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STOCHASTIC CONVERGENCE OF PERSISTENCE LANDSCAPES AND
SILHOUETTES

Frédéric Chazal,* Brittany Terese Fasy,! Fabrizio Lecci,} Alessandro Rinaldo,*and
Larry Wassermant

ABSTRACT. Persistent homology is a widely used tool in Topological Data Analysis that
encodes multi-scale topological information as a multiset of points in the plane called a
persistence diagram. It is difficult to apply statistical theory directly to a random sample
of diagrams. Instead, we summarize persistent homology with a persistence landscape,
introduced by Bubenik, which converts a diagram into a well-behaved real-valued function.
We investigate the statistical properties of landscapes, such as weak convergence of the
average landscapes and convergence of the bootstrap. In addition, we introduce an alternate
functional summary of persistent homology, which we call the silhouette, and derive an
analogous statistical theory.

1 Introduction

Often, data can be represented as point clouds that carry specific topological and geometric
structures. Identifying, extracting, and exploiting these underlying geometric structures
has become a problem of fundamental importance for data analysis and statistical learn-
ing. Recently, the tools of computational topology have been used in data analysis, giving
birth to the field of Topological Data Analysis, whose aim is to infer relevant, multi-scale,
qualitative, and quantitative topological structures from data.

Persistent homology [11, 20] is a fundamental tool for providing multi-scale homology
descriptors of data. More precisely, it provides a framework and efficient algorithms to
quantify the evolution of the topology of a family of nested topological spaces, {X(t)},.R;
built on top of the data and indexed by a set of real numbers, which we can interpret
as scale parameters, such that X(¢) C X(s) for all ¢ < s. At the homology level', such a
filtration induces a family { H(X(¢))},.g of homology groups and the inclusions X(t) — X(s)
induce a family of homomorphisms H(X(t)) — H(X(s)), for ¢ < s, which is known as the
persistence module associated to the filtration. When the rank of all the homomorphisms
H(X(t)) — H(X(s)) are finite, the module is said to be g-tame [2] and it can be summarized
as a set of real intervals {(b;,d;)}; representing homological features that appear in the
filtration at ¢ = b; and disappear at ¢ = d;. Such a set of intervals can be represented as
a multiset of points in the real plane and is then called a persistence diagram. Thanks to

*INRIA Saclay, frederic.chazal@inria.fr

T Tulane University, brittany@fasy.us

¥ Carnegie Mellon University, {lecci,arinaldo,larry}@cmu.edu

'We consider here homology with coefficients in a given field, so the homology groups are vector spaces.
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their stability properties [9, 2], persistence diagrams provide relevant multi-scale topological
information about the data.

In a more statistical framework, when several data sets are randomly generated or
are coming from repeated experiments, one often has to deal with not only one persistence
diagram but with a whole distribution of diagrams. Unfortunately, since the space of
persistence diagrams is a general metric space, analyzing and quantifying the statistical
properties of such a distribution is particularly difficult.

A few attempts have been made towards a statistical analysis of distributions of per-
sistence diagrams. For example, the concentration and convergence properties of persistence
diagrams obtained from point clouds randomly sampled on manifolds and from more gen-
eral compact metric spaces are studied in [14] and [6]. Considering general distributions of
persistence diagrams, [17] suggested using the Fréchet average of the diagrams D1, ..., D,,.
Unfortunately, the Fréchet average is unstable and not even unique. A solution that uses
a probabilistic approach to define a unique Fréchet average can be found in [15], but its
computation remains practically prohibitive.

In this paper, we also consider general distributions of persistence diagrams but
we build on a completely different approach, proposed in [1], consisting of encoding a
persistence diagram as a sequence of real-valued one-Lipschitz functions that are called
persistence landscapes; see Section 2. The advantage of landscapes —and, more generally, of
any function-valued summaries of persistent homology— is that we can analyze them using
existing techniques and theories from nonparametric statistics. For example, converting
persistence diagrams to landscapes enables the comparison of distributions of diagrams as
well as the detection of outliers.

We have in mind two scenarios where multiple persistence diagrams arise:

Scenario 1: We have a random sample of compact sets K1, ..., K, drawn from a prob-
ability distribution on the space of compact sets. Each set K; gives rise to a persistence
diagram, which, in turn, yields a persistence landscape function A;. An analogous sampling
scenario is the one where we observe a sample of n random Morse functions fi, ..., f, from
a common probability distribution. Each such function f; induces a persistence diagram
built from its sub-level set filtration, which can again be encoded by a landscape A;. The
goal is to use the observed landscapes A1, ..., A\, to infer the mean landscape p = E()\;).

