
A Survey of Vectorization Methods
in Topological Data Analysis

Dashti Ali, Aras Asaad, Maria Jose Jimenez, Vidit Nanda, Eduardo Paluzo-Hidalgo,
and Manuel Soriano-Trigueros

Abstract. Attempts to incorporate topological information in supervised learning tasks have
resulted in the creation of several techniques for vectorizing persistent homology barcodes.
In this paper, we study thirteen such methods. Besides describing an organizational frame-
work for these methods, we comprehensively benchmark them against three well-known
classification tasks. Surprisingly, we discover that the best-performing method is a simple
vectorization, which consists only of a few elementary summary statistics. Finally, we pro-
vide a convenient web application which has been designed to facilitate exploration and
experimentation with various vectorization methods.

Introduction

Propelled by deep theoretical foundations and a host of computational breakthroughs,
topological data analysis emerged roughly three decades ago as a promising method for
extracting insights from unstructured data [32, 14, 42, 44]. The principal instrument of
the enterprise is persistent homology; this consists of three basic steps, each relying on a
different branch of mathematics.

(1) Metric geometry: construct an increasing family {Xt} of cell complexes around the
input dataset X, where the indexing t is a scale parameter in R≥0.

(2) Algebraic topology: compute the d-th homology vector spaces Hd(Xt) for scales t in
R≥0 and dimensions d in Z≥0.

(3) Representation theory: decompose each family of vector spaces {Hd(Xt) | t ≥ 0} into
irreducible summands, thus producing a barcode.

The resulting barcodes are finite multisets of real intervals [p, q] ⊂ R, which admit concrete
geometric interpretations in low dimensions — see Figure 1. The ultimate goal is to infer
the coarse geometry of X across various scales by examining the longer intervals in its
barcodes. Crucially, once the method for constructing {Xε} from X has been fixed, the
entire persistent homology pipeline is unsupervised: one requires neither labelled data nor
hyperparameter tuning to produce barcodes from X.

At the other end of the data analysis spectrum lies supervised machine learning using
contemporary neural networks, which are replete with billions of tunable parameters and

Corresponding Author: nanda@maths.ox.ac.uk.
Authors listed in alphabetical order.

1

ar
X

iv
:2

21
2.

09
70

3v
1 

 [
m

at
h.

A
T

] 
 1

9 
D

ec
 2

02
2



2 ALI, ASAAD, JIMENEZ, NANDA, PALUZO-HIDALGO, AND SORIANO-TRIGUEROS

Figure 1. An increasing family of cell complexes built around a point cloud dataset; the asso-
ciated barcode in dimensions 0 (blue) and 1 (red) catalogues the connected components and
cycles respectively.

gargantuan training datasets [3]. The practical aspects of deep neural networks appear to
be light years ahead of the underlying theory. It nevertheless remains the case that machine
learning has driven astonishing progress in the systematic automation of several important
classification tasks. One direct consequence of these success stories is the irresistible urge
to combine topological methods with machine learning. The most common avenue for
doing so is to turn barcodes into vectors (lying in a convenient Euclidean space) which
then become input for suitably-trained neural networks.

The good news, at least from an engineering perspective, is that barcodes are inherently
combinatorial objects, and as such, they are remarkably easy to vectorize. Several dozen
vectorization methods have been proposed across the last decade, and new ones continue
to appear with alarming frequency and increasing complexity — the reader will encounter
thirteen of them here. The bad news, on the other hand, comes in the form of three serious
challenges which must be confronted by those who build or use such vectorizations:

(1) Given the large number of options, even established practitioners are not aware of
all the vectorization techniques; similarly, knowledge of which vectorizations are
suitable for which types of data is difficult – if not impossible – to glean from the
published literature.

(2) There is a natural metric between barcodes called the bottleneck distance; when it
is endowed with this metric, the space of barcodes becomes infinite-dimensional
and highly nonlinear. As such, it does not admit any faithful embeddings into
finite-dimensional vector spaces.

(3) Even the stable vectorizations, which preserve distances by mapping barcodes into
infinite-dimensional vector spaces, may suffer from a lack of discriminative power



VECTORIZATION METHODS IN TOPOLOGICAL DATA ANALYSIS 3

in practice: by design, they are poor at distinguishing between datasets whose
coarse structures are similar and whose differences reside in finer scales.

In This Paper. Here we seek to comprehensively describe, catalogue and benchmark
vectorization methods for persistent homology barcodes. The first contribution of this
paper is the following taxonomy of the known methods, which we hope will serve as a
convenient organizational framework for beginners and experts alike —

(1) Statistical vectorizations: these summaries consist of basic statistical quantities;
(2) Algebraic vectorizations: these are generated from polynomials;
(3) Curve vectorizations: these come from maps R→ H, where H is a vector space;
(4) Functional vectorizations: these are maps of the form X → H for X 6= R;
(5) Ensemble vectorizations: these are generated from collections of training barcodes.

There are unavoidable overlaps between these five categories. When such an overlap occurs,
we have placed the given vectorization technique in the earliest relevant category among
those in the list above; thus, an algebraic vectorization given by polynomial functions of
basic statistical quantities will be placed in category (1) rather than category (2). The reader
might claim, quite reasonably, that category (3) should be subsumed into category (4).
However, the sheer number of curve-based vectorizations compelled us to set them apart.

The second contribution of this paper is a comprehensive benchmarking of thirteen vec-
torization techniques across these five categories on three well-known image classification
datasets. These datasets were selected to simultaneously (a) provide an increasing level
of difficulty for topological methods, and (b) to be instantly recognizable for the broader
machine learning community. These are: the Outex texture database [43], the SHREC14
shape retrieval dataset [47], and the Fashion-MNIST database [59]. Surprisingly, the best-
performing vectorization in all three cases is a rather naı̈ve one obtained by collecting basic
statistical quantities associated to (the multiset of) intervals in a given barcode.

Our third contribution is a companion web application which computes and visualizes
all thirteen vectorization techniques which have been investigated in this paper. In addi-
tion to running online1, this web app can also be downloaded2 and run locally on more
challenging datasets.

Not In This Paper. Vectorization methods form but a small part of the ever expanding
interface between topological data analysis and machine learning. As such, there are several
related techniques which are not benchmarked here. The precise inclusion criteria for our
study in this paper are as follows.

(1) We restrict our attention to those methods which produce genuine vectors from
barcodes. In particular, kernel methods [50, 17] are beyond the scope of this paper.

(2) We only consider those vectorizations that are either straightforward for us to im-
plement, or have an easily accessible and trusted implementation. For instance,
path signature based vectorizations [21, 33] are excluded.

(3) We do not compare machine learning architectures designed for the explicit pur-
pose of inferring (persistent) homology [16, 37, 40].

1https://persistent-homology.streamlit.app
2https://github.com/dashtiali/vectorisation-app

https://persistent-homology.streamlit.app
https://github.com/dashtiali/vectorisation-app


4 ALI, ASAAD, JIMENEZ, NANDA, PALUZO-HIDALGO, AND SORIANO-TRIGUEROS

(4) We do not touch upon various attempts to design or study neural networks using
tools from topological data analysis [41, 15].

(5) Finally, even among methods which satisfy the first four criteria, we have discarded
techniques which regularly obtained a classification accuracy below fifty percent.

Similar Efforts. The authors of [49] have summarised – but not compared – several
vectorization and kernel methods for barcodes. Another summary (sans comparison) may
be found in [53], with emphasis on metric aspects of the chosen vectorizations. The work
of [23] describes a common overarching framework for what we have called curve vec-
torizations here. More recently, [7] and [24] have described and compared five and four
vectorization methods respectively.

Outline. Notation and preliminaries involving barcodes are established in Section 1.
In Sections 2 and 3 we introduce the thirteen vectorizations (suitably organised into our
taxonomy) and the three datasets. Section 4 contains the results of our experiments whose
finer details have been relegated to Appendices A and B. We provide a description of the
web app in Section 5 and some brief concluding remarks in Section 6.

1. Persistence Barcodes from Data

At its core, persistent homology studies sequences of finite-dimensional vector spaces
V = {Vi | 0 ≤ i ≤ n} and linear maps a = {ai : Vi−1 → Vi | 1 ≤ i ≤ n}:

V0
a1

// V1
a2

// · · · an
// Vn.

