Engineering of the Musculoskeletal
System and Rehabilitation

1.2 Numerical methods

Alexandre Terrier
(EPFL-LBO)



What for?

“Since 1970, men and women THELANCET

worldwide have gained slightly

The Global Burden of Disease Study 2010

more than ten vyears of life
expectancy overall, but they spend

more years living with injury and

illness.”
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survey-based data

Figure 1a: LE without and with disability at age 65, women
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Figure 1b: LE without and with disability at age 65, men
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Figure 1: Trend in life expectancy without (DFLE), with mild (DLE,;4), and with severe (DLE,.) disability at 65 and 80 years of age, by sex.

Mean values for DFLE and LED,,;q and LEDg ¢ c.



Musculoskeletal system pathologies

e Arthritis

— Joint replacement (Limited lifespan)

— Cement damage accumulation

— Wear (of sliding surfaces)

— Peri-prosthetic fracture

— Dislocation, subluxation, instability

— Osteo-integration (aseptic loosening, primary stability)

— Bone resorption (remodeling)

— Tissue engineering (cartilage, intervertebral disk, tendon)
 Bone fractures

— Fixation & design of plates, rods, screws, pins

— Stability, bone adaptation

— Tissue engineering (bone)



3 Pillars of science




Objectives of numerical modeling

Analyze (understand) observations

Test hypotheses

Design experimental setup

Design (pre-tests) of medical devices
mprove treatments, surgical techniques

mprove preoperative planning



Advantages of Numerical Methods

Efficiency to solve problem (no analytical solution)
Large scope of problems (physics, biology, chemistry)
Cheap (material)

Easy (conceptually)

Access to all system quantities (not measurable)

Not dangerous (chemicals)

No ethical issue (animal/human experiment)



Drawback of Numerical Methods

Complexity (variability) of living tissues
Correlation (validation) with experiments difficult
More method-oriented than problem-oriented
Qualitative rather then quantitative



New trend

From Specialty towards Integration

— Mu
— Mu
— Mu

ti-scale (body, systems, organ, cell, molecule)
ti-physics (solid, fluid, reactions)
ti-disciplinary (engineer, biology, medicine)
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History

The development of numerical methods has
followed the growth of computer power, starting
slowly 50 years ago and

extending very rapidly today.



History

* Bio-engineering, as numerical modeling, can be
both originated to World War II.

* Numerical modeling in bioengineering followed
the recent rapid evolution of numerical techniques
and computers performances.



Where it started

ENIAC (Electronic Numerical Integrator And Computer),
1946-55, 30 tons, 350 flops

1946, U.S. Army photo



30 years later...

CRAY-1, Los Alamos (1976), EPFL (1986-88)
100 megaFlops




Today’s supercomputers

IBM Blue Gene/Q, EPFL (2013)

173 teraFLOPS (1012 FLOPS)
¢ e . - ‘}'Mr:,,’;.:’_.;‘ q4:




Today’s supercomputers

HPE SGI 8600 system (EPFL, 2018)
> 1 petaFLOPS (10> FLOPS)




Today’s supercomputers

Summit (IBM)




Today’s supercomputers

Swiss National Supercomputing Centre, Lugano
HPE Cray EX, 4’719 TFlops, 2024

https://www.cscs.ch/computers/alps



Today’s laptop

= ] teraFlops




Moore’s Law: The number of transistors on microchips has doubled every two years [oNaWGHE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Today’s computer

Efficient (personal/workstation) computers
Efficient simulation software
User-friendly simulation software

Numerical technics are commonly used as a tool
by engineers and scientists



History of Numerical Methods (PDE)

Variational principale (1900)
Finite Difference Methods (1930)
mplicit methods (1950)

Finite Element Method (1960)




Typical problems

* Joint prostheses
— Mechanical failure
— Wear
— Osteo-integration

* Tissue engineering
e Surgical technique



First numerical models
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EPFL-LBO (Gortchacow, 2011)
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Design of a flow chamber

