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Spatial embedding of neuronal trees modeled by diffusive growth
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bstract

The relative importance of the intrinsic and extrinsic factors determining the variety of geometric shapes exhibited by dendritic trees remains
nclear. This question was addressed by developing a model of the growth of dendritic trees based on diffusion-limited aggregation process. The
odel reproduces diverse neuronal shapes (i.e., granule cells, Purkinje cells, the basal and apical dendrites of pyramidal cells, and the axonal trees

f interneurons) by changing only the size of the growth area, the time span of pruning, and the spatial concentration of ‘neurotrophic particles’.
oreover, the presented model shows how competition between neurons can affect the shape of the dendritic trees. The model reveals that the
reation of complex (but reproducible) dendrite-like trees does not require precise guidance or an intrinsic plan of the dendrite geometry. Instead,
asic environmental factors and the simple rules of diffusive growth adequately account for the spatial embedding of different types of dendrites
bserved in the cortex. An example demonstrating the broad applicability of the algorithm to model diverse types of tree structures is also presented.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The geometry of dendritic trees plays an important role in
etermining the connectivity (Amirikian, 2005; Stepanyants
nd Chklovskii, 2005) and electrophysiological properties of
eurons (Krichmar et al., 2002; Mainen and Sejnowski, 1996;
igliore et al., 1995). However, the extent to which intrinsic

nd extrinsic factors shape dendritic geometry remains largely
nknown (Scott and Luo, 2001). The complexity of interactions
etween different intrinsic and extrinsic factors during the devel-
pment of neuronal arborization can make it very difficult to
eparate their contributions experimentally. In this study, I pro-
ose a simple computational model that demonstrates that two
asic external factors – (i) the space available for growth and (ii)
he spatial distribution of ‘neurotrophic particles’ (NPs) – can
dequately account for the three-dimensional (3D) embedding
f dendritic and axonal trees.

Although past models of dendritic growth have been pro-

osed, none of these models considered the role of environmen-
al factors on 3D structure of neurons. For example, in some of
arlier works, only dendrograms were modeled (i.e., connectiv-
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ty among branches, and their length and diameter) yet spatial
mbedding was not considered (Nowakowski et al., 1992; Van
oyen et al., 2001; Van Pelt et al., 1997). In the 3D models
f dendritic trees, several parameters measured from real neu-
ons (e.g., the probability distribution of branching points as a
unction of the distance from a soma) were used and stochastic
rocedures were applied to recreate dendrites while disregard-
ng influence of environment (Ascoli, 1999; Burke and Marks,
002; Samsonovich and Ascoli, 2003; Samsonovich and Ascoli,
005; for review see Ascoli, 2002).

In contrast to the above models based on statistical recon-
truction of dendrites, the present model simulates 3D neuronal
rowth using external factors. In this approach, dendrite geome-
ry parameters (e.g., number of segments, branching probability,
rientation, etc.) are not built into the model but rather geometry
arameters emerge as a result of environmental factors such as
he NP concentration, competition between neurons, and space
imitations. External cues are well known to play a significant
ole in shaping dendritic geometry (Horch and Katz, 2002),
nd hence the model presented here accounts for the impor-
ant biological processes underlying neuronal geometry (see

ection 4).

To simulate neuronal growth, I used diffusion-limited aggre-
ation (DLA), which is a well-established physical model for
he formation of structures controlled by diffusion processes

mailto:Luczak@rutgers.edu
dx.doi.org/10.1016/j.jneumeth.2006.03.024


A. Luczak / Journal of Neuroscience Methods 157 (2006) 132–141 133

Fig. 1. Illustration of the DLA algorithm. (A) Randomly moving particles (black) stick irreversibly at their point of first contact with the aggregate (composed of
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articles 0–5). To each newly jointed particle a parent particle is assigned and bo
t the terminals are randomly deleted from the aggregate (pruning) during a sp
articles. The color intensity decreases in the order in which particles connecte

Witten and Sander, 1981). Prior research has demonstrated that
LA can provide a good description of a variety of natural pro-

esses, such as electrical discharge in gas (lightning) (Niemeyer
t al., 1984), electrochemical deposition (Brady and Ball, 1984;
alsey, 1990), or the growth of snowflakes (Family et al., 1987).
he form of a typical DLA structure is illustrated in the insert
f Fig. 1.