Scenario 2: We have a very large dataset with N points. There is a diagram D and land-
scape A corresponding to some filtration built on the data. When N is large, computing D
is prohibitive. Instead, we draw n subsamples, each of size m. We compute a diagram and
landscape for each subsample yielding landscapes Mg, ..., A,. (Assuming m is much smaller
than N, these subsamples are essentially independent and identically distributed.) Then,
we are interested in estimating p = E(\;), which can be regarded as an approximation of A.
Two questions arise: how far are the A;’s from their mean p? How far is p from A? We
focus on the first question in this paper.

In both sampling scenarios, we study the statistical behavior as the number of per-
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sistence diagrams n grows. We then analyze the stochastic limiting behavior of the average
landscape, as well as the speed of convergence to the limit. Specifically, the contributions
of this paper are as follows:

1. We show that the average persistence landscape converges weakly to a Gaussian pro-
cess and we find the rate of convergence of that process.

2. We show that a statistical procedure known as the bootstrap leads to valid confidence
bands for the average landscape. We provide an algorithm to compute these confidence
bands, and illustrate it on a few real and simulated examples.

3. We define a new functional summary of persistent homology, the silhouette.

As the proofs are rather technical, we refer the interested reader to the appendices.

Notation. We write X <V when two random variables X and Y are equal in distribution.
I(-) is the indicator function. The notation X,, = Op(a,) means that the set of values X, /ay,
is stochastically bounded. That is, for any € > 0, there exists a finite M > 0 such that, for
large n, P(| Xy /an| > M) <e.

2 Diagrams and Landscapes

A (finite) persistence diagram is a multiset of real intervals {(b;, d;) }icr, where I is a finite

set. We represent a persistence diagram as the finite multiset of points D = {(%, @)} .
el

Given a positive real number T', we say that D is T-bounded if for each point (z,y) =
(%, %‘b) € D, we have 0 < b < d <T. We denote by Dr the space of all positive, finite,
T-bounded persistence diagrams.

A persistence landscape, introduced by Bubenik in [1], is a sequence of continuous,
piecewise linear functions A(k,-): R — R, indexed by k € Z*, that provide an encoding of
a persistence diagram. To define the landscape, consider the set of functions created by
“tenting” each persistence point p = (x,y) = (%, %) € D to the base line x = 0 as with
the following function:

t—x+y telr—y,a] t—b te[b ]
Aty =Qa+y—t te(za+y =4d—t te (X d (1)
0 otherwise 0 otherwise.

Notice that p is itself on the graph of A,(t). We obtain an arrangement of curves by
overlaying the graphs of the functions {A,},cp; see Figure 1.

The persistence landscape of D is a summary of this arrangement. Formally, the
persistence landscape of D is the collection of functions

Ap(k,t) = km%x Ay(t), tel0,T),keZ", (2)
pe

where kmax is the kth largest value in the set; in particular, 1max is the usual maxi-
mum function. We set Ap(k,t) = 0 if the set {A,(t),p € D} contains less than k points.
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Figure 1: The pink circles are the points in a persistence diagram D. Each point p corre-
sponds to a function A, given in (1), The landscape A(k, -) is the k-th largest of the arrange-
ment of the graphs of {A,}. In particular, the thick cyan curve is the landscape A(1,-).

From the definition of persistence landscape, we immediately observe that Ap(k,-) is one-
Lipschitz, since A, is one-Lipschitz. We denote by L7 the space of persistence landscapes
corresponding to Dp. For ease of exposition, in this paper, we focus on the case k = 1,
and set A\(t) = Ap(1,t). However, the results we present hold for any fixed k, as the key
assumtion we use is that A(t) is one-Lipschitz.

3 Uniform Convergence of Landscapes
Let P be a probability distribution on L7, and let Ay,..., A\, i P. We define the mean
landscape as

:u(t) = ]E[)\’L(t)]a te [Oa T]

The mean landscape is an unknown function that we would like to estimate. We estimate

with the sample average
n

1
=Y Ni(t), telo,T].

n 4

=1

Note that since E[\,(t)] = u(t), we have that ), is a pointwise unbiased estimator of the
unknown function p. Our goal is then to quantify how close the resulting estimate is to
the function p. To do so, we first need to explore the statistical properties of A,. Bubenik
[1] showed that A, converges pointwise to x4 and that the pointwise Central Limit Theorem
holds. In this section, we extend these results, proving the uniform convergence of the

average landscape. In particular, we show that the process

(Vi () = (1) } ®)

te[0,7
converges weakly to a Gaussian process on [0,7] and we establish the rate of convergence.
For more details on the theory of empirical processes, we refer the interested reader to [19].

Let
F= {ft}te[O,T]v (4)
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where f; : L7 — R is defined by fi(\) = A(t). Writing P(f) = [ fdP and letting P, be the
empirical measure that puts mass 1/n at each \;, we can and will regard (3) as an empirical
process indexed by f; € F. Thus, for t € [0,T], we write

Cu(t) = Gulfy) = vt (Ru(t) — (1)) = jﬁ S (i) — u(®) = V(P — P)(f). (5)
=1

We note that the function F(A\) = T'/2 is a measurable envelope for F.