Flow chamber
Effect of spacer
height on
channel >pacer
deformation
[
Incubator

PDMS Flow Chamber

Channels

EPFL-LBO (Gortchacow, 2011)



Flow channel deformation
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Design of the experiment

Flow Chamber
Media Flow

Flow
Chamber

Cover: slip
patterned cells colonies

Morphogen concentration

EPFL-LBO (Gortchacow, 2011)



Design of a micro-calorimeter
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Darcy's velocity magnitude [um/s]

Fluid Flow Within Bone-Implant Gap

Cortical Bone Cancellous Bone

Vo = Navier

S% + v - —Efo = —QB% Darcy’s & continuity
7!
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Figure 1 - Average and maximal interstitial fluid velocity in granulation tissue during one load cycle Figure 2 - Interstitial fluid velocity at the bone-implant interface around a
cementless femoral stem

EPFL-LBO (Malfroy Camine 2015)



Orthopedic companies

Conception / Improvement

Development

Optimization

Evaluate uncertainties

Risk analysis

Prepare for mechanical testing (1SO, ASTM)
Communication, marketing



Musculoskeletal system

 Musculoskeletal system
— Muscles (tendon, ligaments, cartilage, soft tissues)
— Bones
— Joints

* Engineering (mechanics)

— Forces

* Muscles

e Joints (natural, artificial)
— Stress/strain

* Bone, Cartilage, Tendons, Ligaments, soft tissues
* Implants (joint prostheses, cement, screws, etc)



Modeling Techniques

* Multi-scale (level) modeling
— Organ, Tissue
— Limb, joint, tissue, interfaces, micro-structures, cells
— Sequential: pre-computed micro-scale for macro-scale
— Concurrent: on-the-fly micro-scale for macro-scale
* Multi-physics
— Mechanics (rigid multi-body, deformable solid)
— Fluid (transport)
— Heat (cement polymerization)
— Chemicals (biological reactions)
— Electromagnetism



Multi-level: Joint — Tissue Decoupling

e Joint: Musculoskeletal modeling
— Joint and muscles forces

— Indeterminate system
(more degrees of freedom than equilibrium equations)
* Inverse dynamics (Motion -> muscle forces)
* Forward dynamics (Muscle forces -> motion)
* Simplified system (determinate)

* Tissue: Finite Element Modeling
— Partial differential equations
— Boundary conditions
— Constitutive Laws



Joint: Musculoskeletal Modeling

Multi-body (rigid) system
Newton equation of motion
Lagrangian mechanics

Inverse dynamics: forces from movement

— Inverse kinematics: joint angles from motion captors

— Joint torques from angles kinematics & inertia & ground reaction
— Muscle forces (optimization of physiological criteria)

Available software for inverse dynamics
— OpenSim

— SIMM

— Anybody

— Lifemodeler



Musculoskeletal Model

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Gait+2392+and+2354+Models



http://simtk-confluence.stanford.edu:8080/display/OpenSim/Gait+2392+and+2354+Models

Musculoskeletal modeling

Automated 3-D image-analyzing tools to parameterize musculoskeletal system

www.tlemsafe.eu



Tissue: Finite Element Modeling

Most biomechanical systems can be described by
— A set of Partial Differential Equations (PDEs)
— Completed with constitutive equations
— Boundary conditions (<& Joint model)
— Initial conditions



PDEs

Solid (deformation) mechanics (stress, strain)
Fluid mechanics (fluid velocity, pressure)

Heat (temperature)

Transport (diffusion, advection, concentration)
Electromagnetism (electric & magnetic potential)
Wave propagations (EM, acoustic)

Coupling in multi-physics



Ordinary Differential Equations (ODE)

* Differential equation with 1 independent variable
* Linear/nonlinear

* Order (highest derivative)

* Homogeneous/nonhomogeneous

e Existence, uniqueness (Cauchy—Lipschitz theorem)

dy

» =F(t,y),y(t,) =,




Ordinary Differential Equations (ODE)

e System of linear ODEs

* ODE of order n can reduce to n 15t order ODEs

* Non constant coefficients : A =A(x, t)

