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What for?

“Since 1970, men and women

worldwide have gained slightly

more than ten years of life

expectancy overall, but they spend

more years living with injury and

illness.”

DOI:10.1016/S0140-6736(12)61729-2





Musculoskeletal system pathologies

• Arthritis
– Joint replacement (Limited lifespan)
– Cement damage accumulation
– Wear (of sliding surfaces)
– Peri-prosthetic fracture
– Dislocation, subluxation, instability
– Osteo-integration (aseptic loosening, primary stability)
– Bone resorption (remodeling)
– Tissue engineering (cartilage, intervertebral disk, tendon)

• Bone fractures
– Fixation & design of plates, rods, screws, pins
– Stability, bone adaptation
– Tissue engineering (bone)



3 Pillars of science

Simulation

Science



Objectives of numerical modeling

• Analyze (understand) observations

• Test hypotheses

• Design experimental setup

• Design (pre-tests) of medical devices

• Improve treatments, surgical techniques

• Improve preoperative planning



Advantages of Numerical Methods

• Efficiency to solve problem (no analytical solution)

• Large scope of problems (physics, biology, chemistry)

• Cheap (material)

• Easy (conceptually)

• Access to all system quantities (not measurable)

• Not dangerous (chemicals)

• No ethical issue (animal/human experiment)



Drawback of Numerical Methods

• Complexity (variability) of living tissues

• Correlation (validation) with experiments difficult

• More method-oriented than problem-oriented

• Qualitative rather then quantitative



New trend

From Specialty towards Integration

– Multi-scale (body, systems, organ, cell, molecule)

– Multi-physics (solid, fluid, reactions)

– Multi-disciplinary (engineer, biology, medicine)



Word frequency

http://books.google.com/ngrams



Word frequency

http://books.google.com/ngrams



Word frequency

http://books.google.com/ngrams



Relative Importance in Science

“numerical” + “biomechanics” from www.scopus.com
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History

The development of numerical methods has 

followed the growth of computer power, starting 

slowly 50 years ago and

extending very rapidly today.



History

• Bio-engineering, as numerical modeling, can be 
both originated to World War II.

• Numerical modeling in bioengineering followed 
the recent rapid evolution of numerical techniques 
and computers performances.



Where it started

ENIAC (Electronic Numerical Integrator And Computer), 
1946-55, 30 tons, 350 flops

1946, U.S. Army photo



30 years later…

CRAY-1, Los Alamos (1976), EPFL (1986-88)
100 megaFlops



Today’s supercomputers

IBM Blue Gene/Q, EPFL (2013)

173 teraFLOPS (1012 FLOPS)



Today’s supercomputers

HPE SGI 8600 system (EPFL, 2018)

> 1 petaFLOPS (1015 FLOPS)

https://www.hpcwire.com/2018/07/10/hpe-epfl-launch-blue-brain-5-supercomputer/



Today’s supercomputers

Summit (IBM)

200 petaFLOPS (1015 FLOPS)

https://www.ornl.gov/directorate/ccsd



Today’s supercomputers

https://www.cscs.ch/computers/alps

HPE Cray EX, 4’719 TFlops, 2024

Swiss National Supercomputing Centre, Lugano



Today’s laptop

≈ 1 teraFlops





FLOPS/$ and FLOPS/W 

https://en.wikipedia.org/wiki/Performance_per_watthttps://aiimpacts.org/trends-in-the-cost-of-computing/



Today’s computer

• Efficient (personal/workstation) computers

• Efficient simulation software

• User-friendly simulation software

• Numerical technics are commonly used as a tool 
by engineers and scientists



History of Numerical Methods (PDE)

• Variational principale (1900)

• Finite Difference Methods (1930)

• Implicit methods (1950)

• Finite Element Method  (1960)

Thomee, V. (2001). From finite differences to finite elements - A short history of numerical analysis of partial differential equations. Journal of Computational and Applied Mathematics 128(1-2): 1-54.



Typical problems

• Joint prostheses

– Mechanical failure

– Wear

– Osteo-integration

• Tissue engineering

• Surgical technique



First numerical models

Rohlmann 82Brekelmans 72 Roehrle 77



Hip

EPFL-LBO (Gortchacow, 2011)



Hip

Walking loadNo load

EPFL-LBO (Gortchacow, 2011)

Bone-stem gap



Design of a flow chamber

         
Incubator

PDMS Flow Chamber

Effect of spacer 
height on
channel 
deformation
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Channels

Flow chamber

EPFL-LBO (Gortchacow, 2011)
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Design of the experiment

Fluid flow profile

Morphogen concentration

EPFL-LBO (Gortchacow, 2011)



Design of a micro-calorimeter

Thermistors

Hydrogel sample

EPFL-LBO (Vogel, 2011)

Perfusion tubes
Fluid flow (Navier-Stokes equ.) 