A Brownian bridge is a Gaussian process on the set of bounded functions from F
to R, such that the process has mean zero and the covariance between any pair f,g € F has
the form [ f(u)g(u)dP(u) — [ f(u)dP(u) [ g(u) . A sequence of random objects X,
converges weakly to X, written X,, ~» X, if E*(f(Xn)) — E(f(X)) for every bounded
continuous function f. (The symbol E* is an outer expectation, which is used for technical
reasons; the reader can think of this as an expectation.) Thus, we arrive at the follow-
ing theorem (see Theorem 2.4 in [5]):

Theorem 1 (Weak Convergence of Landscapes). Let (G be a Browm'an bm'dge with covari-

ance function k(t,s) = [ fi(A)fs(\)dP(X) — [ fr(N)dP(N) [ fs(A ), for t,s € [0,T].
Then G, ~ G.

Next, we describe the rate of convergence of the maximum of the normalized empir-
ical process G, to the maximum of the limiting distribution G. The maximum is relevant
for statistical inference, as we shall see in the next section.

For each t € [0,T], let o(t) be the standard deviation of \/n \,(t), i.e

o(t) = \/nVar(\,(t)) = / Var(f;(\1)). (6)

Theorem 2 (Uniform CLT). If there exists an interval [t. ,t*] C [0,T] and a constant ¢ > 0

such that o(t) > c for everyt € [t ,t*], then there exists a random variable W 4 supsee, ++11G
such that

Remarks: The assumption in Theorem 2 that the standard deviation function o is positive
over a subinterval of [0,7] can be replaced with the weaker assumption of positivity of o
over a finite collection of sub-intervals without changing the result. We have stated the
theorem in this simplified form for ease of readability. Furthermore, it may be possible to
improve the term n~/8 in the rate using what is known as a “Hungarian embedding” (see
Chapter 19 of [18]). However, we do not pursue this point further.

z
8

O((log n)

ns

1@( sup |Gn(t)| §z> —P(W<2)| =
tE[ts,t*]

sup
zeR

4 The Bootstrap for Landscapes

Recall that our goal is to use the observed landscapes (A1, ..., A,) to make inferences about
w(t) = E[X(t)], where 0 < t < T. Specifically, in this paper, we will seek to construct
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an asymptotic confidence band for . A pair of functions £,,u,: R — R is an asymptotic
(1 — «)-confidence band for p if, as n — oo,

P(en(t) < u(t) < un(t) for all t) >1—a—O0(r), (7)

where 7, = o(1). Confidence bands are valuable tools for statistical inference, as they
allow us to quantify and to visualize the uncertainty about the mean persistence landscape
function p and to screen out topological noise, i.e., features with small persistence. The
notion of topological noise was first introduced in [11], and we note that features considered
topological noise are usually, but not always, unimportant features.

Below, we describe an algorithm for constructing the functions ¢, and wu, from the
sample of landscapes A} := (A1,..., \,), prove that it yields an asymptotic (1—«)-confidence
band for the unknown mean landscape function u, and determine its rate r,,. Our algorithm
relies on the use of the bootstrap, a simulation-based statistical method for constructing a
confidence band under minimal assumptions on the data generating distribution P; see
[12, 13, 18]. There are several different versions of the bootstrap. This paper uses the
multiplier bootstrap.

Let & = (&1,...,&n) be independent Gaussian random variables with mean zero
and variance one, and define the multiplier bootstrap process

Gn(fe) = Gu (A1, E7) (f: \FZ§Z frhi) = An(t)) , t €00, 7). (8)
Let Z(a) be the unique value such that
P ( sup G
tE [t t*]

Note that the only random quantities in this definition are &;,...,&, ~ N(0,1). Hence,
Z(a) can be approximated by Monte Carlo simulation to great precision as follows: repeat

n(ft)) > Z(a) Al,...,An) ~a (9)

the bootstrap B times, yleldlng B processes, {G(j (1),j =1,...,B}, and the corresponding
values 6; := SUDselt, 4] ]G )(fe)l, 5 =1,...,B. Then let

B
Z(a) = Z 0 > 2) . (10)

We may take B as large as we like to make the Monte Carlo error arbitrarily small. Thus,
when using bootstrap methods, one ignores the error caused by approximating Z (o) as
defined in (9) with its simulation approximation as defined in (10). The multiplier bootstrap
confidence band is {(¢,,(t), un(t)) : t € [ts,t*]}, where

Z(a)
\/ﬁ )

The steps of the algorithm are given in Algorithm 1.

£a(t) = X(t) — wn() = () + 2, (11)
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Algorithm 1 The multiplier bootstrap algorithm.

