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Abstract

The relative importance of the intrinsic and extrinsic factors determining the variety of geometric shapes exhibited by dendritic trees remains
unclear. This question was addressed by developing a model of the growth of dendritic trees based on diffusion-limited aggregation process. The
model reproduces diverse neuronal shapes (i.e., granule cells, Purkinje cells, the basal and apical dendrites of pyramidal cells, and the axonal trees
of interneurons) by changing only the size of the growth area, the time span of pruning, and the spatial concentration of ‘neurotrophic particles’.
Moreover, the presented model shows how competition between neurons can affect the shape of the dendritic trees. The model reveals that the
creation of complex (but reproducible) dendrite-like trees does not require precise guidance or an intrinsic plan of the dendrite geometry. Instead,
basic environmental factors and the simple rules of diffusive growth adequately account for the spatial embedding of different types of dendrites
observed in the cortex. An example demonstrating the broad applicability of the algorithm to model diverse types of tree structures is also presented.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The geometry of dendritic trees plays an important role in
determining the connectivity (Amirikian, 2005; Stepanyants
and Chklovskii, 2005) and electrophysiological properties of
neurons (Krichmar et al., 2002; Mainen and Sejnowski, 1996;
Migliore et al., 1995). However, the extent to which intrinsic
and extrinsic factors shape dendritic geometry remains largely
unknown (Scott and Luo, 2001). The complexity of interactions
between different intrinsic and extrinsic factors during the devel-
opment of neuronal arborization can make it very difficult to
separate their contributions experimentally. In this study, I pro-
pose a simple computational model that demonstrates that two
basic external factors — (i) the space available for growth and (ii)
the spatial distribution of ‘neurotrophic particles’ (NPs) — can
adequately account for the three-dimensional (3D) embedding
of dendritic and axonal trees.

Although past models of dendritic growth have been pro-
posed, none of these models considered the role of environmen-
tal factors on 3D structure of neurons. For example, in some of
earlier works, only dendrograms were modeled (i.e., connectiv-
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ity among branches, and their length and diameter) yet spatial
embedding was not considered (Nowakowski et al., 1992; Van
Ooyen et al., 2001; Van Pelt et al., 1997). In the 3D models
of dendritic trees, several parameters measured from real neu-
rons (e.g., the probability distribution of branching points as a
function of the distance from a soma) were used and stochastic
procedures were applied to recreate dendrites while disregard-
ing influence of environment (Ascoli, 1999; Burke and Marks,
2002; Samsonovich and Ascoli, 2003; Samsonovich and Ascoli,
2005; for review see Ascoli, 2002).

In contrast to the above models based on statistical recon-
struction of dendrites, the present model simulates 3D neuronal
growth using external factors. In this approach, dendrite geome-
try parameters (e.g., number of segments, branching probability,
orientation, etc.) are not built into the model but rather geometry
parameters emerge as a result of environmental factors such as
the NP concentration, competition between neurons, and space
limitations. External cues are well known to play a significant
role in shaping dendritic geometry (Horch and Katz, 2002),
and hence the model presented here accounts for the impor-
tant biological processes underlying neuronal geometry (see
Section 4).

To simulate neuronal growth, I used diffusion-limited aggre-
gation (DLA), which is a well-established physical model for
the formation of structures controlled by diffusion processes
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Fig. 1. Tllustration of the DLA algorithm. (A) Randomly moving particles (black) stick irreversibly at their point of first contact with the aggregate (composed of
particles 0-5). To each newly jointed particle a parent particle is assigned and both become connected by a line segment. (B) While the aggregate grows, the particles
at the terminals are randomly deleted from the aggregate (pruning) during a specified time window. Insert: Example of a two-dimensional DLA comprising 6000
particles. The color intensity decreases in the order in which particles connected to the aggregate.

(Witten and Sander, 1981). Prior research has demonstrated that
DLA can provide a good description of a variety of natural pro-
cesses, such as electrical discharge in gas (lightning) (Niemeyer
et al., 1984), electrochemical deposition (Brady and Ball, 1984;
Halsey, 1990), or the growth of snowflakes (Family et al., 1987).
The form of a typical DLA structure is illustrated in the insert
of Fig. 1.