Porous filter
Fluid flow (Brinkman equ.)
Temperature (Heat equ.

Hydrogel sample

Results:
Flow lines, temperature

Inlet Outlet



Fluid Flow Within Bone-Implant Gap

Navier

Darcy’s & continuity

Biot

EPFL-LBO (Malfroy Camine 2015)



Orthopedic companies

• Conception / Improvement

• Development

• Optimization

• Evaluate uncertainties

• Risk analysis

• Prepare for mechanical testing (ISO, ASTM)

• Communication, marketing



Musculoskeletal system

• Musculoskeletal system
– Muscles (tendon, ligaments, cartilage, soft tissues)
– Bones
– Joints

• Engineering (mechanics)
– Forces

• Muscles
• Joints (natural, artificial)

– Stress/strain
• Bone, Cartilage, Tendons, Ligaments, soft tissues
• Implants (joint prostheses, cement, screws, etc)



Modeling Techniques

• Multi-scale (level) modeling
– Organ, Tissue
– Limb, joint, tissue, interfaces, micro-structures, cells
– Sequential: pre-computed micro-scale for macro-scale
– Concurrent: on-the-fly micro-scale for macro-scale

• Multi-physics
– Mechanics (rigid multi-body, deformable solid)
– Fluid (transport)
– Heat (cement polymerization)
– Chemicals (biological reactions)
– Electromagnetism 



Multi-level: Joint – Tissue Decoupling

• Joint: Musculoskeletal modeling
– Joint and muscles forces
– Indeterminate system

(more degrees of freedom than equilibrium equations)
• Inverse dynamics (Motion -> muscle forces)
• Forward dynamics (Muscle forces -> motion)
• Simplified system (determinate)

• Tissue: Finite Element Modeling
– Partial differential equations
– Boundary conditions
– Constitutive Laws



Joint: Musculoskeletal Modeling

• Multi-body (rigid) system
• Newton equation of motion
• Lagrangian mechanics
• Inverse dynamics: forces from movement

– Inverse kinematics: joint angles from motion captors
– Joint torques from angles kinematics & inertia & ground reaction
– Muscle forces (optimization of physiological criteria)

• Available software for inverse dynamics
– OpenSim
– SIMM
– Anybody
– Lifemodeler 



Musculoskeletal Model

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Gait+2392+and+2354+Models

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Gait+2392+and+2354+Models


Musculoskeletal modeling

www.tlemsafe.eu

Automated 3-D image-analyzing tools to parameterize musculoskeletal system



Tissue: Finite Element Modeling

Most biomechanical systems can be described by

– A set of Partial Differential Equations (PDEs)

– Completed with constitutive equations

– Boundary conditions (← Joint model)

– Initial conditions



PDEs

• Solid (deformation) mechanics (stress, strain)

• Fluid mechanics (fluid velocity, pressure)

• Heat (temperature)

• Transport (diffusion, advection, concentration)

• Electromagnetism (electric & magnetic potential) 

• Wave propagations (EM, acoustic)

• Coupling in multi-physics



Ordinary Differential Equations (ODE)

• Differential equation with 1 independent variable

• Linear/nonlinear

• Order (highest derivative)

• Homogeneous/nonhomogeneous

• Existence, uniqueness (Cauchy–Lipschitz theorem)

dy

dt
= F(t, y), y(t0 ) = yo



Ordinary Differential Equations (ODE)

• System of linear ODEs

• ODE of order n can reduce to n 1st order ODEs

• Non constant coefficients : A = A(x, t)

• Nonhomogeneous ODE (b ≠ 0)

• Boundary problem (x), or initial value problem (t)

dy

dt
= A(y)+b(t), y(t0 ) = yo



ODE example: bone adaptation

J. D. Bobyn and C. A. Engh, Non-Cemented THA, Raven Press (1988)

post-surgery after 1 year

Terrier et al, Clin Biomech, 2005



Partial Differential Equation (PDE)

• xi independent variables, ui dependent variables

• x1 = t (time)

• x2 = x, x3 = y, x4 = z (space)

• No time dependency (steady state or equilibrium)

• Existence and uniqueness not guaranteed in 
general, but usually locally if well-posed



Well-posed PDE

• Regular PDE and domain (Cauchy problem)

• Constitutive equations

• Boundary conditions

• Initial conditions

⇒ A unique & stable solution exists (locally)