INPUT: Landscapes \1,..., \,; confidence level 1 — a;; number of bootstrap samples B
OUTPUT: confidence functions 4,,,u,: R — R

1: Compute the average A, () = 2 37 | \;(t), for all ¢

2: for j =1to B do

3 Generate &1,...,&, ~ N(0,1)

4: Set 9 =Ssup;n 1/2|Z 15@ ( z( ) _Xn(t)”

5: end for
6: Define Z(a) = inf{z: % ZB 10, > 2) < ot

An(t) = 242 and un(t) = a(t) + 52
)

~t

Set £, (t)

- Vi v
8: return /£, (¢

n ()

The accuracy of the coverage of the confidence band and the width of the band
are described in the next result, which follows from Theorem 2 and Proposition 13 in
Appendix B.

Theorem 3 (Uniform Band). Suppose that o(t) > ¢ for each t in an interval [t ,t*] C [0,T]
and some some constant ¢ > 0. Then

P(fn(t) < u(t) < un(t) for all t € [t ,t*]) >1-a-0 (W) .

Also, sup; (un(t) — €n(t)) = Op (ﬁ)

The second statement follows from the fact that Z(a) = Op(1), where Z(a) is
defined in (10). We remark that the randomness is with respect to the joint probabilities
of the landscapes and of the ¢’s. In [5], a similar asymptotic confidence band is computed
for the whole interval [0, 7] (see Theorem 2.5), but the rate of convergence is not provided.

The confidence band above has constant width; that is, the width is the same for
all t. However, the empirical estimate A(t) might be a more accurate estimator of ju(t) for
some t than others. This suggests that we may construct a more refined confidence band
whose width varies with t. Hence, we construct a variable width confidence band. Consider
the standard deviation function o, defined in (6), and its estimate

n

Falt) = |+ SRR - B2+ € [0.T] (12)

i=1

Define the standardized empirical process
H,(f) = Ha(A])(f1) Z fil2 e bt (13)

and, for &1,...,&, ~ N(0,1), define its multiplier bootstrap version: for € [t, ,t*],

() = B 0L () = = S Ll (14)
i=1 "
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Just like in the construction of uniform bands, let @(a) be such that

IF’( sup
e[t ,t*]

O ()] > Q) | My ha) = (15)

Again, @(a) can be computed by simulation to arbitrary precision. The variable width
confidence band is {(¢,, (t), ues, (t)) : t € [t«,t*]}, where

lo, () = An(t) — U, () = An(t) + (16)
Theorem 4 (Variable Width Band). Suppose that o(t) > ¢ > 0 in an interval [t.,t*] C

[0,T], for some constant c. Then

(o, (8) < (1) < o, (1) for all 1 € [12,7]) 21— =0 (%) |

The examples in Section 6 illustrate the difference between confidence bands of
constant and variable widths.

5 The Weighted Silhouette

The kth persistence landscape A(k,t) can be interpreted as a summary function of the
persistence diagram. A summary function is a function that takes a persistence diagram
and outputs a real-valued continuous function. The persistence landscape is just one of
many functions that could be used to summarize a persistence diagram. In this section,
we introduce a new family of summary functions called weighted silhouettes. A probability
distribution on the original sample space of persistence diagrams induces a probability
distribution on the space of summary functions, allowing us to apply the techniques we
discussed above.

Consider a persistence diagram with m off-diagonal points. In this formulation, we
take the weighted average of the functions defined in (1):

Z;n:l w;A;(t)

Z}n:l wj

where w; is the (non-negative) weight associated to Aj. Consider two points of the per-
sistence diagram, representing the pairs (b;,d;) and (b;,d;). In general, we would like to
have w; > w; whenever |d; — b;| > |d; — b;|. This correspond to the intuition that the most
persistent points are the most important. In particular, let ¢(t) have weights w; = |d; —b;|?,
for p > 0.

o(t) = (17)

Definition 5 (Power-Weighted Silhouette). For every 0 < p < oo, we define the power-

weighted silhouette
2o |dj — bjlPA;(t)

Z;’nzl ’dj —bj [P

o7 (1) =
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Pers. Diagram Silhouette (p=0.1) ° Silhouette (p=3)
(V)_ —
Q ° °
=3 7]
£o & 4
s} 3 c
Lo s e’
T o LY g —
s ]
: % |
= 8 8
© I T T T 1 o T T T T T T T o T T T T T T T
04 06 08 1.0 1.2 00 04 08 12 00 04 08 12
(Birth+Death)/2 t t

Figure 2: An example of power-weighted silhouettes for different choices of p. The axes are
on different scales. The weighted silhouette is one-Lipschitz.