Previously, diffusive processes were invoked to explain the
origin of dendritic arbors by Hentschel and Fine (1996), who
proposed a two-dimensional diffusion-regulated model of den-
dritic morphogenesis in which cell growth depended upon
the local concentration of calcium. However, their model was
restricted to the early stage of neuronal growth only, and was
based on in vitro cultures. In order to generate a 3D embedding
of fully developed dendritic trees, the present model operates
at a coarser level. It takes into account the local concentrations
of NPs, but without including such details as changes in the
concentrations of ions along the dendrite membrane.

In the presented DLA-based model, assuming only that neu-
rons grow in the direction of a local gradient of neurotrophic
substance and that dendrites compete for the same resources, it
was possible to reproduce the spatial embedding of major types
of cerebral neurons: granule cells, Purkinje cells, pyramidal
cells, and dendritic and axonal trees of interneurons. Interest-
ingly, the same model can be applied to model other types of
tree structures, as shown here using the example of a gener-
ated root and two types of real tree, which suggests similarities
between the mechanism of dendrite growth and the variety of
branched structures, where the objective is to optimize access to
tropic factors.

2. Materials and methods
2.1. Generating neurons

The growth rule for DLA can be defined inductively as fol-
lows: introduce a randomly moving particle at a large distance
from an n-particle aggregate, which sticks irreversibly at its
point of first contact with the aggregate, thereby forming an
n+ 1 particle aggregate. Fig. 1A illustrates a sample trajectory
of particles that stick to an aggregate composed of five particles
(each particle is numbered in the order in which it contacts the
aggregate; the seed particle is numbered 0). Stated differently,
the aggregate grows by one step at the point of contact with
a particle, thus prominent branches screen internal regions of
the aggregate, preventing them from growing further (Halsey,
1997). For computational efficiency, instead of one moving par-
ticle, m simultaneously moving particles was introduced (Voss,
1984). In the presented model, the initial distribution of particles
is a model parameter and thus particles are not always uniformly
distributed, which is a significant difference from the classical
DLA. As aresult, there is a higher probability that the aggregate
will grow toward a higher concentration of particles.

For computational simplicity, DLA was generated on a 3D
square grid inside a rectangular box. At every iteration step,
particles moved by one position in the grid according to the
Margolus rule (Toffoli and Margolus, 1998), which results in a
pseudorandom movement of particles and increases computa-
tional efficiency. Illustration of the initial spatial distribution of
particles for the granule cells is presented in Fig. 2A. The number
of seed particles placed inside a box determined the number of



134 A. Luczak / Journal of Neuroscience Methods 157 (2006) 132—141

position of particles
inside area of growth

(A) aggregates

fully grown aggregates

B

Fig. 2. Generating neurons in ensemble. (A) Illustration of the initial condition for generating nine aggregates. (B) Generated granule cells (cells in corners are not
shown for visualization clarity). Rectangular box represents a space limitation imposed on the growth of aggregates.

aggregates. To simulate an ensemble of simultaneously growing
neurons, I used nine equally distributed seeds (Fig. 2, Table 1).

As the new particles connect to the aggregate, a parent particle
is assigned to each newly connected particle at the point of its
connection to the aggregate. When a new particle is connected
to more than one particle in the aggregate, the parent particle is
selected at random. For example, in Fig. 1A, for particle number
4, either particle number 1 or particle number 2 could be assigned
as a parent particle, and in this case particle 1 was selected at
random. Thus the aggregate is converted to a directed, acyclic
tree, where each particle becomes a node connected by a segment
to an assigned parent node. In a 3D grid, a particle can contact
up to 26 neighboring particles (later in the text the particles are
also referred to as NPs).