Boundary conditions

• Value of the dependent variable u (and/or its 
derivative) on the boundary for all time t

• Dirichlet: u imposed on the boundary

• Neumann: du/dn imposed on the boundary

• Mixed: Dirichlet and Neumann on boundary parts

• Cauchy: Dirichlet and Neumann on boundary

• Robin : u + du/dn imposed on the boundary



Initial conditions

• Value of the dependent variable, and/or its 
derivatives, at time t = 0, for the entire domain

• Initial value problem

u(x, t = 0) = u0(x)



PDE: scalar coefficient form

(Generalized Neumann)

(Generalized Dirichlet)

• Coefficients (c, α, γ, β, a, h) and f, g, and r can depend on x, y, z, t

• PDE is linear when coefficients depend only on (x, y, z), or constant
• A PDE is nonlinear if coefficients depend on u (or its derivatives)
• Initial condition is required



Well-posed problem

• Domain (geometry)

• PDE (physics)

• Constitutive laws (material)

• Initial conditions

• Boundary conditions



Summary

• Most biomechanics (bioengineering) systems 
(problems) can be represented by Partial 
Differential Equations (PDEs)

• Well-posed PDEs have a unique solution

• Most PDEs can’t be solved analytically

• Many PDEs can be solved by numerical methods

• Some PDEs can’t be solved by numerical methods



Quotes

"Among all of the mathematical disciplines the theory of 
differential equations is the most important…

It furnishes the explanation of all those elementary 
manifestations of nature which involve time." 

Sophus Lie (1842-1899)



References (library.epfl.ch/en/ebooks)

• Partial Differential Equations I, Basic Theory, Michael E. Taylor

• Partial Differential Equations II, Qualitative Studies of Linear Equations, Michael 
E. Taylor

• Partial Differential Equations III, Nonlinear Equations, Michael E. Taylor

• Partial Differential Equations, Emmanuele DiBenedetto

• Partial Differential Equations, Modeling and Numerical Simulation, Roland 
Glowinski and Pekka Neittaanmäki

• Linear Partial Differential Equations for Scientists and Engineers, Tyn Myint-U and 
Lokenath Debnath

• Partial Differential Equations, Laurence C Evans



Numerical methods for PDE

Most PDEs can’t be solved algebraically

Numerical method should be robust and reliable:

– Stable (convergence, increasing/oscillating error)

– Accurate “enough” (constant error)



Numerical methods for PDE

• Approximate (discretized) solution of the PDE

• Subdivide the domain in small sub-domains 

• 3 major discretization methods:

– Finite difference method (FDM)

– Finite volume method (FVM)

– Finite element method (FEM)



Finite Element Method (FEM)

• PDE with dependent (solution) variable u(x)

• Strong form (PDE) → weak form (integral)

• Discretization: u(x) = ∑ui vi(x)        vi: basis functions

• Weak form (integral) → Matrix form: Ku = L

• Matrix solving

• Non-linearity (convergence criteria)

• Time integration



Example

• Strong form: - uxx = 1, u(0) = u(1) = 0

• Exact solution: (x - x2)/2

• Weak form: -∫uxx v = - ux v|+ ∫ux vx = ∫ux vx = ∫ v

v(0)=v(1)=0

=
0

Integration by parts
↓

↓

Test function v

↓

Test function v

Strong form → week form: Multiply by a test function and integrate over the domain



Discretization: basis function ui

u(x) ≈ ∑ui vi(x)

v1 v2 v3 v4

u1

u2

u4

x

u(x) u3

0 1

1
v5

x1 x5

u5

5 nodes (DOF), 4 elements

E1 E4x3



Matrix form

• ∫ux vx = ∫ v (weak form)

• For each element : ∑ui ∫vxi vxj = ∑∫vj

• K = (Kij) = (∫vxi vxj), vxi = dvi/dx

• u = (ui) 

• L = (Lj) = (∫vj)

• K u = L

• Find u with K and L known



Stiffness matrix

• K = (Kij) = (∫vxi vxj)

• vx1 = dv1/dx = -1/(1/4) = -4   →   K11= (-4)(-4)(1/4) = 4

• vx2 = dv2/dx = ± 4   →   K22= (4)(4)(1/4) 2 = 8

• K=

• Stiffness matrix of each element → assembly

v1 v2 v3 v4

x

0 1

1
v5

x1 x5
5 nodes (DOF), 4 elements

E1 E4x3

Elements length



Solution



Solving a linear system

• Ku = L, K is sparse and large

• Algorithm to avoid inverting the matrix
– Direct

• Exact (LU & Cholesky factorization)