Previously, diffusive processes were invoked to explain the
rigin of dendritic arbors by Hentschel and Fine (1996), who
roposed a two-dimensional diffusion-regulated model of den-
ritic morphogenesis in which cell growth depended upon
he local concentration of calcium. However, their model was
estricted to the early stage of neuronal growth only, and was
ased on in vitro cultures. In order to generate a 3D embedding
f fully developed dendritic trees, the present model operates
t a coarser level. It takes into account the local concentrations
f NPs, but without including such details as changes in the
oncentrations of ions along the dendrite membrane.

In the presented DLA-based model, assuming only that neu-
ons grow in the direction of a local gradient of neurotrophic
ubstance and that dendrites compete for the same resources, it
as possible to reproduce the spatial embedding of major types
f cerebral neurons: granule cells, Purkinje cells, pyramidal
ells, and dendritic and axonal trees of interneurons. Interest-
ngly, the same model can be applied to model other types of
ree structures, as shown here using the example of a gener-

ted root and two types of real tree, which suggests similarities
etween the mechanism of dendrite growth and the variety of
ranched structures, where the objective is to optimize access to
ropic factors.

p
t
p
o

ome connected by a line segment. (B) While the aggregate grows, the particles
d time window. Insert: Example of a two-dimensional DLA comprising 6000
e aggregate.

. Materials and methods

.1. Generating neurons

The growth rule for DLA can be defined inductively as fol-
ows: introduce a randomly moving particle at a large distance
rom an n-particle aggregate, which sticks irreversibly at its
oint of first contact with the aggregate, thereby forming an
+ 1 particle aggregate. Fig. 1A illustrates a sample trajectory
f particles that stick to an aggregate composed of five particles
each particle is numbered in the order in which it contacts the
ggregate; the seed particle is numbered 0). Stated differently,
he aggregate grows by one step at the point of contact with

particle, thus prominent branches screen internal regions of
he aggregate, preventing them from growing further (Halsey,
997). For computational efficiency, instead of one moving par-
icle, m simultaneously moving particles was introduced (Voss,
984). In the presented model, the initial distribution of particles
s a model parameter and thus particles are not always uniformly
istributed, which is a significant difference from the classical
LA. As a result, there is a higher probability that the aggregate
ill grow toward a higher concentration of particles.
For computational simplicity, DLA was generated on a 3D

quare grid inside a rectangular box. At every iteration step,
articles moved by one position in the grid according to the
argolus rule (Toffoli and Margolus, 1998), which results in a
seudorandom movement of particles and increases computa-
ional efficiency. Illustration of the initial spatial distribution of
articles for the granule cells is presented in Fig. 2A. The number
f seed particles placed inside a box determined the number of
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ig. 2. Generating neurons in ensemble. (A) Illustration of the initial condition
hown for visualization clarity). Rectangular box represents a space limitation i

ggregates. To simulate an ensemble of simultaneously growing
eurons, I used nine equally distributed seeds (Fig. 2, Table 1).

As the new particles connect to the aggregate, a parent particle
s assigned to each newly connected particle at the point of its
onnection to the aggregate. When a new particle is connected
o more than one particle in the aggregate, the parent particle is
elected at random. For example, in Fig. 1A, for particle number
, either particle number 1 or particle number 2 could be assigned
s a parent particle, and in this case particle 1 was selected at
andom. Thus the aggregate is converted to a directed, acyclic
ree, where each particle becomes a node connected by a segment
o an assigned parent node. In a 3D grid, a particle can contact
p to 26 neighboring particles (later in the text the particles are
lso referred to as NPs).

Without additional restrictions, the aggregate would form a
eavily branched structure similar to DLA in the insert of Fig. 1.
herefore, I implemented a pruning procedure, which removes

erminal particles from the aggregate. At each iteration there is
robability p = 0.4 that any terminal particle of the aggregate can

e deleted if that particle was connected within the last PS iter-
tions, but later than five iterations ago, where PS is a pruning
pan parameter. As a result of the deletion, the parent particle of
he removed particle becomes again a terminal particle (eligible

o
s
r
U

able 1
he parameters used to generate different types of neurons

Box size Y × X × Z

ranule cell 20 × 24 × 24
asal dendrite 10 × 40 × 40
pical dendrite 72 × 28 × 28

nterneuron axonal tree 10 × 54 × 46
urkinje cell 32 × 130 × 14

he box size defines the space containing nine growing aggregates (the spatial orie
enotes a probability that a given cell (of size 1 × 1 × 1) in the box is occupied by
orrespond to differences between cortical layers.
enerating nine aggregates. (B) Generated granule cells (cells in corners are not
ed on the growth of aggregates.