Such sequences (V, a) are called persistence modules. Among the simplest examples are
interval modules — for each pair of integers p ≤ q with [p, q] ⊂ [0, n], the corresponding
interval module (I[p,q], c[p,q]) has

dim I[p,q]
i =

{
1 if p ≤ i ≤ q
0 otherwise;

similarly, the map c[p,q]
i is the identity whenever p + 1 ≤ i ≤ q and zero otherwise.

1.1. Structure and Stability. Every persistence module decomposes into a direct sum
of interval modules. In particular, we have the following structure theorem [61, 18].

Theorem 1.1. For every persistence module (V, a), there exists a unique set Bar(V, a) of subin-
tervals of [0, n] along with a unique function Bar(V, a)→ Z>0 denoted [p, q] 7→ µp,q for which we
have an isomorphism

(V, a) '
⊕

[p,q]∈Bar(V,a)

(
I[p,q], c[p,q]

)µp,q
.

Thus, the algebraic object (V, a) may be fully recovered (up to isomorphism) from purely
combinatorial data consisting of the set of intervals Bar(V, a) and the multiplicity function
µ. Alternately, one may view Bar(V, a) itself as a multiset with µp,q copies of each interval
[p, q]. This multiset is called the barcode of (V, a). It is often useful in applications to let the
vector spaces Vi be indexed by real numbers rather than integers. With this modification in
place, Bar(V) becomes a collection of real intervals [p, q] ⊂ R.



VECTORIZATION METHODS IN TOPOLOGICAL DATA ANALYSIS 5

The most important property of persistence modules, beyond the structure theorem, is
their stability [18]. There is a natural metric on the set of persistence modules called the
interleaving distance and a metric on the set of barcodes called the bottleneck distance

Theorem 1.2. The assignment (V, a) 7→ Bar(V, a) is an isometry from the space of persistence
modules (with interleaving distance) to the space of barcodes (with bottleneck distance).

The advantage of this theorem is that barcodes remain robust to (certain types of) pertur-
bations of the original dataset, thus conferring upon the topological data analysis pipeline a
degree of noise-tolerance. The significant difficulty from a statistical perspective, however,
is that the metric space of persistence barcodes with bottleneck distance is nonlinear —
even averages can not be defined for arbitrary collections of barcodes [56, 26, 11].

1.2. Barcodes from Data. Persistence modules arise naturally from a wide class of
datasets. The first step in topological data analysis involves imposing the structure of
a filtered cell complex – either simplicial [4, Chapter 8] or cubical [38] – from the data
[32, 14, 42]. The two most prominent examples of filtered cell complex structures arising
from data are as follows.

(1) Given a finite point cloud X ⊂ Rn, one constructs a family of increasing simpli-
cial complexes {Sε | ε ≥ 0} defined as follows. A collection {x0, . . . , xk} forms a
k-simplex in Sε if and only if the (Euclidean) distance between xi and xj is no
larger than ε for all i, j in {0, . . . , k}. Since there are only finitely many ε values
at which new simplices are introduced, the filtration is indexed by a subset of the
natural numbers. The collection Sε is called the Vietoris-Rips filtration of X. These
filtrations can be defined for any metric space in a similar fashion.

(2) Consider a grayscale image I, given in terms of m× n pixels with intensity values
in the set {0, 1, . . . , 255}. This naturally forms a two-dimensional cubical com-
plex, which can be endowed with the upper-star filtration by intensity values. In
particular, each elementary cube of dimension < 2 appears at the smallest inten-
sity encountered among the 2-dimensional cubes in its immediate neighbourhood.
Higher-dimensional cubical filtrations may be similarly generated from higher-
dimensional pixel grids.

Once the given dataset has been suitably modeled by a filtered cell complex, persistence
modules are obtained by computing homology groups with coeffiecients in a field. The
reader who is interested in the definition and computation of homology is urged to either
consult standard algebraic topology references such as [35, Ch 2] or see the more recent
[44, 30, 42].

A substantial difficulty in topological data analysis is that although persistent homology
barcodes can be readily associated with a large class of datasets, the space of all such
barcodes is notoriously unpleasant to encounter from a statistical perspective. Fortunately,
barcodes are combinatorial objects which can be mapped to Hilbert spaces in a plethora
of reasonable ways. Indeed, across the last decade, such vectorization methods have been
proposed by various authors, and our main purpose in this work is to benchmark many of
these methods against standard classification tasks.



6 ALI, ASAAD, JIMENEZ, NANDA, PALUZO-HIDALGO, AND SORIANO-TRIGUEROS

2. Vectorization Methods for Barcodes

Throughout this section, we assume knowledge of the barcode B := Bar(V, a) of an R-
indexed persistence module along with its multiplicity function µ : B→ Z>0. We note that
for each interval [p, q] in B the numbers p and q are called its birth and death respectively,
and the length q− p is called its lifespan.

2.1. Statistical Vectorizations. The first and simplest category of vectorizations consid-
ered in this paper are generated from basic statistical quantities associated to the given
barcode. Variants of the following vectorization have been defined and used on several
occasions — see for instance [5, sec 2.3] , [23, Sec 6.2.1] and [49, Sec 4.1.1].

Definition 2.1. The persistence statistics vector of µ : B→ Z>0 consists of:

(1) the mean, the standard deviation, the median, the interquartile range, the full
range, the 10th, 25th, 75th and 90th percentiles of the births p, the deaths q, the
midpoints p+q

2 and the lifespans q − p for all intervals [p, q] in B counted with
multiplicity;

(2) the total number of bars (again counted with multiplicity), and
(3) the entropy of µ, defined as the real number

Eµ := − ∑
[p,q]∈B

µp,q ·
(

q− p
Lµ

)
· log

(
q− p

Lµ

)
,

where Lµ is the weighted sum

Lµ := ∑
[p,q]∈B

µp,q · (q− p). (1)

The entropy from Definition 2.1(3) was introduced in [22, 52]. Our second statistical
vectorization is from [6], where entropy has been upgraded to a real-valued piecewise
constant function rather than a single number.

Definition 2.2. The entropy summary function of µ : B→ Z>0 is the map Sµ : R→ R

given by

Sµ(t) = − ∑
[p,q]∈B

1p≤t<q · µp,q ·
(

q− p
Lµ

)
· log

(
q− p

Lµ

)
.

Here 1• is the indicator function — it equals 1 when the conditional • is true and it equals
0 otherwise. The number Lµ appearing in the expression above is defined in (1).

The entropy summary function has also been called the life entropy curve, e.g., in [23].

2.2. Algebraic Vectorizations. The vectorizations in this category are generated using
polynomial maps constructed from the barcode µ : B→ Z>0.

The first example considered here is from [2]. It becomes convenient, for the purpose
of defining it, to arbitrarily order the intervals in B as {[pi, qi] | 1 ≤ i ≤ n} with the under-
standing that each [p, q] occurs µp,q times in this ordered list.



VECTORIZATION METHODS IN TOPOLOGICAL DATA ANALYSIS 7

Definition 2.3. The ring of algebraic functions on µ : B → Z>0 consists of all those
R-polynomials f in variables {x1, y1, . . . , xn, yn} for which the following property holds:
there exist polynomials {gi | 1 ≤ i ≤ n} satisfying

∂ f
∂xi

+
∂ f
∂yi

= (xi − yi) · gi.

(Here ∂ f /∂xi indicates the partial derivative of f with respect to xi, and so forth).

The desired vectorization is obtained by selecting finitely many algebraic functions from
this ring and evaluating them at xi = pi and yi = qi for all i. The feature maps generated
by making such choices are sometimes called Adcock-Carlsson coordinates — see for instance
[46]. Letting qmax be the maximum death-value encountered among the intervals in B, four
of the most widely-used algebraic functions are:

f1 = ∑
i

pi(qi − pi) f2 = ∑
i
(qmax − qi) (qi − pi)

f3 = ∑
i

p2
i (qi − pi)

4 f4 = ∑
i
(qmax − qi)

2 (qi − pi)
4

Small changes in the barcode (in terms of bottleneck distance) are liable to create large
fluctuations in the associated algebraic functions. The methods of tropical geometry were
used in [39] to address the bottleneck instability of algebraic functions. In this setting,
the standard polynomial operations (+,×) are systematically replaced by (max,+). To
define the resulting vectorization, we once again use an ordering {[pi, qi] | 1 ≤ i ≤ n} of
the intervals in B.