* Nonhomogeneous ODE (b6 # 0)

* Boundary problem (x), or initial value problem (¢)

dy
dt

=A(y)+ (1), y(t) =,



ODE example: bone adaptation

post-surgery after 1 year
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J. D. Bobyn and C. A. Engh, Non-Cemented THA, Raven Press (1988) Terrier et al, Clin Biomech, 2005



Partial Differential Equation (PDE)

d d 7 o

Flaoy,---x, 1, —t, ~+»——U, ——— U, ———— U, -~
(1, " | dr,,  Odri10ry 01019 )

'dIl

x; independent variables, u, dependent variables
x; =t (time)

X,=X,X;=),Xx,=2z (space)

No time dependency (steady state or equilibrium)

Existence and uniqueness not guaranteed in
general, but usually locally if well-posed



Well-posed PDE

Regular PDE and domain (Cauchy problem)
Constitutive equations

Boundary conditions

Initial conditions

= A unique & stable solution exists (locally)



Boundary conditions

Value of the dependent variable u
derivative) on the boundary for al

(and/or its
time ¢

Dirichlet: # imposed on the boundary

Neumann: du/dn imposed on the
Mixed: Dirichlet and Neumann on

ooundary
boundary parts

Cauchy: Dirichlet and Neumann on boundary

Robin : u + du/dn imposed on the

boundary



Initial conditions

* Value of the dependent variable, and/or its
derivatives, at time ¢t = 0, for the entire domain

* |nitial value problem

u(x,t=0)=u,(x)



PDE: scalar coefficient form

2
eﬂ+d;— +V-(-cVu-au+vy)+p-Vu+au=f inQ

a_ 2
ol

n-(cVu+ou-vy)+qu =g —th (Generalized Neumann) on 0(2

u=r (Generalized Dirichlet) on 6Q2

Coefficients (¢, a, v, B, a, h) and f, g, and r can depend on X, y, z, ¢
PDE is linear when coefficients depend only on (x, y, z), or constant
A PDE is nonlinear if coefficients depend on u (or its derivatives)

Initial condition is required



Well-posed problem

Domain (geometry)

PDE (physics)

Constitutive laws (material)
Initial conditions

Boundary conditions



Summary

Most biomechanics (bioengineering) systems
(problems) can be represented by Partial
Differential Equations (PDEs)

Well-posed PDEs have a unique solution

Most PDEs can’t be solved analytically

Many PDEs can be solved by numerical methods
Some PDEs can’t be solved by numerical methods



Quotes

"Among all of the mathematical disciplines the theory of
differential equations is the most important...
It furnishes the explanation of all those elementary
manifestations of nature which involve time."

Sophus Lie (1842-1899)
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Numerical methods for PDE

Most PDEs can’t be solved algebraically

Numerical method should be robust and reliable:

— Stable (convergence, increasing/oscillating error)
— Accurate “enough” (constant error)



Numerical methods for PDE

e Approximate (discretized) solution of the PDE
e Subdivide the domain in small sub-domains

* 3 major discretization methods:
— Finite difference method (FDM)
— Finite volume method (FVM)
— Finite element method (FEM)



Finite Element Method (FEM)

PDE with dependent (solution) variable u(x)
Strong form (PDE) - weak form (integral)
Discretization: u(x) = > u. vi(x) v.: basis functions
Weak form (integral) - Matrix form: Ku =L

Matrix solving

Non-linearity (convergence criteria)

Time integration



Example

* Strong form: -u,=1,u(0)=u(1l)=0

e Exact solution: (x - x2)/2

Integration by parts

J
* Weak form: -fu,v=-uv|+Ju v, =Ju v, =[vV
™ — ™
Test function v I Test function v

o
v(0)=v(1)=0

Strong form = week form: Multiply by a test function and integrate over the domain



Discretization: basis function u.