or the deletion) unless it is a branching node. Thus increasing
runing span increases the number of deleted particles. Five iter-
tions were chosen before applying pruning, primary to allow for
he initial growth of new branches. Nevertheless, this parameter
as a very minor effect on the geometry of a dendrite as com-
ared to pruning span. The removed particles do not return to
he pool of NPs and the seed particle cannot be removed by def-
nition. The algorithm stops when no new particle is connected
or 100 iterations.

The resulting structure was smoothed to reduce the regularity
rtifact introduced by the use of a uniform grid. Additionally,
he use of a grid increased the tri- and higher order furcations,
ecause segments could connect to a tree only at discrete points.
o correct this artifact all furcations were reduced to bifurca-

ions by splitting a node with x segments into x–2 randomly
onnected nodes shifted by a small, random amount from the
riginal location. Generating DLA with an out-of-grid algo-
ithm would prevent the occurrence of the above artifacts, but
his would increase the computational time by at least an order

f magnitude. Another solution to this problem could be to sub-
tantially increase the growing space, which would decrease the
elative size of NPs and thereby reduce the regularity artifact.
nfortunately, the computational time would increase exponen-

Pruning span Particles density

34 0.3 for 0 < Y ≤ 4; 0.7 for 4 < Y ≤ 20
30 0.7 for 0 < Y ≤ 10
25 0.4 for 0 < Y ≤ 14; 0.2 for 14 < Y ≤ 72
14 0.05 for 0 < Y ≤ 7; 0.2 for 7 < Y ≤ 10
21 0.9 for 0 < Y ≤ 32

ntation of the X-, Y-, and Z-axes is illustrated in Fig. 2). The particle density
an NP. Note that the particle density can change along the Y axis, which can
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ially. For instance, for a box with 30 × 30 × 30 particles it takes
1 s to create DLA and for a box with 60 × 60 × 60 particles
he corresponding time is 2906 s (both cases using the follow-
ng parameters: particle density = 0.5, number of aggregates = 1;
S = 20; MATLAB 7.1, PC with 2.4 GHz Intel processor and
GB of RAM). I estimate that to model a slab of tissue with a

ealistic density of cells would require particles at least 20 times
maller that those used here, which would make the computa-
ions unacceptably long.

The parameters used to generate different types of neurons
ere optimized manually and are specified in Table 1. The MAT-
AB code used to produce the described simulations is available
t http://bin.yale.edu/∼ajl37/artur.html.

.2. Branch diameter

The aim of the present model is to explain the 3D embedding
f neurons, and hence the branch diameter lies outside the scope
f this work. Nevertheless, a diameter can be easily assigned to
ach branch of a generated dendrite based on the distance from
he dendrite tip. For instance, Samsonovich and Ascoli (2005)
resented that the branch diameter of hippocampal pyramidal
ells can be approximated by a linear function of the topological
istance from terminal segments.

.3. Description of the neuronal shape

I used the following measures to quantify the geometry of
endritic trees:

.3.1. Lengths ratio
This is the total length of terminal segments divided by the

otal length of intermediate segments. I used the dimensionless
engths ratio instead of specifying the total length of dendritic
egments, for example, since a calculation of length in microns
ould depend on the use of semi-arbitrary scaling factor for the
euron size in my model.

.3.2. PC2/PC1
This approximates the width/height ratio of a dendrite.

ssuming that each point of a neuron is a row vector, I applied
rincipal component analysis to find the two main axes of a
endrite. Here, PC1 is a S.D. of the first principal component
cores, and PC2 is a S.D. of the second principal component
cores. For calculating PC2/PC2, SDD and “fractal” dimension
see below) the Z-coordinates were set to zero, which decreased
he within-group variability and improved the discrimination
etween neuronal types (the reconstructed neurons have con-
iderably larger shape distortion in Z plane caused by the largest
hrinkage of brain slices in that plane; Pyapali and Turner, 1996).