Definition 2.4. A tropical coordinate function for µ : B → Z>0 is a function F of
variables {x1, y1, . . . , xn, yn} which is both tropical and symmetric as described below.

(1) Tropical: there is an expression for F which uses only the operations max, min, +
and − on the variables {xi} and {yi}.

(2) Symmetric: any permutation of {1, . . . , n}, when applied to both {xi} and {yi},
leaves F unchanged.

Let λi be the lifespan qi − pi of the i-th interval in B. To generate feature maps from the
tropical coordinate functions described above, one simply evaluates them at xi = λi and yi
equal to either max(rλi, pi) or min(rλi, pi) for a positive integer parameter r. Examples of
such tropical coordinate features include:

F1 = max
i

λi F2 = max
i<j

(λi + λj)

F3 = max
i<j<k

(λi + λj + λk) F4 = max
i<j<k<l

(λi + λj + λk + λl)

F5 = ∑
i

λi F6 = ∑
i

min(rλi, pi),

along with the somewhat more complicated

F7 = ∑
j

[
max

i

(
min(rλi, pi) + λi

)
− (min(rλj, pj) + λj)

]
.

These seven tropical coordinates were used in [39] for performing classification on the
MNIST database, with r = 28.



8 ALI, ASAAD, JIMENEZ, NANDA, PALUZO-HIDALGO, AND SORIANO-TRIGUEROS

The third and final algebraic vectorization considered here is generated by extracting
complex polynomials from barcodes [31, 27]. In what follows, the symbol i should be inter-
preted as

√
−1 (and not as an index for the intervals in B). Consider the three continuous

maps R, S, T : R2 → C defined as follows:

R(x, y) = x + iy

S(x, y) =

{ y−x
α
√

2
· (x + iy) if (x, y) 6= (0, 0)

0 otherwise

T(x, y) =
y− x

2
·
[
(cos α− sin α) + i(cos α + sin α)

]
,

where α is the norm
√

x2 + y2.

Definition 2.5. Given a barcode µ : B → Z>0, let X : R2 → C be any one of the three
functions R, S, T defined above. The complex polynomial vectorization of µ of type X is
the sequence of coefficients of the complex polynomial in one variable z given by

CX(z) := ∏
[p,q]∈B

[z− X(p, q)]µp,q .

In practice, it is customary to either take only the first few highest degree coefficients of
CX(z) or to multiply it by a suitable power of z. This is done to guarantee that the feature
vectors assigned to a collection of barcodes all have the same dimension.

Other Algebraic Vectorizations: In the subsequent section, we describe how to extract
vectorizations by using barcode data to build curves which take values in a vector space.
Once such a curve has been extracted, one can compute its path signature via iterated in-
tegrals [20]. The path signature resides in the tensor algebra of the target vector space;
elements of the tensor algebra are equivalent to coefficients of non-commuting polynomi-
als, and hence constitute algebraic vectorizations of barcodes — see [21, 33] for examples
of this approach.

2.3. Curve Vectorizations. There are several interesting ways of turning barcodes into
one or more curves, which for our purposes here mean (piecewise) continuous maps from
R to a convenient vector space. Feature vectors can then be constructed by sampling the
given curve at finite subsets of R. Perhaps the simplest and most widely used curve-based
vectorization is the following.

Definition 2.6. The Betti curve of µ : B→ Z>0 is the curve βµ : R→ R given by

βµ(t) = ∑
[p,q]∈B

1p≤t<q · µp,q.

Here 1• is the indicator function as described in Definition 2.2, so this function counts the
number of intervals (with multiplicity) in B which contain t. Very similar in spirit (and
formula) to the Betti curve is the following vectorization from [23].

Definition 2.7. The lifespan curve of µ : B→ Z>0 is the map Lµ : R→ R given by

Lµ(t) = ∑
[p,q]∈B

1p≤t<q · µp,q · (q− p).



VECTORIZATION METHODS IN TOPOLOGICAL DATA ANALYSIS 9

It is not difficult to create very different-looking Betti and lifespan curves from two
barcodes which have arbitrarily small bottleneck distance — we can always add lots of very
small intervals to a given barcode without changing its bottleneck distance by a significant
amount. One way to rectify the bottleneck instability of Betti and lifespan curves is to test
the containment not only of t in each interval [p, q] ∈ B, but rather of the largest subinterval
of the form [t− s, t + s]. This modification leads to one of the oldest and best-known stable
curve vectorizations [10, 12], as defined below.

Definition 2.8. The persistence landscape of the barcode µ : B → Z>0 is a sequence
of curves

{
Λµ

i : R→ [−∞, ∞] | i ∈ Z>0
}

given by

Λµ
i (t) := sup

s ≥ 0
∣∣∣
 ∑

[p,q]∈B
1[t−s,t+s]⊂[p,q] · µp,q

 ≥ i

 .

By convention, the supremum over the empty set is zero. Moreover, since our barcode B
is assumed to be finite, the landscape functions Λµ

i become identically zero for sufficiently
large i. An alternate approach to defining persistence landscapes comes from the function
∆ : B×R→ R, given by

∆([p, q], t) := max (min(t− p, q− t), 0) . (2)

For each i ∈ Z>0, the curve Λµ
i from Definition 2.8 equals the i-th largest number in the

multiset that contains µp,q copies of ∆([p, q], t) for each interval [p, q] in B. The fourth and
final curve vectorization that we consider here was introduced in [19], and it is also defined
in terms of the functions ∆ from (2).

Definition 2.9. Let w : B → R>0 be any function, which we will denote [p, q] 7→ wp,q.
The w-weighted persistence silhouette of µ : B → Z>0 is the map φw

µ : R → R defined as
the weighted average

φw
µ (t) :=

∑ wp,q · µp,q · ∆([p, q], t)
∑ wp,q · µp,q

.

Here both sums on the right are indexed over all [p, q] ∈ B, and ∆ is defined in (2).

Reasonable choices of weight functions are provided by setting wp,q = (q − p)α for a
real-valued scale parameter α ≥ 0. For small α, the shorter intervals dominate the value
of the silhouette curve, whereas for large α it is the longer intervals which play a more
substantial role — see [19, Sec 4] for details.

Other Curve Vectorizations: See the envelope embedding from [21], the accumulated per-
sistence function in [9], and the persistent Betti function of [57]. In [29], the persistent Betti
function is decomposed along the Haar basis to produce a vectorization. More recently,
[23] provides a general framework for constructing several different curve vectorizations.

2.4. Functional Vectorizations. Here we catalogue those barcode vectorizations which
are given by maps from spaces other than R. The first, and perhaps most prominent mem-
ber of this category is the following vectorization from [1]. Its definition below makes use
of two auxiliary components besides the given barcode µ : B → Z>0. The first is a contin-
uous, piecewise-differentiable function f : R2 → R≥0 satisfying f (x, 0) = 0 for all x ∈ R.
And the second is a collection of smooth probability distributions Ψ :=

{
ψp,q | [p, q] ∈ B

}
where ψp,q has mean (p, q− p).



10 ALI, ASAAD, JIMENEZ, NANDA, PALUZO-HIDALGO, AND SORIANO-TRIGUEROS

Definition 2.10. The persistence surface of µ : B → Z>0 with respect to f and Ψ (as
described above) is the function R2 → R given by

ρ
µ
f ,Ψ(x, y) = ∑

[p,q]∈B
µp,q · f (p, q− p) · ψp,q(x, y).

The persistence image Iµ
f ,Φ of µ with respect to ( f , Φ) assigns a real number to every subset

Z ⊂ R2; this number is given by integrating the persistence surface over Z:

Iµ
f ,Ψ(Z) =

∫∫
Z

ρ
µ
f ,Ψ(x, y) dx dy.

In order to obtain a vector from the persistence image, one lets Z range over grid pix-
els in a rectangular subset of R2 and renormalizes the resulting array of numbers, thus
producing a grayscale image. Standard choices of f and Ψ =

{
ψp,q

}
are:

f (x, y) =


0 t ≤ 0
t/λmax 0 < t < λmax

1 t > λmax

ψp,q(x, y) =
1

2πσ2 · exp
(
− (x− p)2 + (y− (q− p))2

2σ2

)
.