u(x) = 3u; vi(x)

{

E E1 E | | > X
X1 X3 e4 Xs
0 5 nodes (DOF), 4 elements 1




Matrix form

Ju,v,=Jv (weak form)

For each element : ju; Jv,;v,;= 2]V,
= (Kj) = (Jvy5 Vi), vy5 = dv;/dx
= (u;)

L= (L) = (Jv)

Ku=L

Find u with K and L known




Stiffness matrix

I VO SO SO ST SO
K=(K.)=(]v, Vv,
i Xi VX] - _ _ N -
X, H X3 s Xs
0 5 nodes (DOF), 4 elements 1

v, = dv/dx=-1/(1/4)=-4 > K= (-4)(-4)(1/4) =4

v =dv,/dx=+4 > K,=(4)4)(1/4)2=8 ]

4 7
i i Elements length

A

1

]
o oo &~
o o A
o & 0 &~ O
A oo A OO
~ A OO O

Stiffness matrix of each element - assembly



Solution

T
— Linear basis functions

0.14

0.12

0.1

0.08¢

u(x)

0.06 |

0.04 |

0.02

— Exact: (x-x"2)/2

0.75

0.5

0.25
X




Solving a linear system

e Ku=1L, Kissparse and large

* Algorithm to avoid inverting the matrix

— Direct
* Exact (LU & Cholesky factorization)
* Might require a lot of memory
e For “small” problems

— Iterative
* Approximate (Preconditioning)

e Convergence might be an issue
* For “large” problems



Matrix form
Eu’ +DuU +Ku=L

E: mass matrix
D: damping matrix
K: stiffness matrix
L : load vector

u’ = du/dt, u”’ = d?u/dt?,



FEM

Discretization of the domain
Evaluate the local displacement
Evaluate the locale force

Sum local forces

Assembly of the matrices

Solve the matrix system



Nonlinear Partial Differential Equations

FEM

Nonlinear Ordinary Differential Equations

Newton method (nonlinearity)

Linear Ordinary Differential Equations

Euler method (time)

Linear Algebraic Equations

Ku = L (direct/iterative, preconditioning)

Solution



Nonlinear Partial Differential Equations

Solution



Nonlinearity

PDE Navier-Stokes
Geometrical: E = E(u) Large displacement
Material: S = S(E) Soft tissues

Contact: interfaces between device and tissue

Plasticity, wear, etc.

- Newton method



Nonlinearity

N R(°)
R(w?)
Newton method Ry T oane e
. K@u!
« Solve R(u)=Ku-L=0 (Residue) Ky J
* [terative method (linearization) fus.-CONVERGEDn!
P, ... but iz u,!
Ru™*l) = R(u)+K!(u*t-u') =0 I T e e
\‘W—*_W—_LY_j
Ki = estimate of|[dR/du(u’) N R
increment | —] K«_;_r%m» R
. l _ . _ . . . Sol:efor
u*tt=g(u) =u'+ Au (Au : correction) S Wy
Iteration Zo*rm
K%,,R
« Convergence tests: RIF <eg KA
(F is an average force) Au/lu <g s
resi.ms

[ Next Increment (or Done) ]




Nonlinearity

Provide (good) initial values

Use parametric solver

Use time-dependent instead of stationary
Check for singularities

Refine mesh in high gradient zones

Solve physics sequentially, and then coupled

Stabilization techniques (artificial diffusion,
viscosity)



Time dependency

Solve time dependency of PDE
Linear Ordinary Differential Equations
Time dependency In coefficient u.

u(x,t) = 2 ui(t) vi(x)

Euler method



Time dependency

Euler method (Finite Difference Method)
* U’ (t) =f[u(t)], u(0) = u

v, =f(u,)

Vipq = f(ujyq)

0 : explicit (Euler), conditionally stable
1 :implicit (backward Euler), unconditionally stable
1/2 : Crank-Nicolson

d
d
d

* Newmark: generalization for 2"d order diff equ.



