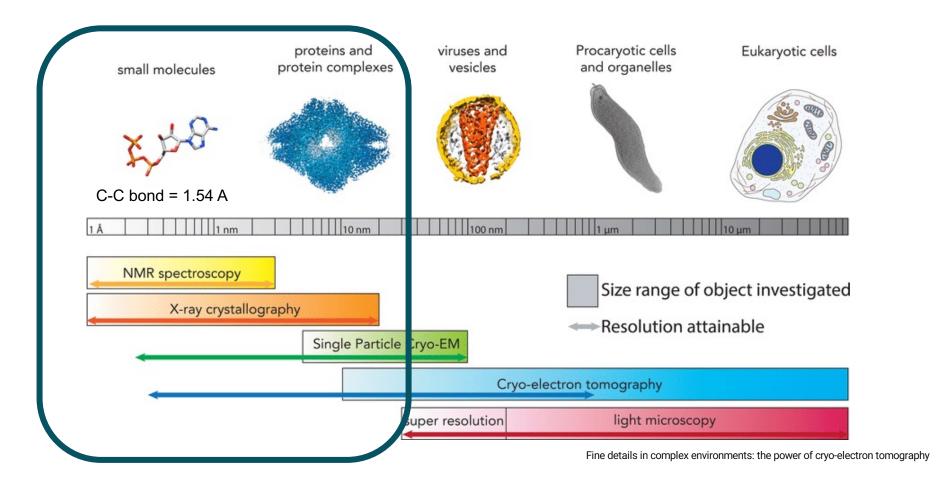
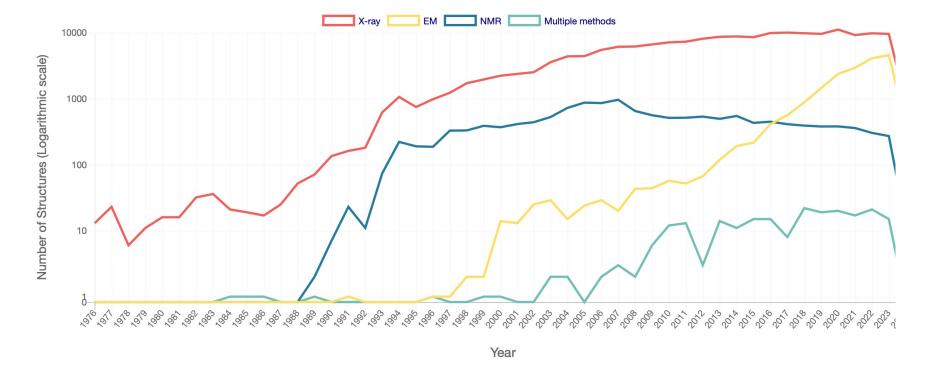

EDMS BIO-643: Integrative Structural Biology for Life Sciences

Luciano Abriata Kelvin Lau Yoan Duhoo Florence Pojer

Protein Production and Structure Core Facility, SV-PTPSP


Course goals


 Hands-on on Structural Biology resources, software and techniques, including visualization modeling tools and data obtained by NMR, X-ray crystallography and SPR cryoEM.

Team-based interactive class

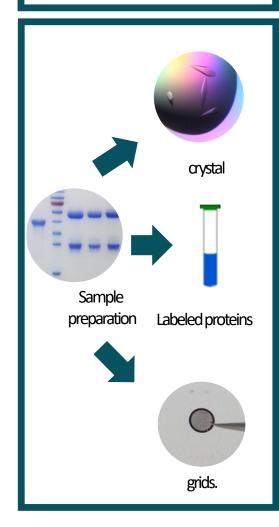
 Develop your own analysis and critical interpretation of real data

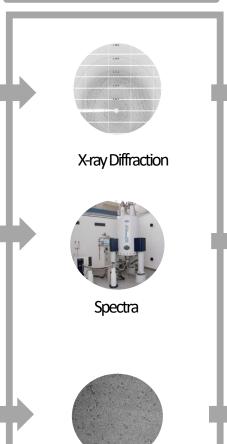
Tools for Structural characterization

Year J.	X-Ray ↓↑	NMR ↓↑	EM ↓↑
2024	854	13	415
2023	9,615	272	4,582
2022	9,833	304	4,109
2021	9,242	360	2,952
2020	11,197	381	2,387
2019	9,622	380	1,451
2018	9,853	392	882
2017	10,071	412	564
2016	9,927	449	412
2015	8,578	431	216