Here λmax is the largest lifespan max[p,q]∈B(q− p) encountered among the intervals in B,
and σ is a user-defined parameter which forms the common standard deviation of every
ψp,q in sight.

The second and final functional vectorization which we will examine was introduced
in the paper [46]. Set W :=

{
(x, y) ∈ R2 | 0 ≤ x < y

}
, and note that points (x, y) ∈ W

parameterize intervals [x, y] ⊂ R with strictly positive length that could possibly lie in a
given barcode. Let Cc(W) be the set of all continuous functions f : W → R with compact
support3. The given barcode µ : B→ Z>0 induces a function Vµ : Cc(W)→ R via

Vµ( f ) = ∑
[p,q]∈B

µp,q · f (p, q− p). (3)

A subset T of Cc(W) is called a template system if for any distinct pair µ1 : B1 → Z>0 and
µ2 : B2 → Z>0 of barcodes, there exists at least one f ∈ T so that Vµ1( f ) 6= Vµ2( f ).

Definition 2.11. Fix an integer n > 0 and let Subn(T) be the collection of all size n
subsets of a template system T as described above. The template function vectorization of
µ : B → Z>0 with respect to T is the map τ : Subn(T) → Rn defined as follows. Given
f = { f1, . . . , fn} in Subn(T), the associated vector in Rn is

τµ( f ) :=
(
Vµ( f1), . . . , Vµ( fn)

)
,

where Vµ( fi) is as defined in (3).

3In other words, Cc(W) contains those continuous real-valued functions on W which evaluate to 0 outside
the intersection of a sufficiently large rectangle with W in R2.



VECTORIZATION METHODS IN TOPOLOGICAL DATA ANALYSIS 11

Two convenient choices of T, called tent functions and interpolating polynomials, have
been highlighted in [46]. Tent functions are indexed by points (u, v) ∈ R2 and require an
additional parameter δ > 0; they have the form

gδ
u,v(x, y) = max

(
1− 1

δ
·max(|x− u|, |y− v|), 0

)
(4)

By construction, each such function is supported on the square of side length 2δ around
the point (u, v) in the birth-lifespan plane. The normal pipeline for selecting finitely many
template functions requires covering a sufficiently large bounded subset of W with a square
grid and then selecting the appropriate tent functions supported on grid cells. We direct
interested readers to [46, Sections 6 and 7] for details on interpolating polynomials and for
suggestions on how one might select suitable n and f ∈ Subn(T) for a given classification
task.

Other Functional Vectorizations: See the generalised persistence landscape in [8] and the
crocker stacks of [58].

2.5. Ensemble Vectorizations. Our last category contains two methods which require
access to a sufficiently large collection of training barcodes µi : Bi → Z>0 in order to
generate a vectorization. The first of these methods, introduced in [48], is a modification of
the template system vectorization from Definition 2.11. We recall that W ⊂ R2 is defined
as {(x, y) | 0 ≤ x < y} and that every barcode B is identified with a subset P(B) ⊂ W via
the map that sends intervals [p, q] of positive length to points (p, q).

Definition 2.12. The adaptive template system induced by a collection of barcodes
{µi : Bi → Z>0} is obtained via the following two steps. Letting P ⊂ W be the union⋃

i P(Bi), one

(1) identifies finitely many ellipses Ej ⊂W which tightly contain P, and then
(2) constructs suitable functions gj supported on Ej, as described in (5) below.

The desired vectorization of a new barcode µ : B → Z>0 is now obtained by using
these gj, rather than tent functions, as template functions in Definition 2.11. Three different
methods for finding the Ej can be found in [48, Sec 3]. Let v∗ denote the transpose of a given
vector v in R2. Now each ellipse E with centre x = (x1, x2)

∗ corresponds to a symmetric
2× 2 matrix A satisfying

E =
{

z ∈ R2 | (z− x)∗A(z− x) = 1
}

.

Setting h(z) := (z− x)∗A(z− x), the adaptive template function g supported on E is

g(z) =

{
1− h(z) h(z) < 1
0 otherwise.

(5)

The second instance of an ensemble vectorization framework which we benchmark in
this paper is from [51]. Let µi : Bi → Z>0 be a collection of training barcodes as before, and
fix a dimension parameter b ∈ Z>0. Much like the adaptive template systems of Definition
2.12, the automatic topology-oriented learning (ATOL) vectorization is a two-step process for
mapping each Bi to a vector space, which in this instance is always Rb.



12 ALI, ASAAD, JIMENEZ, NANDA, PALUZO-HIDALGO, AND SORIANO-TRIGUEROS

Definition 2.13. The ATOL contrast functions corresponding to the collection of bar-
codes {µi : Bi → Z>0} and parameter b ∈ Z>0 are obtained as follows:

(1) Treating the point clouds

Pi :=
{
(p, q) ∈ R2 | [p, q] ∈ Bi and q > p

}
as discrete measures on R2, one estimates their average measure E.

(2) Let z := (z1, z2, . . . , zb) be a point sample in R2 drawn (in independent, identically
distributed function) along E. Define the real numbers σi(z) for 1 ≤ i ≤ b by

σi(z) :=
1
2

max
j 6=i
‖zj − zi‖2,

where ‖ • ‖2 denotes the usual Euclidean norm on R2.

The contrast functions
{

Ωi : R2 → R | 1 ≤ i ≤ b
}

are now given by

Ωi(x) = exp
(
−‖x− zi‖

σi(z)

)
.

The reader is directed to [51, Algorithm 1] for further details. Once the contrast func-
tions have been produced in the manner described above, the corresponding ATOL vector-
ization of a given barcode µ : B→ Z>0 equals

(
Ωµ

1 , . . . , Ωµ
b

)
, where

Ωµ
i := ∑

[p,q]∈B
µp,q ·Ωi(p, q).

Other Ensemble Vectorizations: The persistence codebooks approach from [60] proposes
three different types of barcode vectorizations; these are based on bag-of-word embeddings,
VLAD (vector of locally aggregated descriptors), and Fisher Vectors respectively.

3. Datasets

The vectorization methods described in the preceding section have been benchmarked
against three standard datasets; these are described below and arranged in increasing order
of difficulty for topological methods. All three of them have been used in the past for
comparing vectorizations (or kernels) for persistence barcodes [46, 48, 50, 17, 34, 21].

3.1. Outex. Outex is a database of images developed for the assessment of texture clas-
sification algorithms [43] — see Fig. 2, right-bottom, for some samples of textures from the
68 categories. Each texture class contains 20 images of size 128× 128 pixels, which results
in 1, 360 images in total. We designed a reduced version of the experiment by randomly
selecting 10 of the total 68 classes in the dataset, which we refer to as Outex10 below. The
full classification is referred to as Outex68. In both cases, a train/test split of 70/30 has
been applied.

We treat each image as a cubical complex; the filtration is induced by considering the
pixel intensity on the 2-dimensional cells, which is inherited by other cells via the lower-
star and upper-star filtrations. Persistent homology barcodes are computed in dimensions
0 and 1 using the GUDHI library [28]. No pre-processing has been applied to the images.



VECTORIZATION METHODS IN TOPOLOGICAL DATA ANALYSIS 13

Figure 2. Samples from datasets used in our experiments

3.2. SHREC14. The Shape Retrieval of a non-rigid 3D Human Models dataset, usually
abbreviated SHREC14 [47], is designed to test shape classification and retrieval algorithms.
It contains real and synthetic human shapes and poses stored as 3D meshes (which are
already simplicial complexes). We use the synthetic part of the dataset; this constitutes
a classification task with 15 classes (5 men, 5 women and 5 children), each one with 20
different poses — see the upper-right corner of Fig. 2.

We apply the Heat Kernel Signature (HKS) to obtain filtrations [54, 50]. For a fixed real
parameter t > 0, this filtration assigns to each mesh point x the value

HKSt(x) =
∞

∑
i=0

e−λit · φi(x)2 (6)

Here λi and φi are eigenvalues and corresponding eigenfunctions of (a discrete approxi-
mation to) the Laplace-Beltrami operator of the given mesh. Every simplex of dimension
> 0 is assigned the largest value of HKSt encountered among its vertices. We used the
pre-computed barcodes (for such filtrations across a range of t-values) which have been
provided in the repository4 accompanying [7]. Of the 300 samples, 70% were used for
training and the other 30% for testing.