.3.3. Skewness of distances distribution (SDD)
The SDD is a measure of the distribution of pairwise dis-
ances between points on the surface of a 3D object, which can
rovide a scale- and orientation-independent signature of the 3D
tructure of that object (Osada et al., 2002). The skewness of a
istribution is a measure of the asymmetry of the data around the

s
λ

L
t

Methods 157 (2006) 132–141 135

ample mean, and is defined as SDD = E((x − µ)3)/σ3, where µ

s the mean of x (here x represents the pairwise distances), σ

s the standard deviation of x, and E(t) represents the expected
mean) value of the quantity t. For neurons in this study, the dis-
ribution of all pairwise distances between the terminal points
f each dendrite was calculated (for neurons with more then 50
erminals, 50 randomly selected end points were used, which
eliably represented the entire distribution of end points). The
kewness of such a distribution provides information about the
egularity of the shape. For example, a negative skewness indi-
ates that the data are spread out more to the left of the mean
han to the right, meaning that there is a greater proportion of
horter pairwise distances.

.3.4. Asymmetry index (A)
This is a topological measure of a tree based on the num-

er and connectivity pattern of the segments while disregarding
he length of segments, their diameters, and the spatial embed-
ing. The asymmetry index is defined as the mean value of the
symmetry of its partitions (subtrees): A = (n − 1)−1�Ap(ri,si).
he summation runs over all n–1 branch points of the tree with
egree n, while the partition (ri,si) denotes the number of termi-
al segments on both subtrees at branch point i, and Ap denotes
he partition asymmetry: Ap = |r − s|/(r + s − 2), for r + s > 2 and
p(1,1) = 0. The asymmetry index ranges from zero for perfectly
ymmetrical trees to one for perfectly asymmetrical trees (Van
elt et al., 1992).

.3.5. Branch order
The branch order represents the topological distance from the

oma. Its value is an integer that is incremented at every bifur-
ation. A branch order equal to zero is assigned to the primary
egments; i.e., those emerging directly from the soma. The max-
mum branch order and the mean branch order were calculated
or every tree in this study.

.3.6. “Fractal” dimension (α,β)
Fractal dimension (FD) is a measure of the degree of

bject complexity based on how fast measurements increase
r decrease as a scale becomes larger or smaller. The fractal
imension of object S can be defined as:

FD = −lime→0 log(Ne)/log(e), where Ne is the minimum
umber of cubes of side length e needed to cover S. The neu-
on however shows a continuous variation of the gradient in the
og (Ne)/log(e) relation with no characteristic slope, and hence
t does not properly speaking have a single fractal dimension
Cannon et al., 1999; Caserta et al., 1995; Smith et al., 1996).
herefore, here the fractal properties of neurons were assessed
ith quantities derived from the caliper method as proposed by
annon et al. (1999). The caliper method, consists of measuring

he apparent length L(λ) when the structure is viewed at vari-
us resolutions, defined as different values for λ for the shortest
esolvable section. In practice, this amounts to measuring off

ections as if with calipers and ignoring features smaller then
. For a fractal, these quantities show a power law relation:
(λ)∼λ1−f, where the quantity f in the exponent is termed frac-

al dimension. As discussed in Cannon et al. (1999), this is not

http://bin.yale.edu/~ajl37/artur.html
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he case for most neurons. They do, however, follow a relation
f the form: log(L) = log(L0)−exp(α(log(λ) − β)), where L0 is
he measured length with the smallest step size. The quantities

and β were found by least squares fitting and have been used
ere to characterize the “fractal” dimension of neurons. Unlike
he real fractal dimension, the parameters α and β do change
ith the scaling size of an object. Therefore, to calculate α and
the generated neurons were scaled to match the mean branch

ength of actual neurons. The scaling factor was the following:
or basal dendrites: 33; apical dendrites: 15; granule cells: 25;
nterneurons: 40; Purkinje cells: 6; for the size of NP set to 1.