Without additional restrictions, the aggregate would form a
heavily branched structure similar to DLA in the insert of Fig. 1.
Therefore, I implemented a pruning procedure, which removes
terminal particles from the aggregate. At each iteration there is
probability p = 0.4 that any terminal particle of the aggregate can
be deleted if that particle was connected within the last PS iter-
ations, but later than five iterations ago, where PS is a pruning
span parameter. As a result of the deletion, the parent particle of
the removed particle becomes again a terminal particle (eligible

Table 1
The parameters used to generate different types of neurons

for the deletion) unless it is a branching node. Thus increasing
pruning span increases the number of deleted particles. Five iter-
ations were chosen before applying pruning, primary to allow for
the initial growth of new branches. Nevertheless, this parameter
has a very minor effect on the geometry of a dendrite as com-
pared to pruning span. The removed particles do not return to
the pool of NPs and the seed particle cannot be removed by def-
inition. The algorithm stops when no new particle is connected
for 100 iterations.

The resulting structure was smoothed to reduce the regularity
artifact introduced by the use of a uniform grid. Additionally,
the use of a grid increased the tri- and higher order furcations,
because segments could connect to a tree only at discrete points.
To correct this artifact all furcations were reduced to bifurca-
tions by splitting a node with x segments into x—2 randomly
connected nodes shifted by a small, random amount from the
original location. Generating DLA with an out-of-grid algo-
rithm would prevent the occurrence of the above artifacts, but
this would increase the computational time by at least an order
of magnitude. Another solution to this problem could be to sub-
stantially increase the growing space, which would decrease the
relative size of NPs and thereby reduce the regularity artifact.
Unfortunately, the computational time would increase exponen-

Boxsize Y x X x Z

Pruning span Particles density

Granule cell 20 x 24 x 24
Basal dendrite 10 x 40 x 40
Apical dendrite 72 x 28 x 28
Interneuron axonal tree 10 x 54 x 46
Purkinje cell 32 x 130 x 14

34 0.3for0<Y<4;0.7 for4<Y <20
30 0.7 for0<Y <10

25 04 for0<Y<14;0.2for 14<Y <72
14 0.05for0<Y<7;02for7<Y <10
21 0.9 for0<Y <32

The box size defines the space containing nine growing aggregates (the spatial orientation of the X-, Y-, and Z-axes is illustrated in Fig. 2). The particle density
denotes a probability that a given cell (of size 1 x 1 x 1) in the box is occupied by an NP. Note that the particle density can change along the Y axis, which can

correspond to differences between cortical layers.
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tially. For instance, for a box with 30 x 30 x 30 particles it takes
51s to create DLA and for a box with 60 x 60 x 60 particles
the corresponding time is 2906 s (both cases using the follow-
ing parameters: particle density = 0.5, number of aggregates = 1;
PS=20; MATLAB 7.1, PC with 2.4 GHz Intel processor and
2 GB of RAM). I estimate that to model a slab of tissue with a
realistic density of cells would require particles at least 20 times
smaller that those used here, which would make the computa-
tions unacceptably long.

The parameters used to generate different types of neurons
were optimized manually and are specified in Table 1. The MAT-
LAB code used to produce the described simulations is available
at http://bin.yale.edu/~ajl37/artur.html.

2.2. Branch diameter

The aim of the present model is to explain the 3D embedding
of neurons, and hence the branch diameter lies outside the scope
of this work. Nevertheless, a diameter can be easily assigned to
each branch of a generated dendrite based on the distance from
the dendrite tip. For instance, Samsonovich and Ascoli (2005)
presented that the branch diameter of hippocampal pyramidal
cells can be approximated by a linear function of the topological
distance from terminal segments.

2.3. Description of the neuronal shape

I used the following measures to quantify the geometry of
dendritic trees:

2.3.1. Lengths ratio

This is the total length of terminal segments divided by the
total length of intermediate segments. I used the dimensionless
lengths ratio instead of specifying the total length of dendritic
segments, for example, since a calculation of length in microns
would depend on the use of semi-arbitrary scaling factor for the
neuron size in my model.

2.3.2. PC2/PCI

This approximates the width/height ratio of a dendrite.
Assuming that each point of a neuron is a row vector, I applied
principal component analysis to find the two main axes of a
dendrite. Here, PC1 is a S.D. of the first principal component
scores, and PC2 is a S.D. of the second principal component
scores. For calculating PC2/PC2, SDD and “fractal” dimension
(see below) the Z-coordinates were set to zero, which decreased
the within-group variability and improved the discrimination
between neuronal types (the reconstructed neurons have con-
siderably larger shape distortion in Z plane caused by the largest
shrinkage of brain slices in that plane; Pyapali and Turner, 1996).