The value p can be though of as a trade-off parameter between uniformly treating all
pairs in the persistence diagram and considering only the most persistent pairs. Specifically,
when p is small, ¢® (t) is dominated by the effect of low persistence pairs. Conversely,
when p is large, ¢)(¢) is dominated by the most persistent pair; see Figure 2.

The power-weighted silhouette preserves the property of being one-Lipschitz. In fact,
this is true for any choice of non-negative weights. Therefore all the results of Sections 3
and 4 hold for the weighted silhouette by simply replacing A with ¢. In particular, consider
®1,...,¢n ~ Py. Applying theorems 1, 2, 3 and 4, we obtain:

Corollary 6. The empirical process \/n (n™' 31" ¢i(t) — E[p(t)]) converges weakly to a

Brownian bridge. The rate of convergence of the maximum of this process to the maximum
C. L, . . 7/8

of the limiting distribution is O <M>

nl/8

Corollary 7. The multiplier bootstrap algorithm of Algorithm 1 can be used to construct
a uniform confidence band for {E[¢(t)]}iet, v with coverage probability at least 1 — o —

(logn)7/8 . . . (logn)'/2
(@) —175— ) and a variable width confidence band with coverage at least 1—a—0 | ~—217%— ),

n1/8

where [y, t*] C [0,T] is such that \/ Var(¢(t)) > ¢ > 0 for allt € [t., t*] and some constant c.

6 Examples

In Topological Data Analysis, persistent homology is classically used to encode the evolution
of the homology of filtered simplicial complexes built on top of data sampled from a metric
space; see [3]. For example, given a metric space (X, dyx) and a probability distribution Pyg
supported on X, one can sample m points, K = {X1,..., Xy} i.i.d. from Pg and consider
the Vietoris-Rips (VR) filtration built on top of these points. The persistent homology of
this filtration induces a persistence diagram D and a landscape A. Sampling n such K,
one obtains n persistence landscapes A1,...,A,. In this section, we adopt this setting to
illustrate our results on two examples, one real and one simulated. We note that we compute
homology with coefficients in the field Z/2Z.
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Earthquakes epicenters Mean 1st Landscape (n=30) Mean Silhouette (p= 0.01)
q P with 95% confidence band with 95% confidence band
8 - -
8 © |
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Figure 3: Top: Sample space of epicenters of 8000 earthquakes and one of the 30 persis-
tence diagrams. Middle: uniform and variable width 95% confidence bands for the mean
landscape p(t). Bottom: uniform and variable width 95% confidence bands for the mean
weighted silhouette E[¢(%-0D (¢)].

6.1 Earthquake Data

Figure 3 (left) shows the epicenters of 8000 earthquakes in the latitude/longitude rectangle
[~75,75] x [~170,10] of magnitude greater than 5.0 recorded between 1970 and 2009.> We
randomly sample m = 400 epicenters, construct the VR filtration (using the Euclidean
distance), compute the persistence diagram using Dionysus® and the corresponding first
landscape function. We repeat this procedure n = 30 times and compute the mean land-
scape \,. Using Algorithm 1, we obtain the uniform 95% confidence band of Theorem 3
and the variable width 95% confidence band of Theorem 4. See Figure 3 (middle). Both
the confidence bands have coverage probability 95% for the mean landscape u(t) that is
attached to the distribution induced by the sampling scheme. Similarly, using the same 30
persistence diagrams we construct the corresponding weighted silhouettes using p = 0.01
and construct uniform and variable width 95% confidence bands for the mean weighted
silhouette E[¢(%91)(¢)]; see Figure 3 (right). Notice that, for most ¢ € [0, 7], the variable
width confidence band is tighter than the fixed-width confidence band.

2USGS Earthquake Search. http://earthquake.usgs.gov/earthquakes/search/.
3Dionysus is a C++ library for computing persistent homology, developed by Dmitriy Morozov.
http://mrzv.org/software/dionysus/.
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6.2 Toy Example: Rings

Sample Space Mean 1st Landscape (n=30) Mean Silhouette (p=4)
ple Sp ., _with Adaptive 95% band . _ with Adaptive 95% band
< ] S 7]
N © |
o | o
o
| <
o

0.4
0.2

o _| o _|
e Y S TOT T T T T T 1
0.0 1.0 t20 3.0 0.0 1.0 t20 3.0
. Mean 3rd Landscape (n=30) Mean Silhouette (p=0.1)
N 10f 30 Diagrams . _with Adaptive 95% band with Adaptive 95% band
o A =2
cw© _| «© ]
B A ) g
_é ] ] o
§ < A < o
o o
e | ] S 7]
o | A% ‘ o | S 4
e e Y o T T T T T T T 1
0 1 2 3 4 0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
(Birth+Death)/2 t t

Figure 4: Top: Sample space and one of the 30 persistence diagrams. Middle: variable
width 95% confidence bands for the mean first landscape p;(¢t) and mean third landscape
us(t). Bottom: variable width 95% confidence bands for the mean weighted silhouettes
E[p")(1)] and E[¢ D (1)].

