-
diagonal matrix.

The conservative force parameter can have any non-negative value. But specifying very
large values (> 100) may lead to instabilities unless a very small integration step-size is used. Typical

values are between 5 and 100.

The dissipative force parameter can be left at 4.5 for all bead types. See Groot and Warren
(1997) if you want to know the consequences of changing this parameter.

NB Bead types specified do not have to be used in the simulation. You can create extra bead types
for later use. But if a bond or polymer specifies a particular bead type then it must be present.
Bond type specification

The set of bonds that tie beads together into polymers is specified next.

A bond type is defined by specifying the two bead types it connects. Bonds are symmetric, so it is
not necessary to specify two bonds to connect beads of different types.

All pairs of beads matching these types that occur in any polymer will be connected with a bond of
the given type.The name of a bond, which is needed if you want to change the bond parameters
with a command, is just the bead names concatenated, e.g., a bond connecting beads H to T will be
called HT.

Bonds are Hookean springs with the force law
F(x) = -ka(x - x0)

where kj is the spring constant (128 in the example above), and xo is the unstretched length of the
spring (0.5 in the example above above), and x is the separation of the bonded beads.

The spring constant can be any non-negative value, and is typically around 100 to ensure bonded
beads do not separate too far.The unstretched length can be left at 0.5 unless very soft springs are
desired in which case larger values can be used.

NB Bond types specified here do not have to be used in the simulation. But if a stiff bond specifies
a particular bond type then it must be present.

Stiff Bond type specification

Stiff bonds are defined as two adjacent bonds in a polymer that have an energy associated with
bending the bonds away from their preferred angle.A stiff bond is defined by specifying the names
of the three bead types that form it. The name of a stiff bond type is the names of these beads
concatenated, e.g., a chain of T beads that occurs in the lipid tails above would have a stiff bond
nameTTT.

The energy associated with a stiff bond is:
V(0) = ks (I - cos(O - Bo))

where k3 is the bending energy, 8o is the preferred angle (zero means the bonds are parallel in the
minimum energy state), and 0O is the angle between the two bonds.

NB Stiff bond types that are specified do not have to be used in the simulation but their
component bonds and beads must exist.

Polymer type specification
The polymer (or molecule) types that make up the system to be simulated are specified next.

Each polymer is defined on one line, and requires its name, its number fraction, and the shape or
architecture of the polymer. Polymer names must begin with a letter. The number fraction of a
polymer is the ratio of the number of polymers of that type to the total number of polymers of all
types. The number fractions of all polymer types must add up to I.

The shape string of a polymer is a linear representation of the connectivity of the beads in the
polymer. A polymer’s shape must begin and end with actual bead names, and these are taken as the
Head and Tail of the polymer and are used to define various properties such as the end-to-end
length. All bead names and multiplier/branching/looping characters must must be separated from
each other by spaces, and the whole shape string must be enclosed in inverted commas (with
adjacent spaces). Bead names may be adjacent to brackets but it is a good idea to use spaces to
make the string easily readable.

It is possible to redefine the Head and Tail beads for a polymer so that they are not the first and
last beads. In this case, the beads specified must be unique in the polymer’s shape string. Here is an
example:

Polymer Lipid 0.01 “(HHI (*(TTTT))H (*(TTTTI))H)* Head HI Tail T|

This represents a lipid molecule with 4 head beads and two tails.The H| bead is the Head of the
molecule and the T| bead is the Tail. The end-to-end length of the molecule will be defined by the
distance between the HI and T| beads at any given time.

As well as linear molecules, one can define side-chains and loops. These are specified using the
special characters “*” and “/* respectively as shown in the examples below. A branch defines a sub-
sequence of the polymer that branches off the previous bead in the shape string. Once the branch
has been created in the code, the succeeding sequence of beads will continue to grow from the
bead just prior to the branch. A loop allows a polymer to be connected to itself. The first bead
that occurs in with the “/* character is the anchor and the second bead associated with the *“/
character and the same number is connected to it.

Branches, loops and linear sequences of beads may be recursive, so a side-branch may contain a
loop that itself contains branches that contain further branches, etc.

Here are examples of polymer shapes. Note that a polymer’s shape string cannot start or end with

the numeric multiplier, branch (*), or loop (/) character so an extra bead is often used to define
the first and last beads in the polymer.

Shape String Structure Image Description

) Polymer containing a
“(W)* \A% single bead W that
A represents, for
example, water.

Linear molecule made

“(00000)*" 0-0-0-0-0 T up of 5 beads of type
(W k/ O.

Linear polymer made
up of 22 “H” beads,

H-H-H-H-H-H-H- with a numeric
multiplier to avoid
-H-H-H-H-H-H-H- Va0 O |\ ing to write out H
“(H(20H)H)" many times.

-H-H-H-H-H-H-H-H
Note that the first and
last beads must be
specified explicitly, i.e.,
((22H))is NOT
allowed.

“(HHH (*(SS
S)) (*(SSS)HH
H)«

“(H(8(BBB(*(S
(6S)S))BBB))T)

“(H(/1C)(20B)
(/1rc)T)”

Simulation box and time specification

Too hard to draw!

Cross-shaped
molecule with two
side-chains “SSS”
connected to the third
“H” bead. The ‘“*”
character tells the
parser that the next
bracket is a side-chain.

Comb polymer with a
backbone (48 B beads)
and eight side-chains
(8 S beads) regularly
spaced along it. Note
the H,T beads at the
ends .

Ring-shaped molecule
in which the two
beads called C are
connected to each
other. The first“/“
character defines an
anchor point and the
second one connects
to it. More rings can
be defined by using (/
2 D) pairs,where D is
a different bead type,
and so on. Note the H
and T beads that are
required at the start
and end of the shape
string.

The size of the simulation box in the X, Y, z dimensions is specified by the Box keyword. The first
three values are the number of CNT cells in each dimension and the second three values are the
widths of these cells in units of the bead diameter.You don’t need to be concerned with the

definition of the CNT cells, just leave the second three values at unity.

Typical box sizes are“10 10 10” for a small simulation or “32 32 32” for a medium sized one.
Boxes of “40 40 40” or larger will take a long time to simulate. Note that because it takes longer
for beads to diffuse across a larger box, if you increase the box size for a simulation it is necessary
to increase the simulation time too, otherwise the bigger system will most likely not be

equilibrated.