.4. Real neuron morphology data

Files with intracellularly labeled, reconstructed, and digital-
zed neurons were obtained from the Duke-Southampton on-line
rchive of neuronal morphology (http://neuron.duke.edu/cells/
ellArchive.html; Cannon et al., 1998). For this analysis, the
ollowing groups of neurons were used: 38 granule cells
rom rat dentate gyrus (unpublished data: Turner and Buzsáki,
998), 55 CA1 hippocampal pyramidal cells stained with bio-
ytin in whole anesthetized rats (Pyapali and Turner, 1994;
yapali and Turner, 1996, Pyapali et al., 1998, Turner et al.,
995), 13 interneurons from rat dentate gyrus in brain slices
tained with biocytin (Mott et al., 1997), and three Purk-
nje cells from the cerebellar cortex of adult guinea pigs,
abeled with horseradish peroxidase, and completely recon-
tructed from serial sections (Rapp et al., 1994; downloaded
rom http://www.krasnow.gmu.edu/ascoli/CNG, Ascoli et al.,
001).
. Results

DLA is a model for the formation of fractal-like structures,
nd hence the choice of the size of the growing area and the

o
p

s

ig. 3. The number of terminal segments of a dendritic tree as a function of model p
ubic box, which limits the growth of an aggregate. Increasing the time span of prunin
ggregates generated with different pruning span values (numbers on the right) and w
ines represent aggregates generated with NP densities of 0.7 and 0.3, respectively.
erminal segments can be generated with different combinations of pruning span val
edrawn as a function of mean branch order (for easier comparison between plots, th
pan values).
Methods 157 (2006) 132–141

orresponding pruning span could be regarded as a choice of
esolution (scale) for generating a given type of aggregate. The
election of a pruning span depends on the size of NPs relative to
he size of the growing area: smaller NPs produce an aggregate
ith a finer structure and, as a result, more branches have to
e removed to obtain tree with a similar size. This is illustrated
n Fig. 3A, which shows the number of terminal segments as a
unction of model parameters. As expected, trees with a larger
umber of terminals can be produced by: decreasing the pruning
pan (fewer terminal segments removed), increasing the size of
he growing area or increasing the NP density. Interestingly, a
ree with a given number of terminals could be generated with
ifferent combinations of pruning span value and size of the
rowing area. For example, a tree with ∼40 terminals can be
enerated with a pruning span value of 15, 25 or 40 and side
engths of the cubic growing space of 9, 13, or 19, respectively
Fig. 3A, dotted line; the above values were obtained for simula-
ions with one seed and with the NP size set to one). Trees with
he same number of terminals and generated in a box with the
ame ratio of side lengths had also similar topological structure
espite using different pruning span values. This is illustrated in
ig. 3B, where the mean branch order is relatively constant for a
iven number of terminals irrespective of the pruning span and
caling factor of the growing area, although a systematic shift
oward higher branch orders is visible for larger pruning span
alues. During growth of the aggregate, pruning most affects
lder branches, which do not have access to new NPs and are thus
ncapable of regenerating. Such branches are shielded from NPs
y newly growing branches. Therefore, pruning during aggre-
ate growth is comparable to deleting branches from a fully
rown aggregate. For example, similar dendritic trees could be

btained when only in the final step of the procedure the tree is
runed by recursively deleting terminal branches.

The shape of generated dendrites depends also on the relative
ide lengths of the rectangular space available for growth and the

arameters. (A) The number of terminal segments increases with the size of the
g has the opposite effect, reducing the number of ends. The solid lines represent

ith the density of NPs set to 0.5. The dashed lines above and below the solid
The horizontal dotted line illustrates that a dendrite with the same number of
ues and side lengths. (B) Data points with an NP density of 0.5 from panel A
e intensity of the gray color denotes dendrites generated with different pruning

http://neuron.duke.edu/cells/cellarchive.html
http://www.krasnow.gmu.edu/ascoli/cng
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ig. 4. Examples of real and generated neurons. (A and B) Examples of real an
E and F) Examples of real and generated apical dendrites of pyramidal cells. T

patial distribution of NPs (Table 1). For example, increasing the
eight/width ratio of the box changes the dendrite shape from
hat of a basal dendrite to a granule cell and, ultimately, to an api-
al dendrite. Decreasing relative width only in the Z-coordinate
irection changes it from a basal dendrite to a Purkinje cell
Figs. 4 and 5). Increasing the concentration of NPs increases
he density of branches. Changing the spatial distribution of the
oncentration of NPs influences both the orientation and density
f branches. For example, increasing the concentration of NPs
n the upper 30% section of the box, while reducing it almost
o zero elsewhere, produces an aggregate with the appearance
f an interneuron rather than of a basal dendrite (Fig. 5B). Such
hanges in particle density along the Y-axis may be biologically
ustified as reflecting different cortical layers. In the model, the
nitial distribution of particle densities along the Y-axis exhibits