In this example, we embed the torus S' x S' in R3 and we use the rejection sampling
algorithm of [10] (R = 5, r = 1.8) to sample 10,000 points uniformly from the torus. Then,
we link it with a circle of radius 5, from which we sample 1,800 points; see Figure 4 (top
left). These N = 11,800 points constitute the sample space. We randomly sample m = 600
of these points, construct the VR filtration, compute the persistence diagram (Betti 1) and
the corresponding first and third landscapes and the silhouettes for p = 0.1 and p = 4. We
repeat this procedure n = 30 times to construct 95% variable width confidence bands for
the mean landscapes p1(t), p3(t) and the mean silhouettes E[¢p™) (¢)], E[¢O-(¢)]. Figure 4
(bottom left) shows one of the 30 persistence diagrams. In the persistence diagram, notice
that three persistence pairs are more persistent than the rest. These correspond to the
two nontrivial cycles of the torus and the cycle corresponding to the circle. We notice that
many of the points in the persistence diagram are hidden by the first landscape. However, as
shown in the figure, the third landscape function and the silhouette with parameter p = 0.1
are able to detect the presence of these features.
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7 Discussion

We have shown how the bootstrap can be used to give confidence bands for Bubenik’s
persistence landscapes and for persistence silhouettes defined in this paper. We are currently
working on several extensions to our work, including the following: allowing persistence
diagrams with countably many points, allowing 7" to be unbounded, and extending our
results to new functional summaries of persistence diagrams. In the case of subsampling
(scenario 2 defined in the introduction), we have provided accurate inferences for the mean
function p. In [4], we investigate methods to estimate the difference between p (the mean
landscape from subsampling) and A (the landscape from the original large dataset). Coupled
with our confidence bands for u, this provides an efficient approach to approximating the
persistent homology in cases where exact computations are prohibitive.
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A Results from Chernozhukov et al.

In this appendix, we summarize the results from [7] that are used in this paper. Given a
set of functions G and a probability measure @, define the covering number N (G, L2(Q), €)
as the smallest number of balls of size ¢ needed to cover G, where the balls are defined
with respect to the norm ||g||> = [ ¢*(u)dQ(u). Let Xi,..., X, be iid. random variables
taking values in a measurable space (S,S). Let G be a class of functions defined on S and
uniformly bounded by a constant b, such that the covering numbers of G satisfy

sgpN(g,Lg(Q),bT) <(a/T)",0<T<1 (18)

for some a > e and v > 1 and where the supremum is taken over all probability measures
Q@ on (S,S). The set G is said to be of VC type, with constants a and v and envelope b.
Let 02 be a constant such that sup,cg E[g(X;)?] < 0% < b* and for some sufficiently large
constant C1, denote K, := C1v(logn Vlog(ab/c)). Finally, define

Galg) = jﬁ S (9(X:) — Elg(X2)]),9 € G,
=1

and let W), := [|Gyllg = supyeg |Gn(g)| denote the supremum of the empirical process G,.
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Theorem 8 (Theorem A.1in [7]). Consider the setting specified above. For any ~y € (0,1),

there is a random variable W < IG|lg such that

bK,  o2KSY pl3g2/3 3 log n
N1 2172 + ~1/2p1/4 + ~1/3p1/6 C2 <7+ )

P <|Wn—W| >

for some constant Cs.

Let &1,...,&, beiid. N(0,1) random variables independent of X7 := {X1,..., X, }.
Let &7 :={&1,...,&n}. Define the Gaussian multiplier process

@’n(g) (Xl 751 : \/} Zfz ( z :LZ[Q(XZ)]> y g€ g.

=1

Lastly, for fixed 7, let W, (z}) = SUpgeg |G (27, €7)(g)| denote the supremum of this
process.

Theorem 9 (Theorem A.2 in [7]). Consider the setting specified above. Assume that b*K, <
no?. For anyé > 0 there exists a set S, € 8™ such that P(S,) > 1-3/n and for any 27 € S,

there is a random variable W < supgeg |G| such that

1/2 1/2,.1/2 7-3/4 1/2,.1/2 7-3/4
- oKy, b/ cot* Ky, btcot* Ky, 1
P (|Wn($1) - W‘ > n1/2 + n1/4 5) < Cg (W ﬁ

for some constant Cs.

The following two results are known as “anti-concentration” inequalities for suprema
of Gaussian processes. They shows that suprema of Gaussian processes do not concentrate
too fast.