• Might require a lot of memory

• For “small” problems

– Iterative
• Approximate (Preconditioning)

• Convergence might be an issue

• For “large” problems



Matrix form

E u’’ + D u’ + Ku = L

• E: mass matrix

• D: damping matrix

• K: stiffness matrix

• L : load vector

u’ = du/dt, u’’ = d2u/dt2, 



FEM

• Discretization of the domain

• Evaluate the local displacement

• Evaluate the locale force

• Sum local forces

• Assembly of the matrices

• Solve the matrix system



Nonlinear Partial Differential Equations

Linear Algebraic Equations

Nonlinear Ordinary Differential Equations

Linear Ordinary Differential Equations

FEM

Newton method (nonlinearity)

Euler method (time)

Solution

Ku = L (direct/iterative, preconditioning)



Nonlinear Partial Differential Equations

FEM

Solution



Nonlinearity

• PDE     Navier-Stokes

• Geometrical: E = E(u)  Large displacement

• Material: S = S(E)   Soft tissues

• Contact: interfaces between device and tissue

• Plasticity, wear, etc.

→ Newton method



Nonlinearity

Newton method

• Solve R(u) = Ku - L = 0   (Residue)

• Iterative method (linearization)

 R(ui+1) ≈ R(ui)+Ki(ui+1 - ui) = 0
 
 Ki = estimate of dR/du(ui)
 
 ui+1 = g(ui) = ui + u         (u : correction)

 

• Convergence tests:   R/F < 
(F is an average force)  u/u < 



Nonlinearity

• Provide (good) initial values

• Use parametric solver

• Use time-dependent instead of stationary

• Check for singularities

• Refine mesh in high gradient zones

• Solve physics sequentially, and then coupled

• Stabilization techniques (artificial diffusion, 
viscosity)



Time dependency

• Solve time dependency of PDE

• Linear Ordinary Differential Equations

• Time dependency in coefficient ui

• u(x,t) = ∑ui(t) vi(x)

• Euler method



Time dependency

Euler method (Finite Difference Method)
• u’(t) = f[u(t)], u(0) = u0

• ui+1 = ui + (1-a) Δt vi + a Δt vi+1 
vi    = f(ui)
 vi+1 = f(ui+1) 

a = 0     : explicit (Euler), conditionally stable
a = 1     : implicit (backward Euler), unconditionally stable
a = 1/2 : Crank-Nicolson

• Newmark: generalization for 2nd order diff equ.



Implicit/Explicit

• Implicit

– Static, quasi-static, dynamic slow

– Unconditionally stable

• Explicit

– Dynamic

– Complex contacts

– Very large models

– Stability more difficult to achieve



Elements

• Element type:
– (1D) Edge,
– (2D) Triangle, Quadrilateral,
– (3D) Tetrahedron, Hexahedron, Prism, Pyramid  

• Element (shape function) shape and order
– 1 (linear) to 5 order polynomia

• Meshing techniques, optimal element type
– Structured/unstructured
– Seeding (size)
– Avoid sharp corners
– Tools: sweep, boundary layers (fluid)
– Mesh quality (Jacobian: ideal (1), bad (0), inverted (<0)

Default
unstructured

mesh

Structured
mesh



Contact

• Source-destination (master-slave) approach
– Destination (slave) can’t penetrate source (master)
– Source on stiffer boundary
– Source on concave boundary
– Destination mesh 2 times finer than source

• Iterative algorithm
– Find contact region (penetration)
– Apply forces to push back penetration

• Normal direction discontinuities
 → oscillations (contact chatter)



Error control

• Error = O(hp+1)

• h: size of the mesh (element)

• p: order of the polynomial basis functions

• Adaptive meshing based on error indicator

h-adaptive refinement (mesh size)

p-adaptive refinement (polynomial order)

• A posteriori methods (energy)



Micro-Finite Element

• Micro-FE: FE based on bone structure

• Micro-CT imaging (10 µm vs 300 µm for CT) 

• Used to evaluate bone strength (fracture), in vivo

• Identify (validate) homogenized models

• No need for (non-homogeneous) constitutive law

• CPU power

Van Rietbergen, B. and K. Ito (2015). "A survey of micro-finite element analysis for clinical assessment of bone strength: the first decade." J Biomech 48(5): 832-841.