2.3.3. Skewness of distances distribution (SDD)

The SDD is a measure of the distribution of pairwise dis-
tances between points on the surface of a 3D object, which can
provide a scale- and orientation-independent signature of the 3D
structure of that object (Osada et al., 2002). The skewness of a
distribution is a measure of the asymmetry of the data around the

sample mean, and is defined as SDD = E((x — ,u)3)/c73 , Where
is the mean of x (here x represents the pairwise distances), o
is the standard deviation of x, and E(f) represents the expected
(mean) value of the quantity ¢. For neurons in this study, the dis-
tribution of all pairwise distances between the terminal points
of each dendrite was calculated (for neurons with more then 50
terminals, 50 randomly selected end points were used, which
reliably represented the entire distribution of end points). The
skewness of such a distribution provides information about the
regularity of the shape. For example, a negative skewness indi-
cates that the data are spread out more to the left of the mean
than to the right, meaning that there is a greater proportion of
shorter pairwise distances.

2.3.4. Asymmetry index (A)

This is a topological measure of a tree based on the num-
ber and connectivity pattern of the segments while disregarding
the length of segments, their diameters, and the spatial embed-
ding. The asymmetry index is defined as the mean value of the
asymmetry of its partitions (subtrees): A=(n — D! SAp(ri,Si).
The summation runs over all n—1 branch points of the tree with
degree n, while the partition (r;,s;) denotes the number of termi-
nal segments on both subtrees at branch point 7, and A, denotes
the partition asymmetry: Ap = |r — s|/(r +s — 2), for r+s>2 and
Ap(1,1)=0. The asymmetry index ranges from zero for perfectly
symmetrical trees to one for perfectly asymmetrical trees (Van
Pelt et al., 1992).

2.3.5. Branch order

The branch order represents the topological distance from the
soma. Its value is an integer that is incremented at every bifur-
cation. A branch order equal to zero is assigned to the primary
segments; i.e., those emerging directly from the soma. The max-
imum branch order and the mean branch order were calculated
for every tree in this study.

2.3.6. “Fractal” dimension (a,f)

Fractal dimension (FD) is a measure of the degree of
object complexity based on how fast measurements increase
or decrease as a scale becomes larger or smaller. The fractal
dimension of object S can be defined as:

FD=—lim,_,¢ log(N,.)/log(e), where N, is the minimum
number of cubes of side length e needed to cover S. The neu-
ron however shows a continuous variation of the gradient in the
log (N,)/1og(e) relation with no characteristic slope, and hence
it does not properly speaking have a single fractal dimension
(Cannon et al., 1999; Caserta et al., 1995; Smith et al., 1996).
Therefore, here the fractal properties of neurons were assessed
with quantities derived from the caliper method as proposed by
Cannon et al. (1999). The caliper method, consists of measuring
the apparent length L(X) when the structure is viewed at vari-
ous resolutions, defined as different values for A for the shortest
resolvable section. In practice, this amounts to measuring off
sections as if with calipers and ignoring features smaller then
A. For a fractal, these quantities show a power law relation:
L(A)~1'~, where the quantity fin the exponent is termed frac-
tal dimension. As discussed in Cannon et al. (1999), this is not
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the case for most neurons. They do, however, follow a relation
of the form: log(L) =log(Lo)—exp(a(log(r) — B)), where Ly is
the measured length with the smallest step size. The quantities
o and B were found by least squares fitting and have been used
here to characterize the “fractal” dimension of neurons. Unlike
the real fractal dimension, the parameters o and 8 do change
with the scaling size of an object. Therefore, to calculate « and
B the generated neurons were scaled to match the mean branch
length of actual neurons. The scaling factor was the following:
for basal dendrites: 33; apical dendrites: 15; granule cells: 25;
interneurons: 40; Purkinje cells: 6; for the size of NP set to 1.