Implicit/Explicit

* Implicit
— Static, quasi-static, dynamic slow
— Unconditionally stable
* Explicit
— Dynamic
— Complex contacts

— Very large models
— Stability more difficult to achieve



Elements

3

* Elementtype: ’
— (1D) Edge, | 5- nods slsment foa1— 2 1"{ i~ mesh

4- node elermeant face face 3

— (2D) Triangle, Quadrilateral,
— (3D) Tetrahedron, Hexahedron, Prism, Pyramid

* Element (shape function) shape and order
— 1 (linear) to 5 order polynomia

* Meshing techniques, optimal element type
— Structured/unstructured
— Seeding (size)
— Avoid sharp corners sructured
— Tools: sweep, boundary layers (fluid) mesh
— Mesh quality (Jacobian: ideal (1), bad (0), inverted (<0)

s /L T . Default




Contact

e Source-destination (master-slave) approach
— Destination (slave) can’t penetrate source (master)
— Source on stiffer boundary
— Source on concave boundary
— Destination mesh 2 times finer than source

* |terative algorithm
— Find contact region (penetration)
— Apply forces to push back penetration

* Normal direction discontinuities
— oscillations (contact chatter)



Error control

Error = O(hP*?)

h: size of the mesh (element)

p: order of the polynomial basis functions
Adaptive meshing based on error indicator

h-adaptive refinement (mesh size)
p-adaptive refinement (polynomial order)

A posteriori methods (energy)



Micro-Finite Element

Micro-FE: FE based on bone structure

Micro-CT imaging (10 pum vs 300 um for CT)

Used to evaluate bone strength (fracture), in vivo
ldentify (validate) homogenized models

No need for (non-homogeneous) constitutive law
CPU power

Van Rietbergen, B. and K. Ito (2015). "A survey of micro-finite element analysis for clinical assessment of bone strength: the first decade." J Biomech 48(5): 832-841.



Micro-Finite Element

|dentify, Validate, Extend (homogenized-) FEM

Anisotropic linear elastic material ¢=Co Morphology — elasticity relationship
(Zysset — Curnier)?!
S . | k.2l
E, E; E;3 Ei = EOP m;
V2 1 Ve 0
E, E E Ei Eo , 1 4
== ] Vi3 Va3 1 o —pP mimj
1 3 1.3/ “E E E Vij Vo
compressidns 7/ shears | C= 1 2 3 ;
? 2 T ()
.................. s 2623 Gl] — Gopkmimj
1 .
: 0 Vi+j=1273
Stiffness Fabric (MIL) + p 26G,, J
L M — fabric tensor?
26,

p—BV/TV

Eo, Vo, Go, k, | — constants to identify

EPFL-LBO (Latypova, 2015)



Physics coupling

In some situations (experiments),
physical (and chemical) phenomena
are strongly interdependent and
Physics (PDE) must be coupled to get
a reasonable solution

multiphysics modeling



Coupling in biomechanics

Peri-implant healing (fluid-solid)

Prostheses analyses (solid-solid contacts)

Tissue engineering (poroelasticity)

Cell mechanics (advection-diffusion-reaction)

Medical ¢
Adaptive

evices (EM, heat, piezo)

orocess (bone, muscles)



Where appears the coupling?

Different physics, with different dependent
variables, but where appears the coupling?

* PDE (convection, poroelasticity)

* Constitutive laws (non-isothermal flow)

* Boundary conditions (fluid-solid interaction)
* Contacts between solids

e Other (medical devices control, MEMS)



Types of coupling

* Physical coupling
— Coupling between physics (field)
— Coupling within materials (constitutive laws)
— Coupling at interfaces

* Modeling coupling (operators)

(modeling simplification between source and destination submodels)

— Extrusion (2D - 3D)
— Projection (3D - 2D)
— Integration (2D/3D - 1D)