Theorem 10 (Corollary 2.1 in [7]).
Let W = (Wy)er be a separable Gaussian process indexed by a semi-metric space T such
that E[W:] = 0 and E[W?] = 1 for allt € T. Assume that sup,ep Wy < oo a.s. Then,

a(|W)) := E[supser [Wi|] € [\/2/7,00) and
sup P (‘ sup |Wy| — x‘ < 5> < Aea(|]W))
z€R teT

for all e > 0 and some constant A.
Theorem 11 (Lemma A.1 in [8]). Let (S,S, P) be a probability space, and let F C L*(P)
be a P-pre-Gaussian class of functions. Denote by G a tight Gaussian random element in

0>°(F) with mean zero and covariance function E|G(f)G(g)] = Covp(f,g) for all f,g € F.
Suppose that there exist constants o, @ > 0 such that o2 < Varp(f) < @2 for all f € F.

Then for every e > 0,
sup P ( < 6) < Cye (IE
z€eR

where Cy is a constant depending only on ¢ and G.

sup G f
feF

supGf —=x
feFr

+v1 VlOg(0/6)> ;
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Theorem 12 (Talagrand’s ineq., Th. B.1 in [7]).

Let &, ..., &, bei.i.d. random variables taking values in a measurable space (S,S). Suppose
that G is a measurable class of functions on S uniformly bounded by a constant b such that
there exist constants a > e and v > 1 with supg N (G, L2(Q), be) < (a/e)" for all0 <e < 1.
Let 0% be a constant such that sup,eg Var(g) < o2 < b2, If b*vlog(ab(o)) < no?, then for

all t < no?/v?,
ab _t
> Ay[no? [tV | vlog — <e,
o

P <su1g> > {9(&) —Elg(&)l}
9€Y i=1

where A is an absolute constant.

B Technical Tools

In this section, we prove some results that will be used in the proofs of Appendix C. Some of
our techniques are an adaptation of the strategy used in [7] to construct adaptive confidence
bands.

Consider the class of functions F = { f; }o<i<7, defined in (4) and let A} = (A1,..., \p)
be an i.i.d. sample from a probability P on the measurable space (Lp,S) of persistence
landscapes. We summarize the processes used in the analysis of persistence landscapes,
given in Sections 3 and 4:

e G(fy) is a Brownian Bridge described in Theorem 1,
Galf) = = S (0 — (1),
i Gn(ft) = ﬁ 2?21 &i (ft()\z) - Xn(t)) .
For o(t) > ¢ > 0, we also defined
o H,(f;) = Hy(ND)(fr) = 2= Y, 280540,

T T i —Xn
o Ha(fy) = B\, 61)(fr) = & S0, 6 4000,
and for completeness we introduce
e H{(f;), the standardized Brownian Bridge with covariance function

r(t,u) = [ LGN ap(y) - [ L8P [ LEdP) (19)

o(t)o(u o(u)

e The process

fr(A) = ()
a(t) ’ (20)

Ha(f1) = Ba O, &) (fy) 1= jﬁ 3¢
=1

which differs from H,(f;) in the use of the standard deviation o(t) that replace its
estimate o, ().
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Proposition 13 (Bootstrap Convergence).

Suppose that o(t) > ¢ > 0 in an interval [t* ,t*] € [0,T1], for some constant c. Then, for

large n, there exists a random variable WL SUPtely. 1+] |G(ft)| and a set S, € 8™ such that
P(\? € S,) > 1 —3/n and, for any fized A7 := (A1,..., An) € Sy,

L log n)®/8
sup [P(sup (G (8. 60 () < =) ~P(W < 2)| < co( LB,
zeR° Nttt !

ss for some constant Cg > 0.

Proof. Let F* = {fi € F:t € [ts,t*]}. Consider the covering number N (F*, L2(Q), || F||2¢)
of the class F*, as defined in Appendix A, with ' = T//2. In the proof of Theorem 2 we
show that

sup N(F* L(Q).||Fll2e) < 2/

where the supremum is taken over all measures ) on L.

Forn>2 b=0=T/2,v=1, K, = A(logn V1), Theorem 9 implies that there exists
a set S, such that P(A! € S,,) > 1 — 3/n and, for any fixed A} := (A1,...,\,) € Sy, and
6 >0,

TvAlogn T(Alogn)3/* T(Alogn)®/* 1
P Gn| - W 0| <Cs3| ————F—+—].
(’ te?r}il,)t*] Gl > iz opl/d Top=os 20n1/4 n

Define
T(Alogn)'/?  T(Alogn)3/*

g(n,é,T) = onl/2 o l/4

Using the strategy of Theorem 2 and applylng the anti-concentration inequality of Theorem
11, it follows that for large n and A7 := (A1, ..., An) € Sn,

P( sup |G (A7, €7)] < ) ~P(W < 2)

sup
o | \eelt ]
c T(Alogn)¥/* 1
< 6,T),/log ——r-++C3 | ————"— + — 21
< G5 9(n,0,T), [log g(n,9,T) o ( 26n1/4 + n (21)
for some constant C5 > 0. Choosing 6 = (Alfﬁi/?l/g, we have