The bead Density keyword specifies the average bead density in the simulation box. The total
number of beads created in the simulation box is nearly equal to the density times the volume of
the box. It is approximate because if some of the polymers have many beads, the code may not be
able to create the exact number required by the number fractions, and it will round down the
number of polymers to ensure an integer number are made.This value should not normally be
changed.

The Temp keyword should be left at unity. The temperature may be changed, but this is advanced
functionality that requires careful analysis to use.

RNGSeed is the seed for the random number generator. It must a negative integer, and should be
different for each simulation. If this value is not changed, and the same input file is run several
times, exactly the same results will be obtained on the same platform. Hence, to collect
statistically significant results, this value must be changed between simulations.

Lambda is a parameter defined by Groot and Warren in their Velocity-Verlet integration scheme
and described in their paper of 1997. It should be left at 0.5.

Step is the integration step size for the simulation. Smaller values are more accurate, but take
more time. If too large a value is used, the simulation will be unstable. Typical values are in
the range 0.001 - 0.04.See Groot and Warren for a discussion of the effects of step size on a
simulation.

If the initial state contains bonds or stiff bonds with large force constants, it is a good idea to start
with a small value of Step, e.g.,0.001, and use a command to change it to a larger value, e.g., 0.02
after the system has evolved for a few thousand time steps. See the Commands section for details.

Time is the total number of time steps in the simulation. It should be a round number to make
the values of the sampling periods sensible. The actual simulation time used depends on the system
being simulated, in particular how fast it approaches equilibrium and what statistical accuracy is
desired.

There are constraints on the various sampling periods to ensure that the time-averaged analysis
takes place regularly at the same frequency, and that all files are written at integer time steps.

SamplePeriod specifies the number of time steps between taking samples of observables that are to be
time-averaged. It must be an integer divisor of the Time value and the AnalysisPeriod value.

AnalysisPeriod specifies the number of steps between writing out time-averaged observables. It must be
an integer divisor of the Time value. For good statistical accuracy there should be at least 100 samples per
analysis period.

DensityPeriod should be set equal to Time.This value can be ignored.

DisplayPeriod specifies the number of time steps between saving current state snapshots, and must be
an integer divisor of Time. f it is set too small, a large number of files may be produced (Time/
DisplayPeriod to be precise).

RestartPeriod specifies the number of time steps between saving restart states, and must be an integer
divisor of Time.As for DisplayPeriod, if it is set small, a large number (Time/RestartPeriod) of files
will be produced. Unless you need extra restart states (e.g., if you think the simulation might exceed its

allowed time before completing), you can safely set RestartPeriod equal to Time.This will produce a
single restart state at the end of the simulation.

Grid is a parameter that controls the size of a 3D rectangular grid that is used in some analysis options.
Unless needed as described in Section 10, it should be set to“l | 1.

Analysis

See Section 10 Analysing the results of a simulation.

Commands

See Section 8 Issuing commands to a simulation.

6) Initial State types

Random
State random

The most common initial state is a random distribution of all polymers throughout the simulation
box. The code ensures that beads that are bonded together in a polymer are positioned close to
their associated bonds’ unstretched length to prevent large forces occurring in the initial state.

Restart

State restart
RunId 100
StateIld 10000

A restart state is a special form of initial state that continues a simulation from a previously saved
state. It is the only initial state that requires more than one input file. In addition to the new input
file, which we call “dmpci.l101” here, the original input file (dmpci.l00) and the specified restart
state file (saved at time 10000) must be present in the current directory. The original runld is
specified as the value of the keyword “Runld” and the time at which the restart state was saved is
the value of the keyword “Stateld”. This time is embedded in the name of the restart files.

For this example, the following files must be present in the run directory:

New Input file: dmpci. |01
Old Input file: dmpci.|00
Old restart file: dmpcrs.100.con.10000.dat

Some of the parameters in the new input file (e.g., simulation time, sample periods, RNG seed,
analysis options, and commands) can be changed,. But many of them cannot: the box size, density,
number and types of beads, bonds, stiff bonds, and polymers cannot be changed. This is a

consequence of the simulation being carried out in the NVT ensemble: the numbers of particles,
volume and temperature are constant.

NB. If the conservative/dissipative interactions between beads, or bond or stiff bond parameters

are to be changed, this must be done by issuing commands in the restarted run to do so.The
values present in the new input file are ignored.

Multi-component micelle

o T

506 0.6 %0 ok

1 VAT g iy
State micelle "‘P~;:\'.,“-;»'.=‘;~f’1°
Polymers Surfactant Alcohol ‘F‘Yfil'zfvﬁ

Centre 0.5 0.5 0.5 2P 0. 4R Q>
Radius 5.0 S&

This places all the polymers specified by the Polymers parameter in a spherical region of the
simulation box with all the other polymers randomly distributed throughout the remainder of the
simulation box. The centre of the micelle is specified by Centre (as fractions of the simulation
box size in the three dimensions). The radius of the micelle is specified by Radius (in units of the
bead diameter). Note that the molecules are positioned on an hexagonal lattice created on the
surface of the sphere defined by the centre and radius. This may lead to large gaps, or an
incomplete micelle, if the number of molecules and the radius are not calculated appropriately.

Also, note that this and all subsequent pre-assembled initial states simple place the polymers in the
locations defined by the shape; they will only retain this morphology if their conservative
interactions are such as to make it the equilibrium state, e.g., a planar membrane is only stable if
the polymers are amphiphiles - that is, have a hydrophobic part and a hydrophilic part whose sizes
are compatible with a planar bilayer.

Single-component bilayer membrane

State lamella
Polymer L
Norma'l 0
Centre 0
Thickness 5.
Linearise 1
UpperFraction 0
Polymerise 0

This places all the polymers specified by the Polymer parameter in a planar bilayer arrangement
with all the other polymers randomly distributed throughout the remainder of the simulation box.
The bilayer contains two monolayers, has its normal in the direction specified by Normal (it can
only be in the x, y, or z directions), its centre at the point along the normal axis specified by
Centre (as a fraction of the simulation box size in that dimension). The initial thickness of the
membrane is specified by Thickness, (in units of the bead diameter) but as the simulation
evolves the actual thickness will relax to its equilibrium value that may be different. An estimate of
this value can be made by multiplying the number of beads along the polymer by the unstretched
bond length used and doubling this.

The Linearise parameter is a boolean flag (0/1) showing if the beads in the polymers should be
initially placed in a linear sequence or slightly randomly. As seen in the above snapshot, the initial
placement of the polymers is very regular as each molecule is placed at the vertices of a triangular
lattice in the plane of the bilayer. The polymers will fluctuate at the start of the simulation as the
system evolves towards its equilibrium state.