3.3. FMNIST. The Fashion-MNIST database contains 28× 28 grayscale images (7, 000
images per class, with 10 classes) — see the left side of Fig. 2 for some sample images. We
split this dataset into 60, 000 training and 10, 000 testing images.

The filtration used for generating barcodes is as follows: we performed padding, me-
dian filter, and shallow thresholding before computing canny edges [13]. Then each pixel is
given a filtration value equalling its distance from the edge-pixels. Finally, all other cells
inherit filtration values from the top pixels via the lower star filtration rule.

4https://github.com/barnesd8/machine_learning_for_persistence

https://github.com/barnesd8/machine_learning_for_persistence


14 ALI, ASAAD, JIMENEZ, NANDA, PALUZO-HIDALGO, AND SORIANO-TRIGUEROS

4. Results

Here we report the classification accuracy of the thirteen vectorization methods from
Section 2 on each of the three datasets from Section 3. Implementation details and pa-
rameter choices are provided in Appendix A. The source code is available at the following
GitHub repository: https://github.com/Cimagroup/vectorization-maps.

4.1. Outex. Table 1 displays the classification accuracy for the smaller (and easier) ex-
periment on 10 classes. As one might expect, all techniques perform rather well, with
Persistence Statistics and Algebraic Functions sharing the best performance with 99.2%
accuracy each, followed closely by Persistent Silhouettes with 98.3% each.

Results from the full experiment with 68 classes are contained in Table 2; as one might
expect, the performance of every single vectorization degrades in the passage from Ou-
tex10 to Outex68. Here Persistence Statistics is the clear winner by a significant margin,
earning 93.4% accuracy. Tropical Coordinates ranks second with 88.7%. Setting aside the
outstanding performance of Persistence Statistics, it appears clear from these results that
the algebraic vectorizations perform far better on Outex68 than the vectorizations from the
other categories.

Vectorization Method Accuracy Parameters Estimator

Persistence Statistics 0.992 SVM, rbf kernel, C1, γ1
Entropy Summary 0.975 100 SVM, rbf kernel, C1, γ1

Algebraic Functions 0.992 SVM, linear kernel, C3
Tropical Coordinates 0.975 250 SVM, linear kernel, C4
Complex Polynomial 0.950 5, R SVM, rbf kernel, C1, γ1

Betti Curve 0.908 200 SVM, rbf kernel, C1, γ1
Lifespan Curve 0.975 100 SVM, rbf kernel, C1, γ1
Persistence Landscape 0.975 50, 20 SVM, rbf kernel, C2, γ2
Persistence Silhouette 0.983 100, 0 SVM, rbf kernel, C1, γ1

Persistence Image 0.938 1, 25 RF, n=500
Template Function 0.958 35, 20 SVM, rbf kernel, C1, γ1

Adaptive Template System 0.975 GMM, 40 SVM, rbf kernel, C1, γ1
ATOL 0.967 32 SVM, linear kernel, C4

Table 1. Outex10 results. The relevant parameter values are C1 = 936.5391, γ1 = 0.0187,
C2 = 914.9620, γ2 = 0.0061, C3 = 86.0442, and C4 = 998.1848.

We note that the authors of [23] have also used Outex to compare the performance of
various curve vectorizations, with Persistence Statistics being used as a baseline. They also
obtained their best results with Persistence Statistics.

4.2. SHREC14. We used 10 different t-values t1 < t2 < · · · < t10, as in [50, 46, 48],
for generating filtrations via the heat kernel from (6). At t10 we found several sparse or
empty barcodes, which led us to discard that classification problem. Table 3 collects the
best performance for each method across the first 9 values of t; it also contains values of
the optimal parameters (see Appendix A) and the optimal values of t.

https://github.com/Cimagroup/vectorization-maps


VECTORIZATION METHODS IN TOPOLOGICAL DATA ANALYSIS 15

Vectorization Method Accuracy Parameters Estimator

Persistence Statistics 0.934 SVM, rbf kernel, C1, γ1
Entropy Summary 0.859 100 SVM, poly kernel, C2, γ2, deg=2
Algebraic Functions 0.875 SVM, linear kernel, C4
Tropical Coordinates 0.887 50 SVM, linear kernel, C5
Complex Polynomial 0.846 10, R SVM, linear kernel, C4

Betti Curve 0.804 200 SVM, rbf kernel, C1, γ1
Lifespan Curve 0.842 100 SVM, rbf kernel, C1, γ1
Persistence Landscape 0.822 50, 20 SVM, rbf kernel, C3, γ3
Persistence Silhouette 0.844 100, 1 SVM, linear kernel, C4

Persistence Image 0.762 1, 150 RF, n=500
Template Function 0.831 35, 20 RF, n=200
Adaptive Template Sys. 0.819 GMM, 50 SVM, linear kernel, C6
ATOL 0.854 16 SVM, linear kernel, C7

Table 2. Outex68 results. The optimal parameter values are C1 = 936.5391, γ1 = 0.0187, C2 =
957.5357, γ2 = 0.0120, C3 = 914.9620, γ3 = 0.0061, C4 = 998.1848, C5 = 884.1255, C6 = 143.1201
and C7 = 494.0596.

Vectorization Method Accuracy Parameters Estimator

Persistence Statistics 0.947 t5 RF, n=100
Entropy Summary 0.723 t6, 200 RF, n=300
Algebraic Functions 0.909 t5 RF, n=500
Tropical Coordinates 0.844 t6, 50 SVM, linear kernel, C5
Complex Polynomial 0.889 t6, 20, S SVM, linear kernel, C6

Betti Curve 0.728 t5, 200 RF, n=100
Lifespan Curve 0.878 t7, 200 SVM, linear kernel, C7
Persistence Landscape 0.889 t6, 50, 10 SVM, rbf kernel, C1, γ1
Persistence Silhouette 0.867 t6, 200, 2 SVM, rbf kernel, C2, γ2

Persistence Image 0.916 t5, 1, 10 RF, n=100
Template Function 0.944 t5, 14, 0.7 SVM, rbf kernel, C3, γ3

Adaptive Template Sys. 0.889 t5, GMM, 15 SVM, linear kernel, C8
ATOL 0.933 t8, 16 SVM, rbf kernel, C4, γ4

Table 3. Best performance of each method on SHREC14. The parameters are C1 = 835.6257,
γ1 = 0.0002, C2 = 212.6281, γ2 = 0.0031, C3 = 879.1425, γ3 = 0.0010, C4 = 936.5391, γ4 =
0.0187, C5 = 141.3869, C6 = 625.0300, C7 = 998.1848, C8 = 274.500.

Persistence Statistics yielded the best classification accuracy of 94.7%, followed closely
by Template Functions at 94.4%. One remarkable feature of these results is that the dataset
does not appear to favour any one category of vectorizations over the other — it is possible
to achieve over 88% accuracy by using a suitable statistical, algebraic, curve, functional or
ensemble vectorization. In fact, only the curve-based vectorizations failed to achieve over



16 ALI, ASAAD, JIMENEZ, NANDA, PALUZO-HIDALGO, AND SORIANO-TRIGUEROS

90% accuracy on this dataset. The variation of classification accuracy with the heat kernel
parameter t is discussed in Appendix B.

4.3. FMNIST. The results of our experiments on FMNIST are recorded in Table 4. We
note that these experiments only used information contained in the 0-dimensional barcodes
and that the SVM classifier was not used. The classification accuracy of all the methods is
much lower than the corresponding figures for the two preceding datasets. Once more, the
Persistence Statistics vectorization takes the top spot with 74.9% and Template Functions
are slightly behind at 74.7%

Vectorization Method Accuracy Parameters

Persistence Statistics 0.749
Entropy Summary 0.696 30
Algebraic Functions 0.710
Tropical Coordinates 0.696 10
Complex Polynomial 0.661 10, R
Betti Curve 0.618 50
Lifespan Curve 0.692 30
Persistence Landscape 0.694 30, 5
Persistence Silhouette 0.670 30, 0
Persistence Image 0.698 1, 12
Template Functions 0.747 10, 2
Adaptive Template System 0.602 GMM, 5
ATOL 0.730 16

Table 4. FMNIST results. All the scores have been achieved for Random Forest classifier with
100 trees.