sharp transition between two regions with different concen-
rations. However, after a few iterations the diffusive motion of
Ps creates a smooth concentration gradient between the layers,
hich is closer to real biological conditions. Thus, by changing
nly the space available for growth, the threshold and the spatial
istribution of NPs, the DLA model makes it possible to gen-
rate 3D structures similar to different types of dendritic and
xonal trees (Figs. 4 and 5, Table 1).

Quantitatively comparing the generated and real dendrites is

hallenging because there is no complete measure for describing
he complex 3D geometry of a tree. Here, to quantify the geo-

etrical properties of dendritic trees, I calculated the mean and
.D. of the eight measures described in the Section 2: the num-

m
t
p
s

rated granule cells. (C and D) Examples of real and generated basal dendrites.
ll bodies are depicted by spheres.

er of terminal branches, the lengths ratio, mean and maximum
ranch order, asymmetry index, PC2/PC1, SDD, and “fractal”
imension. The results of a quantitative comparison between
enerated dendrites (50 dendrites of each type of cell) and real
endrites (55 pyramidal cells, 13 interneurons, 38 granule cells,
nd three Purkinje cells) are summarized in Table 2, and exam-
les of generated and real neurons are illustrated in Figs. 4 and 5.
n almost all cases the mean values of the dendritic geometry
easures for the generated neurons were within one S.D. of the
ean values for real neurons (Table 2). Note that values calcu-

ated for real Purkinje cells may not be very accurate as only
hree reconstructed cells were available.

The use of a rectangular box to limit neuron growth may, at
rst sight, appear to impose an artificial constraint, whereas this
ctually simulates the space limitations imposed by, for exam-
le, the extent of the cortex layer, the extent of the area with
eurotrophic substances, and by neighboring neurons growing
imultaneously (Devries and Baylor, 1997). The present model
ested the impact of the last-mentioned factor by generating
ggregates in ensemble (nine simultaneously growing cells). In
hat case, the neighboring aggregates competed for available
pace and access to NPs, which limited the sideways growth of
eurons. The distances between aggregates in this model do not
eflect the distances between real neurons, which are actually

uch closer in the cortex. This is due to the particles consti-

uting the aggregates being relatively large, which reduces the
robability that the branches of one aggregate would penetrate
pace occupied by another aggregate tree. To model a slab of
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ig. 5. Examples of real and generated neurons. (A and B) Examples of real
nd generated axonal trees of interneurons. (C and D) Examples of real and
enerated Purkinje cells. The cell bodies are depicted by spheres.

issue containing a realistic density of cells, the particle size
sed here would have to be reduced by at least an order of mag-
itude, which would make the computations prohibitively long
see Section 2). Also due to computation time the number of
enerated neurons was limited to nine. Nevertheless the model
an be easily extended to generate larger number of neurons by
ncreasing the number of seeds and adequately increasing the
ize of the box in X and Z direction. Given the small amount
f cells, most of those cells grew next to the side of the box.
n some cases it caused shape distortions when branches grew
long the box side.

Competition among aggregates increases when the available
pace becomes smaller. For example, decreasing the distances
etween cells results in larger aggregates tending to suppress

maller aggregates by gathering more NPs, which can lead to
drastic ‘bigger gets bigger’ scenario. This can be prevented

y imposing a maximum allowed size for neurons generated in
n ensemble, which suggests that an intrinsic limitation on the

J
b
a
n
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ize of dendritic trees plays an important role in shaping neu-
on geometry and preventing a winner-take-all space outcome.
n the model, this effect can also be reduced by decreasing the
ize of NPs, thus decreasing the probability that NPs will be
aught by a larger aggregate. The simulations also revealed that
lacing seeds of aggregates at similar depths reduced the differ-
nces between the geometries of the dendrites (data not shown).
hus suggesting that lamination of the cortex can facilitate the
eneration of dendrites with reproducible shapes.