UpperFraction specifies what fraction of the polymers used in the membrane should be placed

in the upper monolayer. If this is not 0.5 the bilayer will be asymmetric, with more polymers in one
monolayer than the other.The Polymerise keyword should be ignored and left at 0.

Multi-component bilayer membrane

State compositelamella
Polymers Lipid ColLipid

Norma'l 001
Centre 0.5
Thickness 5.0
Linearise 1
UpperFraction 0.5 0.5
Patches 1 1
Polymerise 0

This is similar to the “lamella” initial state but any number of polymer species can be placed in the
membrane. The geometric parameters are the same as above, but there are two differences:

UpperFraction - this parameter must be specified for each polymer type in the membrane.
It allows different polymers to be distributed between the two monolayers independently of each
other.

Patches - this new keyword is a boolean flag (0/1) with a value for each monolayer. If set to
0, all polymers in that monolayer will be randomly arranged throughout the monolayer, while if set
to |, all polymers of a given type will be positioned in the monolayers according to their order in
the Polymers keyword.

Multi-component free bilayer membrane

State freelamella
Polymers Lipid ColLipid

Norma'l 001

Centre 0.5 0.5 0.5
Thickness 5.0

Length 20

Width 20

Linearise 1
UpperFraction 0.5 0.5
Patches 0 0
Polymerise 0

This is similar to the “lamella” initial state, multiple polymer types are allowed and each must have
a value specified for the UpperFraction parameter. But the molecules are not arranged to span the
periodic boundaries of the simulation box.The Length and Width parameters should be chosen to
be smaller than the box size in the plane define by the Normal vector. So, if the normal is 0 0 |,
Length and Width should be smaller than the box side lengths in the X andY directions. If they are
not, the lamella will likely connect across the box boundaries and form a typical membrane. Note
that the molecules will most likely swell as the initial state evolves (depending on the number

fraction of the molecules composing the lamella), so Length and Width must be sufficiently smaller
than the box side lengths to allow for this.

Note also that the Centre must be specified by three values as the lamella is not centred within
the simulation box.

Multi-component vesicle

State vesicle

i
Polymers Lipid X777
Interior Waterl “
Centre 0.5 0.5 0.5 i
OuterRadius 10
Thickness 4.0
QuterFraction 0.7353
Patches 0 0
Polymerise 0

Here, the polymers specified by the Polymer parameter are arranged as a spherical vesicle. In
the image above, only half of the vesicle is shown.There may be more than one polymer type
specified for the vesicle. Because the interior of a vesicle is topologically distinct from the exterior,
the polymer types that are to be placed inside the vesicle must be specified separately as the
values of the Interior keyword. Again, there may be several polymer types specified here. All
other polymer types defined in the input file will be randomly distributed in the surrounding space.
NB The same polymer type must NOT be specified in more than one region.

The vesicle contains two monolayers, and its centre is at the point specified by Centre (as a
fraction of the simulation box size). The outer radius of the vesicle is specified by OuterRadius,
and the membrane thickness in Thickness (both in units of the bead diameter). As the
simulation evolves the thickness will relax to its equilibrium value. The OuterFraction
parameter specified what fraction of each polymer type in the vesicle will be placed in the outer
monolayer. Because of the finite thickness of the bilayer, the number of molecules in the outer
monolayer is larger than that in the inner monolayer, so this parameter is generally specified
greater than 0.5. One can create an asymmetric vesicle by changing this parameter. For example, if
a minor component is to be all placed in the outer monolayer, one would set the corresponding
value to |.There must be as many values assigned to this parameter as there are polymer types in
the vesicle.The Patches keyword specifies if the polymers should be randomly distributed in the
inner and outer monolayers of the vesicle (Patches 0 0), or occur in discrete patches in the order
they polymers are specified (Patches | |). Note that the two values refer to the inner and outer
monolayers respectively. The Polymerise keyword should be ignored and left at 0.

There are many other initial state types. Consult the code or ontact the author for more details.

7) Output files

A typical simulation produces a number of different types of output file. Depending on how often
the data are analysed, or snapshots of the simulation state or restart states are saved, there can be
a large number of files produced.The file names all start with “dmpc” and have 2 or more
characters appended to this to indicate the type of data they contain.

The following types of output file are always produced (assuming the input file was dmpci.nnn, and
ttt is the integer simulation time at which the corresponding file was saved):

dmpcas.nnn - Analysis State contains a set of time-averaged observables
dmpccs.nnn.con.ttt,vtk - Current State snapshots of the simulation (only bead x,y, z and
type)

dmpchs.nnn - History State contains time series of various observables
dmpcis.nnn - Initial State contains a copy of all the input parameters
dmpcls.nnn - Log State contains information, warnings and error messages
dmpcrs.nnn.con.ttt.dat - Restart State contains all the data needed to restart a run

There are several types of Current State format, but the one used in the course is suitable for
visualising using the free Paraview software. Go here to download it - https://www.paraview.org.

Other recognised formats are Povray (www.povray.org), and a special format called
SolventFree that includes connectivity information of all polymers so that offline analysis can be
performed (use the command SetCurrentStateDefaultFormat to select the format.)

Analysis State File

https://www.paraview.org
http://www.povray.org

The analysis state file (dmpcas.nnn) contains time-averaged data of predefined observables, e.g.,
temperature, pressure, bond lengths for all defined bond types, and the end-to-end lengths of all
defined polymers. Turning on specialised analysis can also add more observables to this file. Data
that appear as two columns are mean/standard deviation pairs. The averages are taken over
periods equal to AnalysisPeriod, and the number of data points will be AnalysisPeriod/
SamplePeriod. This is why SamplePeriod must be a divisor of AnalysisPeriod,and AnalysisPeriod
must be a divisor of the total simulation time.

History State File

This file contains time series for predefined observables, written out every SamplePeriod time
steps. The columns contain the following data:

(7 + # bead types) to

COl;'Imn 2 3 4-6 7 to 6 + # bead types (6 + # bead types) +
polymer types
. Ignore these Diffusion Constants for Ene R (B
Time Temperature Pressure for each polymer
zeroes each bead type

type

Note that the number of columns depends on how many bead types and polymer types have
been defined in the simulation. Also note that if Water (or any other polymer) is defined as a single
bead in the simulation, then it’s end-to-end length is automatically zero.

Finally, if new bead types are created as the result of commands like ChangeNamedBeadType,
then new columnes will appear in the History state file containing their diffusion constant. This
means that the number of columns before the execution time of the command will be smaller than
the number afterwards, and all the values will be shifted across to the right.