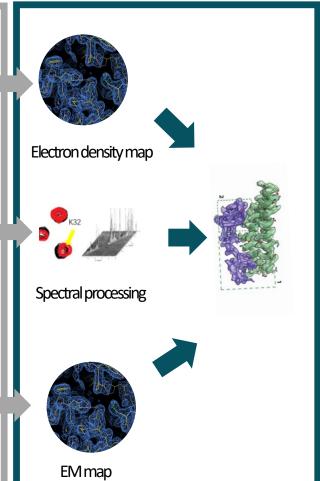
https://www.rcsb.org/stats/all-released-structures

SAMPLE PREPARATION

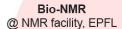

At PTPSP or labs


DATA ACQUISITION

High-end facilities

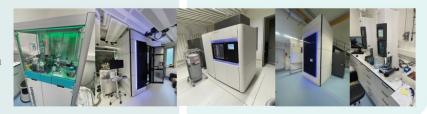

DATA PROCESSING to MODEL

At PTPSP or labs



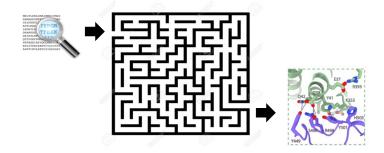
Micrographs

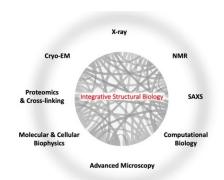
Close contacts to High-end facilities


X-ray Crystallography

@ SLS PSI, Villigen

SPR, CryoEM @ DCI, join EPFL, UNIL & Uni Geneva


Advice: How to decide the methods


To consider:

- ☐ The Biological question: nature and size of proteins/complexes and type of results wished
 - Pros/cons for each method. Each project is evaluated carefully.

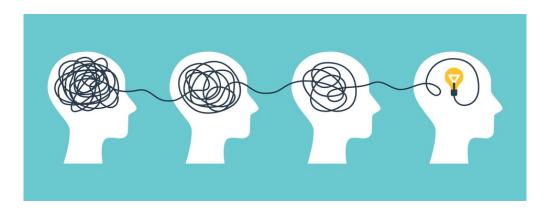
Roughly: SPR cryoEM for proteins > 60kDa & big complexes & difficult to produce; NMR for small flexible proteins < 40kDa; crystallography for drug target & protein any size; but with limiting factor being the formation of crystals

- ☐ Time and funding
- Expertise and access to technology

- ✓ Methods complement each other
- ✓ Often performed in parallel

Techniques	PROS	CONS
X-ray crystallography	 ✓ Provide very detailed atomic information ✓ Easy to perform ✓ Not expensive ✓ Software free and user friendly ✓ No size limitation ✓ Synchrotron facilities around the world 	 ✓ Need to form crystals ✓ High protein quantity ✓ Difficult for membrane proteins ✓ Difficult for flexible domains
BioNMR	 ✓ Small flexible proteins ✓ In solution ✓ Info on dynamics ✓ Info on ligand binding 	 ✓ Not for big complex. (samples<40kDa) ✓ Low through-put ✓ High expertise ✓ High protein quantity, labeled ✓ Expensive
Single-particle EM	 ✓ Big complex, membrane proteins ✓ Not much protein needed (10 times less than crystallography) ✓ Achieve atomic resolution 	 ✓ Still challenging for small protein <60kDa ✓ High expertise ✓ Low Throughput ✓ High-end equipment ✓ Expensive

Schedule


Date	Topics	Speakers
Feb 19th	Course introduction	Florence/Luciano/ Kelvin/Yoan
Feb 26th	Modeling tools	Luciano
March 4th	Modeling tools	Luciano
March 11th	X-ray crystallography theory + software	Florence/Kelvin
March 18th	X-ray software	Kelvin/Florence
March 25th	X-ray software	Kelvin/Florence
April 1st	no class	
April 8th	cryoEM theory + software	Yoan/Kelvin/Florence
April 15th	cryoEM software	Yoan/Kelvin/Florence
April 22th	cryoEM software	Yoan/Kelvin/Florence
April 29th	Bio-NMR theory + software	Luciano
May 6th	Bio-NMR software	Luciano
May 13th	Bio-NMR software	Luciano
May 20th	Students presentations	
May 27st	Students presentations	

Evaluation - Presentation

LEARN FROM EACH OTHER EXPERTISE AND BACKGROUND

- Organize group of two to three students
- Each group pick a paper with structural data and communicate it to teachers
- Goal: to analyse the structural data included in the chosen paper and emphasize the techniques including the raw data
- Present the data in an interactive way to your colleagues and teachers
- 20 mins presentation + 10 mins Q&A
- Be critical against the data, the results and their interpretations

Bio-643 Moodle

https://moodle.epfl.ch/

Resources needed for the course

https://go.epfl.ch/bio-643

Deposition database for all structures

PDB Database

Any questions?

Let's install all the software on your laptop and check they are working properly:

http://labriataphd.altervista.org/struct-biol-course/spring2022.html