2.4. Real neuron morphology data

Files with intracellularly labeled, reconstructed, and digital-
ized neurons were obtained from the Duke-Southampton on-line
archive of neuronal morphology (http://neuron.duke.edu/cells/
cellArchive.html; Cannon et al., 1998). For this analysis, the
following groups of neurons were used: 38 granule cells
from rat dentate gyrus (unpublished data: Turner and Buzsaki,
1998), 55 CA1 hippocampal pyramidal cells stained with bio-
cytin in whole anesthetized rats (Pyapali and Turner, 1994;
Pyapali and Turner, 1996, Pyapali et al., 1998, Turner et al.,
1995), 13 interneurons from rat dentate gyrus in brain slices
stained with biocytin (Mott et al., 1997), and three Purk-
inje cells from the cerebellar cortex of adult guinea pigs,
labeled with horseradish peroxidase, and completely recon-
structed from serial sections (Rapp et al., 1994; downloaded
from http://www.krasnow.gmu.edu/ascoli/CNG, Ascoli et al.,
2001).

3. Results

DLA is a model for the formation of fractal-like structures,
and hence the choice of the size of the growing area and the
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corresponding pruning span could be regarded as a choice of
resolution (scale) for generating a given type of aggregate. The
selection of a pruning span depends on the size of NPs relative to
the size of the growing area: smaller NPs produce an aggregate
with a finer structure and, as a result, more branches have to
be removed to obtain tree with a similar size. This is illustrated
in Fig. 3A, which shows the number of terminal segments as a
function of model parameters. As expected, trees with a larger
number of terminals can be produced by: decreasing the pruning
span (fewer terminal segments removed), increasing the size of
the growing area or increasing the NP density. Interestingly, a
tree with a given number of terminals could be generated with
different combinations of pruning span value and size of the
growing area. For example, a tree with ~40 terminals can be
generated with a pruning span value of 15, 25 or 40 and side
lengths of the cubic growing space of 9, 13, or 19, respectively
(Fig. 3A, dotted line; the above values were obtained for simula-
tions with one seed and with the NP size set to one). Trees with
the same number of terminals and generated in a box with the
same ratio of side lengths had also similar topological structure
despite using different pruning span values. This is illustrated in
Fig. 3B, where the mean branch order is relatively constant for a
given number of terminals irrespective of the pruning span and
scaling factor of the growing area, although a systematic shift
toward higher branch orders is visible for larger pruning span
values. During growth of the aggregate, pruning most affects
older branches, which do not have access to new NPs and are thus
incapable of regenerating. Such branches are shielded from NPs
by newly growing branches. Therefore, pruning during aggre-
gate growth is comparable to deleting branches from a fully
grown aggregate. For example, similar dendritic trees could be
obtained when only in the final step of the procedure the tree is
pruned by recursively deleting terminal branches.

The shape of generated dendrites depends also on the relative
side lengths of the rectangular space available for growth and the
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Fig. 3. The number of terminal segments of a dendritic tree as a function of model parameters. (A) The number of terminal segments increases with the size of the
cubic box, which limits the growth of an aggregate. Increasing the time span of pruning has the opposite effect, reducing the number of ends. The solid lines represent
aggregates generated with different pruning span values (numbers on the right) and with the density of NPs set to 0.5. The dashed lines above and below the solid
lines represent aggregates generated with NP densities of 0.7 and 0.3, respectively. The horizontal dotted line illustrates that a dendrite with the same number of
terminal segments can be generated with different combinations of pruning span values and side lengths. (B) Data points with an NP density of 0.5 from panel A
redrawn as a function of mean branch order (for easier comparison between plots, the intensity of the gray color denotes dendrites generated with different pruning

span values).
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Fig. 4. Examples of real and generated neurons. (A and B) Examples of real and generated granule cells. (C and D) Examples of real and generated basal dendrites.
(E and F) Examples of real and generated apical dendrites of pyramidal cells. The cell bodies are depicted by spheres.