8) Issuing commands to a simulation

Commands are used to modify the execution of a simulation and turn on and off various analysis
and output options.

Commands must be placed at the end of the input file (after any analysis options) and they all have
the common specification:

Command <commandName> <executionTime> argl arg2 ...

where <commandName> is the (case sensitive!) name of the command; <executionTime> is the
time-step at which the command is to be executed; and any remaining fields are arguments
required by the command.

Not all commands have arguments, while some commands will require more than one line to
specify all their arguments. But every command must start on a new line.

NB Any number of commands may share the same execution time, but commands must be
ordered as a series of non-decreasing execution times.

NBB Commands are executed at the start of the time-step specified as their execution time.
Analysis options and saving snapshots, etc are performed at the end of their respective time-steps.
So if a command is executed in the same time step as writing a snapshot it will take effect before
the data is written.

Example: the following command toggles on/off the appearance of the “W” bead type in the
current state snapshots at simulation time |. It is useful when a simulation is mainly water so that
the other polymers can be seen in the snapshots. This command may be issued any number of
times: each appearance toggles the state from its previous value.

Command ToggleBeadDisplay | W

If appropriate arguments are not supplied, or are misspelled, or have illegal values, an error
message is printed to the screen or log state file (depending on when the command executes).

List of Commands

There are three categories of command that can be issued during a simulation.They are described
in the tables below in alphabetical order:

« Monitor commands - these control the output from the simulation but don’t change its
evolution

« Constraint commands - these may change the evolution of the simulation

« Target commands - these modify the properties of beads, bonds or polymers that have been
grouped into targets (see Section 9 Command Targets).

The following conventions apply to all commands and their arguments:

[) All commands must specify their time of execution as the first argument. The tables below
do not include the execution time for clarity.

2) If a command takes no arguments apart from the execution time, the second column is empty.
3) The | character separates alternative choices for an argument.

4) When an alphanumeric string is required as an argument, it must start with a letter and it must
be unique during the simulation.

5) All string arguments are case sensitive as are command names.

6) When specifying a bead, bond or polymer type in a command, it is possible to use its name (e.g.,
H, T, etc, referred to as its string identifier) or its numeric type (0, |, etc, referred to as its numeric
identifier). Commands that expect a numeric type usually have “ByType” in their name.

7) The numeric type of beads, bonds and polymers are zero-indexed and assigned in the order that
the entities appear in the input file. So the first bead type is 0, the second is |, etc., and similarly
for bonds, stiff bonds, and polymers Entities created during a simulation are given the next
available numeric type at the time the command is executed.

8) If an alphanumeric string is used to name a new bead type, command target or target decorator
it must be unique for the simulation. Even if the associated entity is subsequently destroyed (e.g.,a
RemoveCommandTargetActivity command is used to turn off a force on a target), the name
cannot be reused. Although the names strictly only have to be unique within their class (i.e.,a bead
name can also be used for a target, or a target name can also be used for a target decorator) this is
not encouraged because of the confusion that could arise.

Monitor Commands

These commands modify the output produced by a simulation but do NOT change its execution.

Command Name arguments Purpose
Comment /I write some text here // Allows comments
between commands
and, if the //

characters are
placed around other
commands, it
removes them from
execution. Spaces
must be present
between text and the
slash characters

SaveAmiraCurrentState Save a snapshot in
Amira format

SaveBeadDensityFluctuations beadName - bead’s string identifier ~ Write to file an array
dataPoints - number of values containing the
densityPeriods - number of periods number of beads of
to calculate over specified type in a
X, Y, Z - integer coordinates of density rectangular volume
grid cell to analyse over time. The x,y,z
bConjugate - 0 | 1, flag showing values multiply the

whether to write out the fluctuations respective Grid

in the remainder of the simulation box keyword values in

as well the input file to
define the
rectangular space
within which the
fluctuations are
calculated

The densityPeriods
parameter specifies
the number of
DensityPeriod ranges
over which to
average each
measurement, and
the dataPoints value
specifies the number
of values to write file.

Command Name

arguments

Purpose

SaveBeadDensityFluctuationsBy Type

SaveBead | dDensityProfile

SaveCurrentState

SaveParaviewCurrentState

SavePolymerBeadRDF

SavePovrayCurrentState

SaveRestartState

SetAllBeadslnvisible
SetAllBeadsVisible

SetBeadDisplayld

beadType - bead’s numeric type (0-
indexed)

dataPoints - number of values
densityPeriods - number of periods
to calculate over

X, Y, Z - integer coordinates of density
grid cell to analyse

bConjugate - 0 | 1, flag showing
whether to write out the fluctuations
in the remainder of the simulation box
as well

beadType - bead’s numeric type (0-
indexed)

start - >=1

end - <= TotalTime

samplePeriod - must divide (end+1-
start)

normalVector - (1,0,0) | (0,1,0) |
(0,0,1)

sliceTotal - integer

analysisPeriods - number of periods
to sample over

totalDataPoints - number of bins
Rmax - maximum distance to bin
polymerName - polymer to use
beadName - bead in polymer to use

beadName - bead string identifier
displayld - integer >= -1

As previous
command but uses
bead’s numeric type
instead of its name.

Calculate a 1d
density function (with
sliceTotal values) of a
bead type along the
normal direction
between two times

Save a snapshot in
the current default
format

Save a shapshot in
Paraview format

The analyis should
start on a multiple of
AnalysisPeriod; the
number of data
points to be written
is required and the
max distance to
search; both
polymer and bead
names are required
in case the bead
occurs in other
polymers

Save a snapshot in
Povray format

Save a restart state

Make all beads
invisible

Make all beads
visible

Change the seleted
bead type’s colour in
shapshots; a value of
-1 restores the colour
to that set by the
bead’s numeric id

Command Name

arguments

Purpose

SetBeadTypeDisplayld

SetCurrentStateCamera

SetCurrentStateDefaultFormat

SetDensityPeriod

SetDisplayBeadRange

SetDisplayPeriod

SetPolymerDisplayld

SetPolymerTypeDisplayld

SetRestartPeriod

ToggleBeadDisplay

ToggleDensityFieldOutput

TogglePolymerDisplay

beadType - bead’s numeric type (0-
indexed)
displayld - integer >= -1

XC, Y€, zc - [-inf, +inf] camera
coordinates

x0, y0, z0 -[-inf, +inf] look-at point
coordinates

Povray | Paraview | Amira |
SolventFree |
SolventFreeAndPovray

newPeriod

axis-x|y|z
minFraction - [0, 1]
maxFraction - [0, 1]

newPeriod

polymerName - polymer’s string
identifer
displayld - integer >= -1

polymerType - polymer’s numeric
type (0-indexed)
displayld - integer >= -1

newPeriod

beadName

polymerName

As previous
command but uses
bead’s numeric type
instead of its name.