Micro-Finite Element

Identify, Validate, Extend (homogenized-) FEM

EPFL-LBO (Latypova, 2015)



Physics coupling

In some situations (experiments),

physical (and chemical) phenomena

are strongly interdependent and

Physics (PDE) must be coupled to get

a reasonable solution



multiphysics modeling



Coupling in biomechanics

• Peri-implant healing (fluid-solid)

• Prostheses analyses (solid-solid contacts)

• Tissue engineering (poroelasticity)

• Cell mechanics (advection-diffusion-reaction)

• Medical devices (EM, heat, piezo)

• Adaptive process (bone, muscles)



Where appears the coupling?

Different physics, with different dependent 
variables, but where appears the coupling?

• PDE (convection, poroelasticity)

• Constitutive laws (non-isothermal flow)

• Boundary conditions (fluid-solid interaction)

• Contacts between solids

• Other (medical devices control, MEMS)



Types of coupling

• Physical coupling
– Coupling between physics (field)

– Coupling within materials (constitutive laws)

– Coupling at interfaces

• Modeling coupling (operators)
(modeling simplification between source and destination submodels)

– Extrusion (2D → 3D)

– Projection (3D → 2D)

– Integration (2D/3D → 1D)



Coupling modeling

• 1-way  coupling

– One physics influence the other one,
but it is not reciprocal

• 2-way coupling

– Both physics influence each other

• Weak coupling: slight coupling effect

• Strong coupling: important coupling effect



Coupling: Joint - Tissue

• Joint → Tissue

– Multi-level, one-way coupling

– Not always acceptable (shoulder, patella)

• Joint ⟷ Tissue

– Multi-level, two-way coupling



Patient-specific modeling

• Replicate patients with model

• Specific prediction for specific patient

• Identify groups of patients by prediction

• Group control studies

– Pathology group (of patients)

– Control group (no pathology)



Patient-specific modeling

• Advantages

– Closer to clinical reality

• Difficulties

– Material properties, boundary conditions

• Methods

– Redo from scratch each new patient

– Modify a generic parametric model



Verification and Validation

Verification: solving the equations right

Validation: solving the right equations



Verification

• Poor sister of validation

• Code/Calculation verification

• Mesh convergence (discretization error)

• Expected smoothness of solution

• Expected physical behavior

• Sensitivity analysis of (all) model parameters

• Compare with (semi-) analytical solution 
(simplified model)



Validation

• Accuracy assessment (error between num. & exp.)
• Experimental error: random + systematic (value ± SD)
• Numerical error: solver type, input parameters (value ± SD)
• Statistical analysis
• Reject null hypothesis: no correlation between num. & exp.
• Predictive capability of the model
• Limitations, field of application
• Validation ≠ (experimental) identification (calibration)
• Direct validation: comparison with specific experimental data
• Indirect validation: comparison with literature



Validation

Lund et al (2012) Proc Inst Mech Eng H 226(2): 82-94.



Uncertainties quantification

• Uncertainties (prediction, measurements)

• Sensitivity analysis

• Effect of (unknowns) “input” parameters on 
“output” quantities

• Evaluate most critical “input” parameters



Since 2016…



General advices

• Start VERY simple

• Add complexity gradually

• Verify as much as you can while adding complexity

• Use symmetry as much as possible

• Do not over-complex your model

• Evaluate the range of validity of your model



Screw pullout test

Terrier, 2005



Summary

• Advantages of numerical methods
– Between theory and experiment
– Reduce time of development
– Reduce costs
– Reduce risks
– Increase understanding
– Increase creativity

• Applications
– Test hypotheses
– Parameters analysis
– Phenomena understanding
– Rapid prototyping (feasibility analysis) of complex systems or devices
– Patient-specific modeling



Progress, Difficulties & Future

• Over-complexity of models

• Material properties (in vivo)

• Loading conditions (activities of daily living)

• Patient-specific models (statistical analyses)

• Better corroborate (validate) models with reality

• Retrospective study to explain failure mechanisms

• Preoperative tool

• Adaptation processes

Taylor & Prendergast (2015). "Four decades of finite element analysis of orthopaedic devices: Where are we now and what are the opportunities?" J Biomech 48(5): 767-778.



FEM software

• Comsol (www.comsol.com)
– Multiphysics

• Ansys (www.ansys.com)
– Solid, fluid (Fluent), heat, electromagnetics

• Abaqus (www.simulia.com)
– Solid, heat, (fluid, electromagnetics)

• BETA CAE (www.beta-cae.com)
– Solid, multiphysics

• Elmer (www.csc.fi/elmer)
– Multiphyisics, free

• FreeFEM (www.freefem.org)
– Multiphysics, free

• FEBiO (www.febio.org/)
– Solid, free

• ArtiSynth (artisynth.magic.ubc.ca/artisynth/)
– Coupling Rigid body dynamics & Solid deformation, free
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