One rather surprising aspect of these results is the fact that Adaptive Template Systems
performed far worse than ordinary Template Functions despite having recourse to 60, 000
training barcodes. We do not have a clear explanation for this phenomenon, particularly in
light of a fairly competitive performance from ATOL (which was also exposed to the same
training data).

5. Web Application

In order to illustrate and visualize the vectorization methods described here, we have
built an interactive web application that runs on any modern browser; it is available at

https://persistent-homology.streamlit.app/

The app has been built in Python using the Streamlit library together and makes use of
several existing Python libraries. The sidebar contains options for selecting different types
of input data and displays several options for data visualization. One sample image/point-
cloud from each of the three datasets used in this paper has been pre-loaded, but the user
is free to upload their own data. Specifications, formatting guidelines, and downloading

https://persistent-homology.streamlit.app/


VECTORIZATION METHODS IN TOPOLOGICAL DATA ANALYSIS 17

instructions are available in our GitHub repository:

https://github.com/dashtiali/vectorisation-app

Figure 3. A screenshot of the web app

All of the barcode vectorization methods considered in this paper can be computed and
visualized in different formats (tables, bar graphs, scatter plots), depending on the type of
vectorization being invoked. Barcodes are computed by default in dimensions 0 and 1, and
depicted as in Figure 4.

Figure 4. Intervals in barcodes of dimensions 0 and 1 as displayed by the web app.

The Persistence Statistics vectorization is purely numerical, so we show its values in a
table, as in Figure 5.

https://github.com/dashtiali/vectorisation-app


18 ALI, ASAAD, JIMENEZ, NANDA, PALUZO-HIDALGO, AND SORIANO-TRIGUEROS

Figure 5. The Persistence Statistics vectorization as shown in the web app.

Algebraic vectorizations are illustrated as bar graphs. In Figure 6, for instance, one
finds bars whose heights correspond to values attained by the 7 chosen tropical coordinate
polynomials on the input barcodes.

Figure 6. A visualization of the Tropical Coordinates vectorization from the web app.

Curve vectorizations, such as persistence landscapes, are depicted via piecewise-linear
graphs (see Figure 7). Sliders have been provided to set the resolution parameter.



VECTORIZATION METHODS IN TOPOLOGICAL DATA ANALYSIS 19

Figure 7. Persistence landscapes in the web app

Persistence images are displayed as heat maps — see Figure 8.

Figure 8. Persistence images as shown in the web app

Template Functions, their adaptive version, and ATOL are all displayed as bar graphs
with heights of bars indicating the values of the selected functions. Figure 9, for instance,
depicts Template Functions.



20 ALI, ASAAD, JIMENEZ, NANDA, PALUZO-HIDALGO, AND SORIANO-TRIGUEROS

Figure 9. The web app visualization of template functions

It is our hope that users will benefit from the ability to generate these visualizations
without having to write any code of their own. In order to facilitate downstream analysis,
the web app also provides the ability to download the vectors generated by each vectoriza-
tion method.

6. Concluding Remarks

At the time of writing, it remains difficult to accurately pinpoint those attributes which
might make a given vectorization method a good choice for a particular classification prob-
lem. There are no powerful theorems or immutable doctrines available to guide scientists
who wish to incorporate topological information into machine learning pipelines. In the
absence of such theoretical foundations, the best that one can expect are principled heuris-
tics supported by reproducible empirical evidence. This paper is an outcome of our efforts
to provide such evidence. En route, we have organized thirteen available vectorization
methods into five categories in Section 2 and provided a web application which will allow
others to conduct their own experiments involving these methods.

One possible conclusion that may be drawn from the results of Section 4 is that we
can dispense with sophisticated vectorization techniques and only use (some variant of)
Persistence Statistics. We do not necessarily suggest such a course of action. While it is
certainly true that Persistence Statistics earned top honors in all of our experiments and
is much faster to compute than the alternatives, there are other factors to consider. In
particular, no comparative study such as ours can be truly exhaustive. There is always the
chance that making different choices – for instance, using another dataset for classification,
or adding some new polynomials to one of the algebraic vectorizations – could dramatically
update our priors about which methods perform best.



VECTORIZATION METHODS IN TOPOLOGICAL DATA ANALYSIS 21

Acknowledgments

M.J. Jimenez, E. Paluzo-Hidalgo and M. Soriano-Trigueros are funded by the Spanish grants Ministerio
de Ciencia e Innovacion - Agencia Estatal de Investigacion/10.13039/501100011033, PID2019-107339GB-I00
and Agencia Andaluza del Conocimiento, PAIDI-2020 P20-01145. M.J. Jimenez is also funded by a grant of
Convocatoria de la Universidad de Sevilla para la recualificacion del sistema universitario español, 2021-23,
funded by the European Union, NextGenerationEU.

V. Nanda is supported by EPSRC grant EP/R018472/1 and by US AFOSR grant FA9550-22-1-0462.

We are grateful to the team of GUDHI and TEASPOON developers, for their work and their support.
We are also grateful to Streamlit for providing extra resources to deploy the web app online on Streamlit
community cloud.

References

[1] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova, E. Hanson,
F. Motta, and L. Ziegelmeier. Persistence images: A stable vector representation of persistent homology.
J. Mach. Learn. Res., 18(1):218–252, 2017.

[2] A. Adcock, E. Carlsson, and G. Carlsson. The ring of algebraic functions on persistence bar codes.
Homology, Homotopy Appl., 18:381–402, 2016.

[3] C. C. Aggarwal. Neural Networks and Deep Learning. Springer, 2018.
[4] M. A. Armstrong. Basic Topology. Springer, 1983.
[5] A. Asaad, D. Ali, T. Majeed, and R. Rashid. Persistent homology for breast tumor classification using

mammogram scans. Mathematics, 10(21), 2022.
[6] N. Atienza, R. Gonzalez-Diaz, and M. Soriano-Trigueros. On the stability of persistent entropy and new

summary functions for topological data analysis. Pattern Recognition, 107:107509, 2020.
[7] D. Barnes, L. Polanco, and J. A. Perea. A comparative study of machine learning methods for persistence

diagrams. Frontiers in Artificial Intelligence, 4, 2021.
[8] E. Berry, Y.-C. Chen, J. Cisewski-Kehe, and B. T. Fasy. Functional summaries of persistence diagrams.

Journal of Applied and Computational Topology, 4(2):211–262, 2020.
[9] C. A. Biscio and J. Møller. The accumulated persistence function, a new useful functional summary statis-

tic for topological data analysis, with a view to brain artery trees and spatial point process applications.
Journal of Computational and Graphical Statistics, 28(3):671–681, 2019.

[10] P. Bubenik. Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res., 16(1):77–
102, Jan. 2015.

[11] P. Bubenik, V. de Silva, and V. Nanda. Higher interpolation and extension for persistence modules. SIAM
Journal on Applied Algebra and Geometry, 1(1):272–284, 2017.

[12] P. Bubenik and P. Dłotko. A persistence landscapes toolbox for topological statistics. Journal of Symbolic
Computation, 78:91–114, 2017.

[13] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-8(6):679–698, 1986.

[14] G. Carlsson. Topology and data. Bull. Amer. Math. Soc. (N.S.), 46(2):255–308, 2009.
[15] G. Carlsson and R. B. Gabrielsson. Topological approaches to deep learning. In Topological data analysis,

pages 119–146. Springer, 2020.
[16] M. Carrière, F. Chazal, Y. Ike, T. Lacombe, M. Royer, and Y. Umeda. Perslay: A neural network layer

for persistence diagrams and new graph topological signatures. In International Conference on Artificial
Intelligence and Statistics, pages 2786–2796. PMLR, 2020.

[17] M. Carriere, M. Cuturi, and S. Oudot. Sliced wasserstein kernel for persistence diagrams. In International
conference on machine learning, pages 664–673. PMLR, 2017.

[18] F. Chazal, V. de Silva, M. Glisse, and S. Oudot. The Structure and Stability of Persistence Modules. Springer,
2016.

[19] F. Chazal, B. T. Fasy, F. Lecci, A. Rinaldo, and L. Wasserman. Stochastic convergence of persistence
landscapes and silhouettes. In Proceedings of the Thirtieth Annual Symposium on Computational Geometry,
SOCG’14, page 474–483, New York, NY, USA, 2014. Association for Computing Machinery.