spatial distribution of NPs (Table 1). For example, increasing the
height/width ratio of the box changes the dendrite shape from
that of a basal dendrite to a granule cell and, ultimately, to an api-
cal dendrite. Decreasing relative width only in the Z-coordinate
direction changes it from a basal dendrite to a Purkinje cell
(Figs. 4 and 5). Increasing the concentration of NPs increases
the density of branches. Changing the spatial distribution of the
concentration of NPs influences both the orientation and density
of branches. For example, increasing the concentration of NPs
in the upper 30% section of the box, while reducing it almost
to zero elsewhere, produces an aggregate with the appearance
of an interneuron rather than of a basal dendrite (Fig. 5B). Such
changes in particle density along the Y-axis may be biologically
justified as reflecting different cortical layers. In the model, the
initial distribution of particle densities along the Y-axis exhibits
a sharp transition between two regions with different concen-
trations. However, after a few iterations the diffusive motion of
NPs creates a smooth concentration gradient between the layers,
which is closer to real biological conditions. Thus, by changing
only the space available for growth, the threshold and the spatial
distribution of NPs, the DLA model makes it possible to gen-
erate 3D structures similar to different types of dendritic and
axonal trees (Figs. 4 and 5, Table 1).

Quantitatively comparing the generated and real dendrites is
challenging because there is no complete measure for describing
the complex 3D geometry of a tree. Here, to quantify the geo-
metrical properties of dendritic trees, I calculated the mean and
S.D. of the eight measures described in the Section 2: the num-

ber of terminal branches, the lengths ratio, mean and maximum
branch order, asymmetry index, PC2/PC1, SDD, and “fractal”
dimension. The results of a quantitative comparison between
generated dendrites (50 dendrites of each type of cell) and real
dendrites (55 pyramidal cells, 13 interneurons, 38 granule cells,
and three Purkinje cells) are summarized in Table 2, and exam-
ples of generated and real neurons are illustrated in Figs. 4 and 5.
In almost all cases the mean values of the dendritic geometry
measures for the generated neurons were within one S.D. of the
mean values for real neurons (Table 2). Note that values calcu-
lated for real Purkinje cells may not be very accurate as only
three reconstructed cells were available.

The use of a rectangular box to limit neuron growth may, at
first sight, appear to impose an artificial constraint, whereas this
actually simulates the space limitations imposed by, for exam-
ple, the extent of the cortex layer, the extent of the area with
neurotrophic substances, and by neighboring neurons growing
simultaneously (Devries and Baylor, 1997). The present model
tested the impact of the last-mentioned factor by generating
aggregates in ensemble (nine simultaneously growing cells). In
that case, the neighboring aggregates competed for available
space and access to NPs, which limited the sideways growth of
neurons. The distances between aggregates in this model do not
reflect the distances between real neurons, which are actually
much closer in the cortex. This is due to the particles consti-
tuting the aggregates being relatively large, which reduces the
probability that the branches of one aggregate would penetrate
space occupied by another aggregate tree. To model a slab of
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Fig. 5. Examples of real and generated neurons. (A and B) Examples of real
and generated axonal trees of interneurons. (C and D) Examples of real and
generated Purkinje cells. The cell bodies are depicted by spheres.
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tissue containing a realistic density of cells, the particle size
used here would have to be reduced by at least an order of mag-
nitude, which would make the computations prohibitively long
(see Section 2). Also due to computation time the number of
generated neurons was limited to nine. Nevertheless the model
can be easily extended to generate larger number of neurons by
increasing the number of seeds and adequately increasing the
size of the box in X and Z direction. Given the small amount
of cells, most of those cells grew next to the side of the box.
In some cases it caused shape distortions when branches grew
along the box side.

Competition among aggregates increases when the available
space becomes smaller. For example, decreasing the distances
between cells results in larger aggregates tending to suppress
smaller aggregates by gathering more NPs, which can lead to
a drastic ‘bigger gets bigger’ scenario. This can be prevented
by imposing a maximum allowed size for neurons generated in
an ensemble, which suggests that an intrinsic limitation on the

size of dendritic trees plays an important role in shaping neu-
ron geometry and preventing a winner-take-all space outcome.
In the model, this effect can also be reduced by decreasing the
size of NPs, thus decreasing the probability that NPs will be
caught by a larger aggregate. The simulations also revealed that
placing seeds of aggregates at similar depths reduced the differ-
ences between the geometries of the dendrites (data not shown).
Thus suggesting that lamination of the cortex can facilitate the
generation of dendrites with reproducible shapes.