Set the camera (xc,
yc, zc) and look at
points (x0, y0, z0) for
Povray snapshots as
multipliers of the box
size. They must not
be the same point.

Set the default
format for snapshots

Change the
frequency of writing
density fields

Restrict the beads in
a snapshot to those
in a rectangular slice
of the box defined by
two fractions along a
major axis

Change the
frequency of writing
snapshots

Set the same colour
for all beads in the
selected polymer
type in snapshots; a
value of -1 restores
all bead types to
their original colours

As previous
command but uses
numeric type of the
polymer not its name

Change the
frequency of writing
restart states

Turn on/off display of
a bead type in
shapshots

Toggle on/off the
density field output

Turn on/off the
display of a polymer
type in snapshots

Constraint Commmands

These commands change conditions in the simulation and usually modify its subsequent evolution.
They are also used to create Command Targets that are collections of beads or polymers to which

subsequent commands can be sent to carry out actions or modify them.

Command Name

arguments

Purpose

ChargeBeadType

ChargeBeadByType

GravityOff

GravityOn

SelectBeadTypelnCylinder

SelectBeadTypelnEllipsoid

beadName - bead’s string identifier

strength (Fo) - (>= 0)
range (1/k) - (>10-5)

beadType - bead’s numeric identifier

strength - (>= 0)
range - (>106)

targetLabel - unique alphanumeric
string starting with a letter
beadName - bead’s string identifier
normalVector - (1,0,0) | (0,1,0) |

(0,0,1)

cXx, cy, cz - [0, 1], centre point as

fraction of box size
halfLength - [0, 0.5]

innerRadius - units of bead diameter
outerRadius - units of bead diameter

targetLabel
beadName

cXx, cy, cz - [0, 1], centre point as

fraction of box size

boundingRadius - radius of a sphere
that bounds the ellipsoid
sma - [0, 1] semi-major axis of

ellipsoid

smb - [0, 1] first semi-minor axis
smc - [0, 1] second semi-minor axis
theta - [0, 180] polar angle of

ellipsoid’s axis (deg)

phi - [0, 360] azimuthal angle of

ellipsoid’s axis (deg)

Adds a repulsive
screened Coulomb
force to the bead
type (F =FoekR/R),
where Fo and k are
summed for the two
interacting beads

As above but uses

the numeric type of
the bead instead of
its name

Turn preset gravity
force off (Gravity
keyword must be
present in input file)

Turn preset gravity
force on (Gravity
keyword must be
present in input file)

Create a cylindrical
command target
from the specified
bead type. The
centre point, normal
vector, half length
and inner and outer
radius are required.

Create an ellipsoidal
command target
from the specified
bead type. The axis
lengths must be in
the order:

sma > smb > smc

Command Name

arguments

Purpose

SelectBeadTypelnPentagon

SelectBeadTypelnSimBox

SelectBeadTypelnSlice

SelectBeadTypelnSphere

SelectBeadTypelnSphericalCap

targetLabel
beadName

cx, ¢y, cz - [0, 1], centre point as

fraction of box size

boundingRadius - radius of a sphere
that bounds the pentagon (units of

bead diameter)

side - length of pentagon’s side
(units of bead diameter)
thickness - depth of the pentagon
(units of bead diameter)

theta - [0, 180] polar angle of

pentagon normal (deg)

phi - [0, 360] azimuthal angle of

pentagon normal (deg)

targetLabel
beadName

targetLabel
beadName

normalVector - (1,0,0) | (0,1,0) |

(0,0,1)

cXx, cy, cz - [0, 1], centre point as

fraction of box size
halfX

halfY - [0, 0.5] half widths of slice

halfZ

targetLabel
beadName

cXx, ¢y, cz - [0, 1], centre point as

fraction of box size

innerRadius - units of bead diameter
outerRadius - units of bead diameter

targetLabel
beadName

cXx, ¢y, cz - [0, 1], centre point as

fraction of box size

innerRadius - units of bead diameter
outerRadius - units of bead diameter
theta - [0, 180] polar angle of

ellipsoid’s axis (deg)

phi - [0, 360] azimuthal angle of

ellipsoid’s axis (deg)

gamma - [0, 90] half-angle of cap

(deg)

Create a pentagonal
command target
from the specified
bead type. The
pentagon’s side
length and thickness
must be less than the
bounding radius

Put all beads of the
given type into a
command target

Create a rectangular
slice command
target from the
specified bead type

Create a spherical
command target
from the specified
bead type. If
innerRadius is 0, it
creates a solid
sphere, if not it
creates a spherical
shell

Create a spherical
cap command target
from the specified
bead type

Command Name

arguments

Purpose

SelectPolymerTypeHeadInCylinder

SelectPolymerTypeHeadInEllipsoid
SelectPolymerTypeHeadInPentagon
SelectPolymerTypeHeadInSlice
SelectPolymerTypeHeadInSphere
SelectPolymerTypeHeadInSphericalCap
SelectPolymerTypelnSimBox

SetBondStiffness

SetBondStrength

SetBondStrengthbyType

SetDPDBeadConsint

SetDPDBeadConsIntByType

See corresponding bead command

See corresponding bead command

See corresponding bead command

See corresponding bead command

See corresponding bead command

See corresponding bead command

See corresponding bead command

stiffBondName (e.g., HHH)
bendingConstant (>= 0)
preferredAngle (in degrees, 0 =
straight)

bondName (e.g., HH)
springConstant (>= 0)
unStretchedLength (units of bead
diameter)

bondType - bond’s numeric type (0-
indexed)

springConstant (>= 0)
unstretchedLength (units of bead
diameter)

firstBeadName - string identifier
secondBeadName - string identifier
consForceParam (negative for an
attractive force)

firstBeadType (0-indexed)
secondBeadType (0-indexed)
consForceParam (negative for an
attractive force)

As for the
corresponding bead
command, except
that it selects
polymers whose
head beads lie within
the specified
geometric region

Modify the bending
potential spring
constant and
preferred angle for
the specified bond
type by name

Modify the Hookean
spring constant and
the unstretched
length for the
specified bond type
by name