22 ALI, ASAAD, JIMENEZ, NANDA, PALUZO-HIDALGO, AND SORIANO-TRIGUEROS

[20] I. Chevyrev and A. Kormilitzin. A primer on the signature method in machine learning. arXiv:1603.03788
[stat.ML], 2016.

[21] I. Chevyrev, V. Nanda, and H. Oberhauser. Persistence paths and signature features in topological data
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(1):192–202, 2020.

[22] H. Chintakunta, T. Gentimis, R. Gonzalez-Diaz, M. Jimenez, and H. Krim. An entropy-based persistence
barcode. Pattern Recognit., 48(2):391–401, Feb. 2015.

[23] Y. Chung and A. Lawson. Persistence curves: A canonical framework for summarizing persistence dia-
grams. Adv. Comput. Math., 48(1):6, 2022.

[24] F. Conti, D. Moroni, and M. A. Pascali. A topological machine learning pipeline for classification. Math-
ematics, 10(17):3086, 2022.

[25] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.
[26] V. de Silva and V. Nanda. Geometry in the space of persistence modules. In Proceedings of the 29th Annual

Symposuim on Computational Geometry, ACM, pages 397–404, 2013.
[27] B. Di Fabio and M. Ferri. Comparing persistence diagrams through complex vectors. In V. Murino and

E. Puppo, editors, Image Analysis and Processing — ICIAP 2015, pages 294–305, Cham, 2015. Springer
International Publishing.

[28] P. Dlotko. Cubical complex. In GUDHI User and Reference Manual. GUDHI Editorial Board, 3.6.0 edition,
2022.

[29] Z. Dong, C. Hu, C. Zhou, and H. Lin. Vectorization of persistence barcode with applications in pattern
classification of porous structures. Computers & Graphics, 90:182–192, 2020.

[30] H. Edelsbrunner and J. Harer. Computational Topology - an Introduction. American Mathematical Society,
2010.

[31] M. Ferri and C. Landi. Representing size functions by complex polynomials. Proc. Math. Met. in Pattern
Recognition, 9:16–19, 1999.

[32] R. Ghrist. Barcodes: the persistent topology of data. Bull. Amer. Math. Soc. (N.S.), 45(1):61–75, 2008.
[33] C. Giusti and D. Lee. Signatures, lipschitz-free spaces, and paths of persistence diagrams. arXiv preprint

arXiv:2108.02727, 2021.
[34] W. Guo, K. Manohar, S. L. Brunton, and A. G. Banerjee. Sparse-tda: Sparse realization of topological data

analysis for multi-way classification. IEEE Transactions on Knowledge and Data Engineering, 30(7):1403–
1408, 2018.

[35] A. Hatcher. Algebraic topology. Cambridge University Press, 2002.
[36] T. K. Ho. Random decision forests. In Proceedings of 3rd international conference on document analysis and

recognition, volume 1, pages 278–282. IEEE, 1995.
[37] C. D. Hofer, R. Kwitt, and M. Niethammer. Learning representations of persistence barcodes. J. Mach.

Learn. Res., 20(126):1–45, 2019.
[38] T. Kaczynski, K. M. Mischaikow, M. Mrozek, and K. Mischaikow. Computational homology. Applied math-

ematical sciences (Springer-Verlag New York Inc.); v. 157. Springer, New York, 2004.
[39] S. Kališnik. Tropical coordinates on the space of persistence barcodes. Foundations of Computational Math-

ematics, 19(1):101–129, 2019.
[40] A. Keros, V. Nanda, and K. Subr. Dist2Cycle: a simplicial neural network for homology localization. In

Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, 2022.
[41] M. Moor, M. Horn, B. Rieck, and K. Borgwardt. Topological autoencoders. In International conference on

machine learning, pages 7045–7054. PMLR, 2020.
[42] V. Nanda and R. Sazdanovic. Simplicial models and topological inference in biological systems. In Dis-

crete and Topological Models in Molecular Biology, pages 109–141. Springer, 2014.
[43] T. Ojala, T. Maenpaa, M. Pietikainen, J. Viertola, J. Kyllonen, and S. Huovinen. Outex-new framework for

empirical evaluation of texture analysis algorithms. In 2002 International Conference on Pattern Recognition,
volume 1, pages 701–706. IEEE, 2002.

[44] S. Y. Oudot. Persistence theory: from quiver representations to data analysis, volume 209. American Mathe-
matical Soc., 2017.

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.



VECTORIZATION METHODS IN TOPOLOGICAL DATA ANALYSIS 23

[46] J. A. Perea, E. Munch, and F. A. Khasawneh. Approximating continuous functions on persistence dia-
grams using template functions. Foundations of Computational Mathematics, 2022.

[47] D. Pickup, X. Sun, P. L. Rosin, R. R. Martin, Z. Cheng, Z. Lian, M. Aono, A. Ben Hamza, A. Bronstein,
M. Bronstein, S. Bu, U. Castellani, S. Cheng, V. Garro, A. Giachetti, A. Godil, J. Han, H. Johan, L. Lai,
B. Li, C. Li, H. Li, R. Litman, X. Liu, Z. Liu, Y. Lu, A. Tatsuma, and J. Ye. SHREC’14 track: Shape retrieval
of non-rigid 3d human models. In Proceedings of the 7th Eurographics workshop on 3D Object Retrieval, EG
3DOR’14. Eurographics Association, 2014.

[48] L. Polanco and J. A. Perea. Adaptive template systems: Data-driven feature selection for learning with
persistence diagrams. In 2019 18th IEEE International Conference On Machine Learning And Applications
(ICMLA), pages 1115–1121. IEEE, 2019.

[49] C. S. Pun, K. Xia, and S. X. Lee. Persistent-homology-based machine learning and its applications–a
survey. arXiv preprint arXiv:1811.00252, 2018.

[50] J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt. A stable multi-scale kernel for topological machine
learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4741–4748,
2015.

[51] M. Royer, F. Chazal, C. Levrard, Y. Umeda, and Y. Ike. Atol: Measure vectorization for automatic
topologically-oriented learning. In A. Banerjee and K. Fukumizu, editors, Proceedings of The 24th In-
ternational Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning
Research, pages 1000–1008. PMLR, 4 2021.

[52] M. Rucco, F. Castiglione, E. Merelli, and M. Pettini. Characterisation of the idiotypic immune network
through persistent entropy. In Proceedings of ECCS 2014, pages 117–128. Springer International Publish-
ing, 2016.

[53] A. Som, K. N. Ramamurthy, and P. Turaga. Geometric metrics for topological representations. In Hand-
book of Variational Methods for Nonlinear Geometric Data, pages 415–441. Springer, 2020.

[54] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and provably informative multi-scale signature based
on heat diffusion. In Computer graphics forum, volume 28, pages 1383–1392. Wiley Online Library, 2009.

[55] The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 3.6.0 edition, 2022.
[56] K. Turner, Y. Mileyko, S. Mukherjee, and J. Harer. Fréchet means for distributions of persistence dia-

grams. Discrete & Computational Geometry, 52:44–70, 2014.
[57] K. Xia. Persistent similarity for biomolecular structure comparison. Communications in Information and

Systems, 18(4):269–298, 2018.
[58] L. Xian, H. Adams, C. M. Topaz, and L. Ziegelmeier. Capturing dynamics of time-varying data via

topology. Foundations of Data Science, 4(1), 2022.
[59] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine

learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
[60] B. Zieliński, M. Lipiński, M. Juda, M. Zeppelzauer, and P. Dłotko. Persistence codebooks for topological

data analysis. Artificial Intelligence Review, 54(3):1969–2009, 2021.
[61] A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete & Computational Geometry,

33(2):249–274, 2005.



24 ALI, ASAAD, JIMENEZ, NANDA, PALUZO-HIDALGO, AND SORIANO-TRIGUEROS

Appendix A. Implementation and Parameter Details

We have made use of several existing software packages, such as GUDHI [55], Teaspoon5

or Scikit-learn [45], as well as our own implementations in some cases. Salient information
regarding each method has been provided in the list below. Full details can be found in the
GitHub repository accompanying this paper6.

A.1. Persistence Statistics. The persistence statistics vectorization from Definition 2.1
requires no additional parameters. We have implemented this method ourselves.