.1. Trees

In this paper, I present a simple diffusion model to repro-
uce spatial embedding of neurons. The same model can also be
pplied to model diverse types of tree structures. As an exam-
le, a generated root and two types of real trees (pear tree and
ornbeam) are shown in Fig. 6.

. Discussion

The main objective of this work is to illustrate that the cre-
tion of complex reproducible dendritic trees does not require
recise guidance or an intrinsic plan of the neuron geometry, but
ather that external factors can account for the spatial embedding
f the major types of dendrites observed in the cortex. In this
odel the number of terminal branches, the mean and maximum

ranch orders, and the fractal dimension and other parameters
f dendrite geometry are all controlled by a few basic environ-
ental factors. The most important factor in determining the

hape of generated neurons is the space available for growth.
hanges in the other factors such as the concentration or size
f NPs can lead to a similar dendritic shape by adjusting the
runing span of terminals (Fig. 3). In summary, the presented
LA-based model reveals that a simple, diffusive growth mech-

nism is capable of creating complex and diverse 3D trees strictly
imilar to observed neuronal shapes.

In the DLA model, connecting a new particle to the aggregate
pproximates growth in the direction of a local gradient. DLA is
imilar to Laplacian growth where the probability of growth at
ny point on the boundary of the growing object is determined by
aplace’s equation, which describes the ‘attraction’ field around

he object (Hastings and Levitov, 1998). Therefore the growth in
he direction of a local gradient and the DLA model incorporat-
ng connecting particles to the aggregate are almost equivalent.
hus I have used DLA as a computationally convenient tool to
odel (1) the growth of a dendrite toward a higher concentra-

ions of NPs, (2) diffusive motion of NPs, and (3) competition
etween dendrites for access to NPs.

The real dendrites grow by elongation and can branch either
ia bifurcation of growth cone-like tips or through interstitial
prouting of new branches from an existing dendritic branch.
hese new branches extend and retract to undergo constant

emodeling. Only a subset is eventually stabilized (Jan and

an, 2003). This phenomenon of constant pruning of dendritic
ranches during neuron development is modeled here by prob-
bilistic deleting the terminals. Parts of neuron, which were
ot deleted during a specified number of iteration (pruning
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Table 2
Comparison of geometrical measures (mean and S.D. values) between generated and real dendritic trees (for interneurons, values were calculated for an axonal tree)

Number of ends Lengths ratio Branch order Asm. indx PC2/PC1 SDD Fractal

Mean Max α β

Actual neurons
Granule 17.1 2.79 4.29 6.84 0.45 0.66 0.39 1.06 5.61
S.D. 4.4 1.13 0.54 1.06 0.25 0.13 0.18 0.18 0.21

Basal 34.2 4.23 5.82 9.87 0.48 0.73 0.36 1.24 4.80
S.D. 11.9 1.37 1.03 2.05 0.16 0.15 0.34 0.28 0.22

Apical 67.8 2.72 12.66 24.41 0.62 0.33 0.68 0.81 5.07
S.D. 31.9 0.74 2.77 5.85 0.09 0.08 0.19 0.14 0.22

Intern. 53.0 1.75 8.74 15.53 0.66 0.42 0.70 1.01 4.76
S.D. 36.3 0.25 2.50 5.22 0.13 0.16 0.12 0.23 0.28

Purkin. 437 1.07 14.70 27.00 0.52 0.78 0.25 0.71 3.55
S.D. 31.2 0.21 0.79 2.64 0.01 0.20 0.22 0.02 0.05

Generated neurons
Granule 17.5 2.59 4.25 7.17 0.56 0.57 0.37 1.30 5.47
S.D. 5.3 1.26 0.62 1.36 0.22 0.13 0.25 0.31 0.11

Basal 32.8 3.21 5.27 9.33 0.53 0.75 0.32 1.33 4.75
S.D. 3.3 0.52 0.46 1.05 0.16 0.07 0.11 0.21 0.06

Apical 66.7 1.47 11.24 21.04 0.71 0.25 0.65 0.85 5.01
S.D. 42.6 0.43 4.35 8.28 0.11 0.11 0.19 0.13 0.16

Intern. 57.9 1.74 8.03 14.12 0.61 0.45 0.50 1.06 5.04
S.D. 32.95 0.50 2.38 4.40 0.19 0.12 0.27 0.12 0.16