Coupling modeling

1-way coupling
— One physics influence the other one,
but it is not reciprocal

2-way coupling
— Both physics influence each other

Weak coupling: slight coupling effect
Strong coupling: important coupling effect



Coupling: Joint - Tissue

* Joint - Tissue

— Multi-level, one-way coupling

— Not always acceptable (shoulder, patella)
* Joint <> Tissue

— Multi-level, two-way coupling



Patient-specific modeling

Replicate patients with model
Specific prediction for specific patient
ldentify groups of patients by prediction

Group control studies
— Pathology group (of patients)
— Control group (no pathology)



Patient-specific modeling

* Advantages
— Closer to clinical reality
* Difficulties
— Material properties, boundary conditions

e Methods

— Redo from scratch each new patient
— Modify a generic parametric model



Verification and Validation

Verification: solving the equations right

Validation: solving the right equations



Verification

Poor sister of validation

Code/Calculation verification

Mesh convergence (discretization error)
Expected smoothness of solution

Expected physical behavior

Sensitivity analysis of (all) model parameters

Compare with (semi-) analytical solution
(simplified model)



Validation

Accuracy assessment (error between num. & exp.)
Experimental error: random + systematic (value + SD)
Numerical error: solver type, input parameters (value * SD)
Statistical analysis

Reject null hypothesis: no correlation between num. & exp.
Predictive capability of the model

Limitations, field of application

Validation # (experimental) identification (calibration)

Direct validation: comparison with specific experimental data
Indirect validation: comparison with literature



Validation

(Questions to be answered >

4
¢ Proposed model j
Design
Model <_con51derat:ons Experimental
> morphology Initial SenSltIVItY design i
‘ —  analysis > ¢
ient- i Calibration: ex.
Eatien §pecnﬁc nthropometric— Specific-subject
scaling measurements
Validation
oo i -
Simulation <€—Model input experiment
> Quantitative l
comparison
Uncertainty
quantification
Not acceptable: Not acceptable:
Update or

calibrate model

alidation result

Apply Model

Improve experimental
design or add parameters

Lund et al (2012) Proc Inst Mech Eng H 226(2): 82-94.




Uncertainties quantification

Uncertainties (prediction, measurements)
Sensitivity analysis

Effect of (unknowns) “input” parameters on
“output” quantities

Evaluate most critical “input” parameters



Since 2016...
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General advices

Start VERY simple

Add complexity gradually

Verify as much as you can while adding complexity
Use symmetry as much as possible

Do not over-complex your model

Evaluate the range of validity of your model



Screw pullout test

Terrier, 2005



Summary

* Advantages of numerical methods
— Between theory and experiment
— Reduce time of development
— Reduce costs
— Reduce risks
— Increase understanding
— Increase creativity
* Applications
— Test hypotheses
— Parameters analysis
— Phenomena understanding
— Rapid prototyping (feasibility analysis) of complex systems or devices
— Patient-specific modeling



Progress, Difficulties & Future

e Over-complexity of models
* Material properties (in vivo)

* Loading conditions (activities of daily living)

e Patient-specific models (statistica
* Better corroborate (validate) moc

* Retrospective study to explain fai
* Preoperative tool
* Adaptation processes

analyses)
els with reality
ure mechanisms

Taylor & Prendergast (2015). "Four decades of finite element analysis of orthopaedic devices: Where are we now and what are the opportunities?" ) Biomech 48(5): 767-778.



FEM software

Comsol (www.comsol.com)
— Multiphysics
Ansys (www.ansys.com)
— Solid, fluid (Fluent), heat, electromagnetics
Abaqus (www.simulia.com)
— Solid, heat, (fluid, electromagnetics)
BETA CAE (www.beta-cae.com)
— Solid, multiphysics
Elmer (www.csc.fi/elmer)
— Multiphyisics, free
FreeFEM (www.freefem.org)
— Multiphysics, free
FEBIO (www.febio.org/)
— Solid, free
ArtiSynth (artisynth.magic.ubc.ca/artisynth/)
— Coupling Rigid body dynamics & Solid deformation, free
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