As previous
command but uses
bond’s numeric type

Modify the non-
bonded conservative
force parameter for
the given bead types
using their names

As previous
command but uses
the beads’ numeric

types

Command Name

arguments

Purpose

SetDPDBeadDissInt

SetDPDBeadDissIntBy Type

SetTimeStepSize

WallOff

WallOn

Target Commands

firstBeadName - string identifier
secondBeadName - string identifier
dissForceParam (>= 0)

firstBeadType - bead’s numeric type
(0-indexed)

secondBeadType - bead’s numeric
type (0-indexed)

dissForceParam (>= 0)

stepSize (keep in range [0.001 -0.04]

Modify the non-
bonded dissipative
force parameter for
the given bead types
using their names

As previous
command but uses
the beads’ numeric

types

Change the
integration step size

Toggle preset wall off
(Wall keyword must
be present in input
file)

Toggle preset wall on
(Wall keyword must
be present in input
file)

See the next section - Section 9 Command Targets - that describes how to create command

targets to which these commands can be sent.

Target commands are directed at user-created targets, and can modify their properties or
behaviour, e.g., apply an external force to a target or change the colour of the target’s beads/
polymers, or measure properties of the target and write the results to the log file, e.g., calculating
the radius of gyration of all the beads in a target. See the description in the next section.

Note the definitions: a command target decorator wraps a command target for the purpose of
carrying out an action (e.g., applying a force, counting beads, etc). An active command target is one
that has at least one decorator currently defined. The effects of a decorator are stopped by issuing
the command RemoveCommandTargetActivity to destroy the decorator instance.

Command Name

arguments

Purpose

AssignExistingBeadType

AxialForceOnTarget

ChangeBeadType

ChangeBondPairType
ChangeBondType
ChangeNamedBeadType

ConstantForceOnTarget

CountBeadTypelnTarget.

CountBeadsInTarget

targetName - string identifier for a
target

beadName - string identifier for an
existing bead type

targetName - string identifier for a
target

targetName - string identifier for a
target

newBeadName - new string
identifier

targetName - string identifier for a
target

decName - string identifier for this
force decorator

Xn, yn zn - [-inf, +inf] direction of
force, all components must not be 0

magnitude - [-inf, +inf] magnitude of

force - may be zero

targetName - string identifier for a
target

beadType - bead’s numeric type
identifier

targetName - string identifier for a
target

Changes the type of
all beads in the target
to the existing bead
type. The beads will
subsequently interact
with forces for the
assigned type

Not implemented yet

Changes the numeric
type of all beads in
the target to the next
available value, and
assigns a random
string as the beads’
string identifier

Not implemented yet
Not implemented yet

Changes the numeric
type of beads in the
target to the next
available value, and
assigns them the
user-defined name

Apply a constant
force to a target. The
force is turned off by
issuing a subsequent
“RemoveCommandT
argetActivity”
command with the
decName as the
argument

Counts the number
of beads of the
specified type in the
target

Counts the
accumulated
number of beads of
all types in the target

Command Name

arguments

Purpose

CylinderLinearForceOnTarget

DistanceMovedByTarget

ExternalWorkOnTarget

FreezeBeadsInTarget

ListActiveCommandTargets

ListAllCommandTargetActivities

ListCommandTargetActivities

ListCommandTargets

targetName - string identifier for a
target

Xn, yn zn - [-inf, +inf] arbitrary normal
vector, all components must not be 0
Xc, yc zc - [0, 1] origin of cylinder
from which bead distance is
measured (units of box size)
magnitude - (>= 0) magnitude of
force - may be zero

targetName - string identifier for a
target

forcelLabel - string identifier for a
force decorator

decLabel - string identifier for this
decorator

start - start time of measurement
end - end time of measurement

targetName - string identifier for a
target

forcelLabel - string identifier for a
force decorator

declLabel - string identifier for this
decorator

start - start time of measurement
end - end time of measurement

targetName - string identifier for a
target

targetName - string identifier for a
target

Applies a force to all
beads in the target
that is directed
inwardly in the plane
defined by the
normal vector and
whose magnitude is
proportional to the
distance of each
bead from the
cylinder’s axis in the
plane.lt attempts to
keep all beads on the
cylinder’s axis.

Writes out the
distance moved by
the target as a
function of time in
the specified interval.
Both the total
distance of all beads
and the distance per
bead are written.

Writes out the work
done on all beads in
the target by the
external force
defined by
forceLabel during the
specified interval. It
sums up all the F.dx
elements for each
bead in the target.

Prevent all beads in
the target from
moving: they still
interact with other
beads

Writes a list of all
targets currently
active, i.e., that have
at least 1 decorator

Writes a list of all
decorators for all
targets with the
target name last on
each line

Writes a list of all
decorators wrapping
the specified target

Writes a list of all
command targets
whether active or not

Command Name

arguments

Purpose

MSDOfPolymerTarget

PlanarAnchorForceOnTarget

PolymerisePolymersinTarget

RadialForceOnTarget

RemoveActiveCommandTarget

RemoveCommandTargetActivity

targetName - string identifier for a
target

decName - string identifier for this
decorator

startTime - start time for output (>=
execution time of command)
endTime - end time for output

targetName - string identifier for a
target

decName - string identifier for this
decorator

xn,yn,zn - normal vector to plane
XC,yc,zc - arbitrary point in plane
keff - spring constant

targetName - string identifier for a
target

maxBonds - max bonds per pair
range - max separation of polymers
fraction - (0,1)

springConstant - Hookean spring
constant

unstretchedLength - Hookean
spring length

targetName - string identifier for a
target

XN, yn zn - [-inf, +inf] arbitrary normal
vector, all components must not be 0
Xc, yc zc - [0, 1] origin of cylinder
from which bead distance is
measured (units of box size)
magnitude - (>= 0) magnitude of
force - may be zero

targetName - string identifier for a
target

decName -string identifier for a
target decorator

Writes out the mean-
square displacement
of the polymers in
the target during the
given time interval

Applies a Hookean
spring force to each
bead in the target
from the plane
defined by the
normal vector/point
with a magnitude
proportional to the
bead’s distance from
the axis

Binds together a
given fraction of
polymers in a target
with multiple
Hookean springs;
only polymers within
speceified range are
connected

Applies a force to all
beads in the target
that is directed in the
plane defined by the
normal vector whose
magnitude is
proportional to the
distance of each
bead from the
cylinder’s axis in the
plane.

Removes all
decorators for the
named target but
does not destroy the
target. Further
commands can be
sent to it.