28.80
7.01

T

s
t
i
w

r

F
a

Purkin. 457 1.52 14.93
S.D. 222 0.4 3.08

he Section 2 provides a description of the measures.

pan), become “stabilized” by being excluded from any fur-

her pruning. The growth and pruning of real cortical neurons
s strongly influenced by excess or deficit of extrinsic factors,
hich includes for example: neurotrophin 3, brain-derived neu-

a
a
s

ig. 6. Demonstration of the general applicability of the algorithm to model diverse ty
re depicted as triangles to resemble leaves).
0.66 0.76 0.29 0.88 3.98
0.04 0.14 0.21 0.08 0.21

otrophic factor (BDNF) and nerve growth factor (McAlister et

l., 1997). For instance, BDNF released from an individual cell
lters the structure of nearby dendrites on an exquisitely local
cale (Horch and Katz, 2002). The intrinsic factors have an effect

pes of tree structures (from left: pear tree, root and hornbeam; terminal branches
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n stability rather than directionality of the dendrite by affect-
ng the dynamics of structural components of dendrites (Scott
nd Luo, 2001). The NPs in the presented model do not refer
o any concrete neurotrophic substance. I chose to call those
articles ‘neurotrophic’ to suggest a biological interpretation of
he model, which is that, a new dendrite branch sprouts at the
oint of contact with neurotrophic particles. Stated differently,
onnecting NP to the aggregate can be seen as equivalent to the
rocess where a new part of a dendrite came from the cell itself at
he location where the NP was detected. Also, a decrease in the
umber of freely moving NPs after contacting the aggregate has a
iological justification, namely that the neurotrophic molecules
re commonly uptaken by neurons and transported to the cell
ody (Purves, 1988; Von Bartheld et al., 1996). As mentioned
bove the neurons’ development is a very complicated process
nd the model presented here cannot account for all possible phe-
omena affecting neurons shape. For example, the morphology
f axons and dendrites can be affected by mechanical tensions
uring brain development (Van Essen, 1997). Additional model
arameters could improve the model’s accuracy, but would also
ncrease its complexity. Thus, in light of the fact that the existing

odel performs well and the goal of keeping the model simple,
believe the model’s current level of complexity and accuracy
re appropriately balanced.

It is notable that the presented model uses only five or seven
arameters (depending on the number of layers) to reproduce
omplex and diverse neuronal shapes: three dimensions charac-
erizing space, a pruning span, and one or three parameters to
pecify concentrations of NPs depending on whether one or two
ayers are considered, respectively. For comparison, Van Pelt
t al. (1997) uses three free parameters in his one-dimensional
ES-model of neuronal growth, and several more parameters
ere used by Samsonovich and Ascoli (2005) in their 3D model
f hippocampal cells.

Besides investigating the role of environmental factors in
haping dendritic geometry, the presented model can also be
f benefit for modeling community. The ever-increasing com-
utational power of computers allows more realistic models of
he cortex to be considered, which include connectivity pat-
erns between neurons, their electrophysiological properties, and
ull dendritic and axonal geometry (Ascoli, 1999; Muhammad
nd Markram, 2005). This type of realistic large-scale modeling
equires at least hundreds of neurons. Due to the lack of such
large number of fully reconstructed different types of neu-

ons, these models may benefit from the use of synthetic cells.
he model developed in this study can provide a new means for
enerating a large number of synthetic neurons. The software
ritten by the author to generate the presented types of neurons

s freely available.

. Conclusions

In this paper I have proposed a single mechanism for the for-

ation of diverse neuron shapes. The results demonstrate that

imultaneously grown diffusion-limited aggregates competing
or available resources create reproducible self-organized struc-
ures that are strikingly similar to neurons (Figs. 4 and 5). This

M

M

Methods 157 (2006) 132–141

s the first model to simulate 3D neuronal growth accounting
or external factors such as the NP concentration, competition
etween neurons, and space limitations. Moreover, it advances
LA-based models by incorporating pruning and space limita-

ions. Analysis of the discrepancies between generated and real
eurons may elucidate the relative contribution of other factors
hat – together with environmental factors – affect neuron out-
rowth. Finally, the presented model is readily applicable to the
odeling and analyses of other types of tree structures, as shown

y the example given in Fig. 6.
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