A.2. Entropy Summary Function. We have used the GUDHI implementation of the
entropy summary function from Definition 2.2. There is a single resolution parameter
which selects the grid points on which the entropy summary function is sampled.

A.3. Algebraic Functions. The algebraic functions of Definition 2.3 are implemented
in the Teaspoon package. For reasons which remain unclear to us, this implementation
includes a fifth tropical polynomial f5 = maxi{(qi − pi)} beyond the four ordinary polyno-
mials f1, . . . , f4 which were described after Definition 2.3. We do not expect that removing
this function will improve the results described below.

A.4. Tropical Coordinates. We have implemented the tropical polynomials F1, . . . , F7
described after Definition 2.4. The parameter r has been optimized over the set {10, 50, 250,
500, 800} for Outex and SHREC14, and over {10, 50, 250} for FMNIST.

A.5. Complex Polynomials. We have used the GUDHI implementation of complex
polynomials, which have been described in Definition 2.5. We generated the polynomials
with respect to all three of the transformations R, S, T : R2 → C. The number of coefficients
used was chosen from {5, 10, 20} for Outex and SHREC14 and {3, 5, 10} for FMNIST.

A.6. Betti Curve. The Betti curve vectorization from Definition 2.6 has been imple-
mented in GUDHI, and it only requires a resolution parameter. This parameter was chosen
from {50, 100, 200} for Outex and SHREC14 and {15, 30, 50} for FMNIST.

A.7. Lifespan Curve. We implemented the lifespan curve ourselves, with a resolution
parameter optimised across the set {50, 100, 200} for Outex and SHREC14 and across the
set {15, 30, 50} for FMNIST.

A.8. Persistence Landscapes. We have used the GUDHI implementation of persistence
landscapes (see Definition 2.8). The are two parameters to consider: the resolution (to iden-
tify the grid points where each landscape is sampled) and the total number of landscapes
used. The resolution was optimized over {50, 100, 200} for Outex and SHREC14, and over
{15, 30, 50} for FMNIST; the number of landscapes ranged over {2, 5, 10, 20} for Outex and
SHREC14 and over {1, 2, 3, 5} for FMNIST.

5https://lizliz.github.io/teaspoon/index.html
6https://github.com/Cimagroup/vectorization-maps

https://lizliz.github.io/teaspoon/index.html
https://github.com/Cimagroup/vectorization-maps


VECTORIZATION METHODS IN TOPOLOGICAL DATA ANALYSIS 25

A.9. Persistence Silhouette. We have used the GUDHI implementation of persistence
silhouettes (see Definition 2.9). The resolution parameter was optimized over {50, 100, 200}
for Outex and SHREC14 and over {15, 30, 50} for FMNIST; the weight w ranged over
{0, 1, 2, 5, 10, 20} for Outex and SHREC14 and {0, 1, 2, 5} for FMNIST.

A.10. Persistence Images. Persistence images (from Definition 2.10) have been imple-
mented in GUDHI. The resolution parameter r, which results in images of size r× r, ranged
over {25, 75, 150} for Outex, over {10, 20, 40} for SHREC14, and over {3, 6, 12, 20} for FM-
NIST. Bandwidth values of the Gaussian kernel (σ in Definition 2.10) were chosen from
{0.05, 1} for Outex and from {0.05, 0.5, 1} for both, SHREC14 and FMNIST.

A.11. Template Functions. We have used code from the repository7 provided with the
paper [46] for computing template functions (see Definition 2.11). We use tent functions
as described in (2), which require two parameters: a grid resolution δ and a padding
parameter π (for enlarging the area covered by the square grid). We optimized over

• δ in {35, 50, 65} and π in {20, 25, 30} for Outex;
• δ in {3, 4, . . . , 14, 15} and π in {0.5, 0.6, . . . , 1.1, 1.2} for SHREC14;
• δ in {2, 3, 5, 10} and π in {0.5, 1, 2} for FMNIST.

A.12. Adaptive Template Systems. The implementation of adaptive template systems
(Definition 2.12) has also been sourced from the same repository as template functions.
We have used the Gaussian mixture model for generating ellipsoidal domains, and require
only one parameter: the number of clusters. This has been optimized over

• {10, 20, 30, 40, 50} for Outex,
• {5, 10, 15, 20, 25, 30, 35, 40, 45} for SHREC14, and
• {3, 4, 5, 10, 15} for FMNIST.

A.13. ATOL. The ATOL vectorization from Definition 2.13 has been implemented in
GUDHI, and it also requires the number of functions b as a parameter. We have optimized
this over {2, 4, 8, 16, 32, 64} for Outex and over {2, 4, 8, 16} for both SHREC14 and FMNIST.

A.14. Dimensions, Classifiers and Hyperparameters. In the case of Outex, we have
concatenated vectors arising from barcodes of dimensions 0 and 1; for SHREC14, the vec-
tors computed from only dimension 1 barcodes performed better, so the results are only
reported for them. Finally, only dimension 0 barcodes were taken to build vectors for FM-
NIST. We considered both Support Vector Machine (SVM) [25] and Random Forest (RF)
[36] classifiers. Due to convergence issues, only RF has been performed for FMNIST.

For each parameter of each vectorization method, we accomplished a hyperparameter
optimization process based on random search (when optimizing SVM and RF jointly) or
grid search (for optimizing RF), with 5-fold cross-validation on the training data, to find the
best (hyper)parameters for both the machine learning models and the vectorization meth-
ods; then, we assigned to each method the parameters with the best average score among
all the 5-fold cross-validation scheme; finally the vectorization methods were evaluated on
the test dataset 100 times, to report the average accuracy.

7https://github.com/lucho8908/adaptive_template_systems

https://github.com/lucho8908/adaptive_template_systems


26 ALI, ASAAD, JIMENEZ, NANDA, PALUZO-HIDALGO, AND SORIANO-TRIGUEROS

Appendix B. Heat Kernel Parameter Dependence

As mentioned in Section 3, the filtration for SHREC14 is generated using the Heat
Kernel Signature (6) which depends on a single parameter t. In Table 5 we depict the best
classification accuracy of each vectorization method across all 9 values of t which were used
in our experiments.

Method t1 t2 t3 t4 t5 t6 t7 t8 t9

Pers Stat 0.729 0.785 0.662 0.704 0.947 0.910 0.915 0.915 0.908
Ent Sum 0.378 0.333 0.522 0.536 0.656 0.723 0.633 0.656 0.530
Alg Fun 0.467 0.456 0.556 0.567 0.909 0.878 0.863 0.833 0.711

Trop Coord 0.505 0.556 0.522 0.612 0.822 0.844 0.833 0.767 0.800
Com Poly 0.322 0.456 0.400 0.467 0.856 0.889 0.844 0.850 0.790

Bet Cur 0.511 0.467 0.628 0.660 0.728 0.633 0.611 0.644 0.536
Lif Cur 0.456 0.411 0.593 0.639 0.789 0.833 0.878 0.833 0.798

Pers Land 0.700 0.511 0.789 0.778 0.878 0.889 0.857 0.833 0.789
Pers Sil 0.400 0.378 0.556 0.589 0.811 0.867 0.856 0.856 0.656

Pers Img 0.644 0.691 0.795 0.856 0.916 0.794 0.871 0.811 0.718
Temp Func 0.778 0.735 0.933 0.789 0.944 0.919 0.908 0.932 0.922

Ad Temp Sys 0.802 0.872 0.833 0.727 0.889 0.856 0.889 0.844 0.633
ATOL 0.828 0.786 0.911 0.833 0.906 0.867 0.900 0.933 0.867

Table 5. Best Results for SHREC14 for various vectorization methods across nine t-values.

We note that for small values of t, the ensemble vectorizations perform best, whereas for
intermediate and larger values both ensemble and functional vectorizations achieve good
performance. The algebraic and curve based vectorizations perform quite poorly for low
t-values, but tend to become more competitive between t5 and t8.


	Introduction
	1. Persistence Barcodes from Data
	2. Vectorization Methods for Barcodes
	3. Datasets
	4. Results
	5. Web Application
	6. Concluding Remarks
	Acknowledgments
	References
	Appendix A. Implementation and Parameter Details
	Appendix B. Heat Kernel Parameter Dependence