Removes the named
decorator from a
target. Typically used
to turn off a force
being applied to the
target.

Command Name

arguments

Purpose

RgOfBeadTarget

RgOfPolymerTarget

RotationalMSDOfPolymerTarget

SelectBeadsInSphericalTargetRegion
SetBondStiffnessByPositionInTarget
SetBondStiffnessinTarget
SetBondStrengthByPositionInTarget
SetBondStrengthinTarget
SetTargetBeadTypeDisplayld

SetTargetDisplayld

SetTargetlnvisible

SetTargetPolymerTypeDisplayld

SetTargetVisible

targetName - string identifier for a
target

decName - string identifier for this
decorator

startTime - start time for output (>=
execution time of command)
endTime - end time for output

targetName - string identifier for a
target

decName - string identifier for this
decorator

startTime - start time for output (>=
execution time of command)
endTime - end time for output

targetName - string identifier for a
target

decName - string identifier for this
decorator

startTime - start time for output (>=
execution time of command)
endTime - end time for output

targetName - string identifier for a
target

beadType - bead type

displayld - new display id

targetName - string identifier for a
target
displayld - new display id

targetName - string identifier for a
target

targetName - string identifier for a
target

polymerType - polymer type
displayld - new display id

targetName - string identifier for a
target

Writes out the radius
of gyration of all
beads in the target

Writes out the radius
of gyration of all
polymers in the
target

Writes out the
rotational mean-
square displacement
of all polymers in the
target

Changes the display
id (and colour) of all
beads of the
specified type in the
target

Changes the display
id (and colour) of all
beads in the target

Set all beads in the
target invisible in
current state
shapshots

Changes the display
id (and colour) of all
beads in the
specified polymer
type in the target

Display all beads in
the target in current
state snapshots

Command Name

arguments

Purpose

SineForceOnTarget

SpringForceBetweenTargets
SpringForceOnTarget
ToggleAntiTargetDisplay
ToggleTargetDisplay

UnFreezeBeadsInTarget

targetName - string identifier for a
target

decName - string identifier for this
force decorator

Xn, yn zn - [-inf, +inf] direction of
force, all components must not be 0
amplitude - [-inf, +inf] magnitude of
force - may be zero

period - [1, +inf] period of the force

targetName - string identifier for a
target

Apply a sinusoidal
force to the target
from the time of
execution. The
normal vector is
normalised before
applying the force.
The amplitude must
be positive or zero,
and the period must
be at least 1. The
frequency is defined
as 2m/period and
multiplies the
simulation time
minus the start time.

Unfreeze the beads
in the target so they
can move again

9) Command Targets

It is often useful to be able to manipulate the properties of sets of beads or polymers during a
simulation.This can be used to modify their appearance in snapshots to distinguish them from the
environment. But a more powerful use is to change their mutual interactions or apply external
forces to them, and so modify their dynamics in the simulation. Once a target has been created, its
name can be used in other commands to execute actions on it. The set of commands that can be
sent to a target depends on whether it is a bead or polymer target, and are given in the Target

Command list above.

A Command Target is a set of beads or polymers that have been grouped together according to a

certain criterion and given a unique label by which their properties can be modified by subsequent
commands. The most common way of defining a target is to select all beads whose centres of mass
lie within a specified geometric region, e.g., sphere, cylinder, planar slice, etc. This creates a Bead
Target. Alternatively, a set of polymers whose head beads (i.e., the first bead specified in their shape
string unless redefined with the Head/Tail parameters) lie within a geometric region can be
selected to create a Polymer Target. Different commands can be sent to bead and polymer targets.

The format of all commands that create targets is similar, but the arguments differ depending on
the geometric shape. Here is the command to create a spherical bead target:

Command SelectBeadTypeInSphere 1 targetName beadName XxcC ycC zc
rin rout

and here is the corresponding command for a cylindrical bead target:

Command SelectBeadTypeInCylinder 1 targetName beadName xn yn
zn xc yc zc half rin rout

Both commands provide a unique name targetName for the newly-created target and the string
name of the bead type to be selected - beadName.

The spherical target command then requires the centre of the sphere - xc, yc, zc - to be specified
as a fraction of the box size, and the inner and outer radii - rin, rout - in units of the bead
diameter. If rin is non-zero, a spherical shell is created.

The cylinder target command requires the normal vector along the long axis of the cylinder, which
must be one of 1,0,0 or 0,1,0 or 0,0,1, the centre of the cylinder, again as a fraction of the
simulation box size, and the half length of the cylinder, its inner radius, and its outer radius all in
units of the bead diameter.

Further examples of geometric targets that can be created are given in the Constraint Command
list above. In particular, all the beads or polymers of a single type in the simulation can be selected
with the commands SelectBeadTypelnSimBox or SelectPolymerTypelnSimBox.

The following four commands illustrate a typical use of a bead target. They all execute at time
25000 and create a bead target and then change its colour in snapshots and modify its non-bonded
interaction with another bead type.

The first command creates a bead target called bolus that contains all beads of type W that lie in
a sphere with its centre in the middle of the simulation box (at 0.5, 0.5, 0.5), and an inner and outer
radius of 0 and 4.0.

The second command changes the display type of these beads so that they appear as a different
colour in snapshots. Note that this does not change their interactions: the display id is just a
paramete

The third command changes the type of the beads to a new value with the new name fluors.This
allows them to be the target of subsequent commands by using their new name or numeric type.

The fourth command change the conservative force parameter for interactions of these beads
with W beads to 35.

Command SelectBeadTypeInSphere 25000 bolus W 0.5 0.5 0.5 0.0 4.0
Command SetTargetDisplayld 25000 bolus 4
Command ChangeNamedBeadType 25000 bolus fluors

Command SetDPDBeadConsInt 25000 fluors W 35

However, even though the beads have had their properties changed, they are still moving
independently and will diffuse away from each other over time.To make the target rigid so that it
moves as a single object, we have to create a second target that contains the polymers
corresponding to these beads, and then tie them together using newly-created bonds. For this, we
create a polymer target that exactly overlaps the same volume.

For this example, we assume that polymers of type Water contain the single bead W.