3.1. Trees

In this paper, I present a simple diffusion model to repro-
duce spatial embedding of neurons. The same model can also be
applied to model diverse types of tree structures. As an exam-
ple, a generated root and two types of real trees (pear tree and
hornbeam) are shown in Fig. 6.

4. Discussion

The main objective of this work is to illustrate that the cre-
ation of complex reproducible dendritic trees does not require
precise guidance or an intrinsic plan of the neuron geometry, but
rather that external factors can account for the spatial embedding
of the major types of dendrites observed in the cortex. In this
model the number of terminal branches, the mean and maximum
branch orders, and the fractal dimension and other parameters
of dendrite geometry are all controlled by a few basic environ-
mental factors. The most important factor in determining the
shape of generated neurons is the space available for growth.
Changes in the other factors such as the concentration or size
of NPs can lead to a similar dendritic shape by adjusting the
pruning span of terminals (Fig. 3). In summary, the presented
DLA-based model reveals that a simple, diffusive growth mech-
anismis capable of creating complex and diverse 3D trees strictly
similar to observed neuronal shapes.

In the DLA model, connecting a new particle to the aggregate
approximates growth in the direction of a local gradient. DLA is
similar to Laplacian growth where the probability of growth at
any point on the boundary of the growing object is determined by
Laplace’s equation, which describes the ‘attraction’ field around
the object (Hastings and Levitov, 1998). Therefore the growth in
the direction of a local gradient and the DLA model incorporat-
ing connecting particles to the aggregate are almost equivalent.
Thus I have used DLA as a computationally convenient tool to
model (1) the growth of a dendrite toward a higher concentra-
tions of NPs, (2) diffusive motion of NPs, and (3) competition
between dendrites for access to NPs.

The real dendrites grow by elongation and can branch either
via bifurcation of growth cone-like tips or through interstitial
sprouting of new branches from an existing dendritic branch.
These new branches extend and retract to undergo constant
remodeling. Only a subset is eventually stabilized (Jan and
Jan, 2003). This phenomenon of constant pruning of dendritic
branches during neuron development is modeled here by prob-
abilistic deleting the terminals. Parts of neuron, which were
not deleted during a specified number of iteration (pruning
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Table 2
Comparison of geometrical measures (mean and S.D. values) between generated and real dendritic trees (for interneurons, values were calculated for an axonal tree)
Number of ends Lengths ratio Branch order Asm. indx PC2/PCl1 SDD Fractal
Mean Max o B
Actual neurons
Granule 17.1 2.79 4.29 6.84 0.45 0.66 0.39 1.06 5.61
S.D. 44 1.13 0.54 1.06 0.25 0.13 0.18 0.18 0.21
Basal 34.2 4.23 5.82 9.87 0.48 0.73 0.36 1.24 4.80
S.D. 11.9 1.37 1.03 2.05 0.16 0.15 0.34 0.28 0.22
Apical 67.8 2.72 12.66 24.41 0.62 0.33 0.68 0.81 5.07
S.D. 31.9 0.74 2.77 5.85 0.09 0.08 0.19 0.14 0.22
Intern. 53.0 1.75 8.74 15.53 0.66 0.42 0.70 1.01 4.76
S.D. 36.3 0.25 2.50 5.22 0.13 0.16 0.12 0.23 0.28
Purkin. 437 1.07 14.70 27.00 0.52 0.78 0.25 0.71 3.55
S.D. 31.2 0.21 0.79 2.64 0.01 0.20 0.22 0.02 0.05
Generated neurons
Granule 17.5 2.59 4.25 7.17 0.56 0.57 0.37 1.30 547
S.D. 53 1.26 0.62 1.36 0.22 0.13 0.25 0.31 0.11
Basal 32.8 3.21 5.27 9.33 0.53 0.75 0.32 1.33 4.75
S.D. 33 0.52 0.46 1.05 0.16 0.07 0.11 0.21 0.06
Apical 66.7 1.47 11.24 21.04 0.71 0.25 0.65 0.85 5.01
S.D. 42.6 0.43 4.35 8.28 0.11 0.11 0.19 0.13 0.16
Intern. 57.9 1.74 8.03 14.12 0.61 0.45 0.50 1.06 5.04
S.D. 32.95 0.50 2.38 4.40 0.19 0.12 0.27 0.12 0.16
Purkin. 457 1.52 14.93 28.80 0.66 0.76 0.29 0.88 3.98
S.D. 222 0.4 3.08 7.01 0.04 0.14 0.21 0.08 0.21