SelectPolymerTypeHeadInSphere 25000 bolusPoly Water 0.5 0.5 0.5
0.0 4.0

PolymerisePolymersInTarget 25000 bolusPoly 12 1.5 1.0 128.0
0.5

Whereas the bead target required a bead name, the polymer target requires the corresponding
polymer name.The geometric parameters are the same as before.The second command then
creates Hookean spring bonds between the head beads in the polymers in the bolusPoly target.
The arguments are, in order:

2 = the maximum number of bonds created per pair of polymers

[.5 = maximum range out to which two beads will have a bond created between them

.0 = the fraction of polymers that will be bonded; fractions less than | create floppy target
128.0 = the Hookean spring constant

0.5 = the Hookean spring unstretched length

10) Analysing the results of a simulation

Two types of analysis are performed automatically in all simulations: time-averaged data, which are
written to the Analysis State file, and time-series data, which are written to the History
State file.

All commands that are specified in the input file and that execute correctly write a message to the
Log State file - dmpcls.nnn. This file also contains the results of some user-specified analysis
that is turned on by command. See the appropriate commands in Section 8 above. If a command
fails to execute (e..g, if its name is misspelt or its arguments are incorrect), a warning or error
message is written to the log file.

The Restart States - dmpcrs.nnn.con.ttt.dat - contain information on all beads and
polymers and their position, momenta, and forces in ascii text format that is required to restart a
simulations. Offline analysis can be performed on the contents of these files as they contain plain
text.

Analysis State File - dmpcas.nnn

Observables are written here every AnalysisPeriod time steps during a simulation, and all data are
averaged over AnalysisPeriod / SamplePeriod values. Each AnalysisPeriod number of time steps,
observables are averaged over all samples taken since the last analysis was performed, and written
to this file.

Each block of data starts with the simulation time, temperature and pressure, and is followed by
other observables:

Time = 100000
Temperature
1.0080152 0.046555619

Pressure
23.352143 0.11033159

Scalar observables are presented as Mean / Standard deviation pairs on the same line.

When certain special analysis options are switched on, extra data will be written to this file. Ask
me for more details.

Because a lot of data is present in this file, we do not describe it all here. But the following
observables are always calculated:

Temperature
Pressure

Centre of mass momentum of all beads (this should be zero as the CM of the simulation
box should not be moving), and position (should be the middle of the simulation box)

Stress tensor (3 x 3 matrix) of all beads, and spherical stress tensor
Inertia tensor of all beads

Bond length of all bead types combined

Sequence of bond lengths for all types of bond defined in the simulation

Sequence of end-to-end lengths for all polymer types defined (polymers that contain only
a single bead have an end-to-end length of zero)

Angular and bond length measures of the stiff bond types defined

History State File - dmpchs.nnn

The history state file contains time series of various observables. They are written out every
SamplePeriod number of time steps into the following columns:

Time

Temperature

Pressure

(next are 3 columns of zeroes for observables not used in DPD)

Set of bead diffusion constants for all bead types defined in the input file

Set of polymer end-to-end lengths for all polymer types defined in the input file

Note that even if a bead type is not used in any polymer, and so no instances are created, it will still
have a column in the history file that will contain all zeroes.Also note that if a new bead type is
created as the result of a command during a simulation, an extra column for the bead’s diffusion
constant will be added to this file from the command’s execution time onwards.

Conditionally-created analysis files

When specialised analysis options are used, extra files are created to hold the data. Consult the
code or ontact the author for more details.

11) Overview of Dissipative particle dynamics

Molecular Dynamics (MD) and Dissipative Particle Dynamics (DPD) are two simulation techniques
that integrate Newton's laws of motion for a set of particles interacting via specified forces and
generate trajectories from which the observable properties of the set can be estimated.The
techniques differ in their specification of the force laws, but are otherwise quite similar. MD aims to
model the inter-atomic potentials as accurately as possible, and so generate detailed information
on the molecular interactions of complex systems such as proteins and lipids in aqueous solution.
By contrast, DPD ignores the atomic-level details of molecules, and uses a coarse-grained set of
force laws that are chosen to produce the correct hydrodynamic behaviour of fluids. The forces in
DPD are all short-ranged, pairwise additive, conserve linear momentum, and have no hard- core
repulsion at zero separation: thus, two particles can be at exactly the same place in space, although
this is unlikely if the conservative force parameter is non-zero.This feature makes DPD especially
suitable for fluid simulations, as the representation of the strong repulsion present in the solid

phase is problematic.

The elementary units in a DPD simulation are fluid elements or beads.A bead represents a volume
of fluid that is large on a molecular scale, and hence contains at least several molecules of the fluid,
but still macroscopically small. Beads interact via effective forces chosen so as to reproduce the
hydrodynamic behaviour of the fluid without reference to its molecular structure. DPD differs in
this respect from MD simulations, in which the forces are chosen to model the inter-molecular
interactions of a system as accurately as possible. Forces in DPD are pairwise additive, conserve
momentum, have no hard core and are short-ranged, the range of the force defining the size of the

beads.

All beads have the same mass, mo, and diameter, do, and these set the mass and length scales in the
simulation. A time-scale must be extracted from the dynamics of relevant processes in the

simulated fluid, such as the diffusion of a micelle's centre of mass, or the in-plane viscosity of a

bilayer membrane. For example, when we study equilibrium properties of the bilayers, we use the

generic time- scale set by the system temperature, to = v/(mo*do*do/ksT), where ks is Boltzmann's

constant and the temperature, T, is the mean kinetic energy of all beads.

All beads interact via three forces: a Conservative force that gives each bead an identity and allows,
for example, the representation of hydrophobicity between hydrocarbon and water; a Random
force that creates relative momentum between bead pairs; and a Dissipative force that destroys
relative momentum. Beads are considered to have (unobserved) internal degrees of freedom that
give rise to the dissipative force, and to be coupled to the local temperature of their (fluid)
environment that is the source of the random forces. It has been shown that choosing the random
and dissipative forces appropriately leads to equilibrium states of the system that satisfy the
Boltzmann distribution. An important point about the random forces is that they are pairwise anti-
symmetric. If one bead in an interacting pair gains an amount of relative momentum, its partner
loses the same amount.This distinguishes DPD from Brownian Dynamics in which each particle

receives a random push independently of all other particles.

Because DPD beads represent a volume of fluid, and not single molecules, the interpretation of a
polymer composed of such beads requires some care. We take the view that the head bead in a
model lipid represents the hydrophilic glycerol-phosphate-head region while each tail bead
represents several methyl groups, or a Kuhn length, in a hydrocarbon chain. In this view, each
hydrophobic bead represents, say, 3 to 4 methyl groups.The same interpretation applies to non-
biological amphiphiles, such as sulphonium surfactants that consist of an |8-carbon chain attached

to a sulphonium group and two hydroxy groups.