The Section 2 provides a description of the measures.

span), become ‘“‘stabilized” by being excluded from any fur-
ther pruning. The growth and pruning of real cortical neurons
is strongly influenced by excess or deficit of extrinsic factors,
which includes for example: neurotrophin 3, brain-derived neu-

Generated trees and root

rotrophic factor (BDNF) and nerve growth factor (McAlister et
al., 1997). For instance, BDNF released from an individual cell
alters the structure of nearby dendrites on an exquisitely local
scale (Horch and Katz, 2002). The intrinsic factors have an effect

Fig. 6. Demonstration of the general applicability of the algorithm to model diverse types of tree structures (from left: pear tree, root and hornbeam; terminal branches

are depicted as triangles to resemble leaves).
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on stability rather than directionality of the dendrite by affect-
ing the dynamics of structural components of dendrites (Scott
and Luo, 2001). The NPs in the presented model do not refer
to any concrete neurotrophic substance. I chose to call those
particles ‘neurotrophic’ to suggest a biological interpretation of
the model, which is that, a new dendrite branch sprouts at the
point of contact with neurotrophic particles. Stated differently,
connecting NP to the aggregate can be seen as equivalent to the
process where a new part of a dendrite came from the cell itself at
the location where the NP was detected. Also, a decrease in the
number of freely moving NPs after contacting the aggregate has a
biological justification, namely that the neurotrophic molecules
are commonly uptaken by neurons and transported to the cell
body (Purves, 1988; Von Bartheld et al., 1996). As mentioned
above the neurons’ development is a very complicated process
and the model presented here cannot account for all possible phe-
nomena affecting neurons shape. For example, the morphology
of axons and dendrites can be affected by mechanical tensions
during brain development (Van Essen, 1997). Additional model
parameters could improve the model’s accuracy, but would also
increase its complexity. Thus, in light of the fact that the existing
model performs well and the goal of keeping the model simple,
I believe the model’s current level of complexity and accuracy
are appropriately balanced.

It is notable that the presented model uses only five or seven
parameters (depending on the number of layers) to reproduce
complex and diverse neuronal shapes: three dimensions charac-
terizing space, a pruning span, and one or three parameters to
specify concentrations of NPs depending on whether one or two
layers are considered, respectively. For comparison, Van Pelt
et al. (1997) uses three free parameters in his one-dimensional
BES-model of neuronal growth, and several more parameters
were used by Samsonovich and Ascoli (2005) in their 3D model
of hippocampal cells.

Besides investigating the role of environmental factors in
shaping dendritic geometry, the presented model can also be
of benefit for modeling community. The ever-increasing com-
putational power of computers allows more realistic models of
the cortex to be considered, which include connectivity pat-
terns between neurons, their electrophysiological properties, and
full dendritic and axonal geometry (Ascoli, 1999; Muhammad
and Markram, 2005). This type of realistic large-scale modeling
requires at least hundreds of neurons. Due to the lack of such
a large number of fully reconstructed different types of neu-
rons, these models may benefit from the use of synthetic cells.
The model developed in this study can provide a new means for
generating a large number of synthetic neurons. The software
written by the author to generate the presented types of neurons
is freely available.

5. Conclusions

In this paper I have proposed a single mechanism for the for-
mation of diverse neuron shapes. The results demonstrate that
simultaneously grown diffusion-limited aggregates competing
for available resources create reproducible self-organized struc-
tures that are strikingly similar to neurons (Figs. 4 and 5). This

is the first model to simulate 3D neuronal growth accounting
for external factors such as the NP concentration, competition
between neurons, and space limitations. Moreover, it advances
DLA-based models by incorporating pruning and space limita-
tions. Analysis of the discrepancies between generated and real
neurons may elucidate the relative contribution of other factors
that — together with environmental factors — affect neuron out-
growth. Finally, the presented model is readily applicable to the
modeling and analyses of other types of tree structures, as shown
by the example given in Fig. 6.
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