T(Alogn)'/2  T(Alogn)3* (Alogn)'/®

9(n,0,T) = onl/2 onl/4 /8

a9 The result follows by noticing that, g(n,d,T) = O (%) and , /log ToT) 5T) =0 ((log n)1/2) .
350 D

351 In the following lemma we consider the class G. = {g; : g+ = fit/o(t), t« <t < t*}
32 where f; € F is defined in (4) and we bound the corresponding covering number, as in (18).
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Lemma 14. Consider the assumptions of Theorem 4 and consider the class of functions
Ge =gt : gt = ft/o(t), t. <t < t*}, where fr € F. Note that T/(2c) is a measurable
envelope for G.. Then

SgpN(gc,L2(Q)7€HT/(2C)HQ,2) < (a/e)’, 0<e<1

w3 fora = (T?+2c%)/c? and v = 1, where the supremum is taken over all measures Q on L.
4 G is of VC type, with constants a and v and envelope T'/(2c).

Proof. First, using the definition of o(¢) given in (6) for ¢ > u, we have

r(fe(A1)) — Var(fu(A1))

= E[f7(\)] = E[f:(0))? = E[fz (A)] + E[fu(M)])
=E[(fi(A) = fu(M)) (fe(A1) + fu(A1))] +

(Elfu(A)] = E[fe(A)]) Elfu(A)] + E[f:(A1)])

(t = w) (E[fe(M) + fu(A)] + E[fu(M)] + E[fe(M)])
2(t —u)T.

o*(t) = o*(u) = V

Q

(
A

IN A

Note that we used the fact that f;(\) is 1-Lipschitz in ¢ and 7'/2 is an envelope of F.
Therefore
|o?(t) = o*(w)| _ [t—ulT

ot)+o(w) — ¢
Using that fi(\) is one-Lipschitz, we also have that |o(t)g:(\) — o(u)g(u)| < |t — u|, for
t,u € [ty, t*]. Construct a grid t, =tg < t; < --- <ty = t* such that t;1; —t; = %
We claim that {gtj :1<j < N}isaneT/(2c)net of G.. If g; in G, then there exists a j
so that t; <t <t;41 and

|o(t) —o(u)] =

o(tjt1)o(t)g,, —o(tjt1)o(t)ge
o(tj+1)o(t)

35 By subtracting and adding o?(t;41) gt;+, in the numerator the last quantity becomes

o(tj+1) o

o(tj+1)9t o(t) g
||gtj+1 - gt”Q,? = — t)

Q72

o(tj+1)9t,,[0(t) — o(tjr1)] + o(tjr1)o(tj+1)9t,, — o(t)gi]
o(tjt1)o(t)

Q72
< [Tl — o]t =t
B 202 Q.2 s
W =0T ot T2
- 2¢3 c = (lj+1 J 203
B eTc? T2 + 262 €T
CT2422 263 2
36 L hus,
s supg N(Ge, La(Q), €T (2¢)) < T2 < g, 0
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Let H be a Brownian bridge with covariance function given in (19). Then, combining

Lemma 14 and Theorem 8, with v = (1053231/2, we obtain:

. d
Lemma 15. One can construct a random variable Y = supe(;, s+
n?

H| such that for large

(logn)'/? (logn)'/?
P <’ tes[z}il,)t*] [Hy (fe)] — Y’ > C?w < CSw-

for some absolute constants C7 and Cg.

Consider o(t) and o (t), defined in (6) and (12).

Lemma 16. For large n and some constant Cy,

on(t) (logn)'/? 2
’ (t:[li%lq ZoniE 0/> = -
Proof. Let G, = {g: : gt ft/a( ), te <t <t*} and G2 := {g*: g € G.}.
By definition 52 Z 2\ 2(H)]? and 0%(t) = E[f2(\1)] — (E[f:(A\1)])%. Thus
on(t) aa(t) | _|oat) —a*@)
=0 1‘ =lo20) 1’ =0 ‘
o [T ) ERZOO) L [LER A [ESROW])
= inln o20) =0 ‘ﬂe[t}iﬂ [n o(t) ] { o(t) ]
= sup lE:Q(A)—E[ (V]| + sup [ Zg ] — (E[g\))? (23)
geg? | gE€Ge

Using the same strategy of Lemma 14, it can be shown that G2 is VC type with some
constants A and V' > 1 and envelope T2/(4c?). Therefore, by Theorem 12, with ¢ = logn
and for large n,

(;;152 Zg > CmW) < % (24)
Note that
n 2 n
sup [1 ng] — (ElgO?| < - sup | -3 g(n) ~ Elg()]
9€Ge | |V i € gege |
and, applying again Theorem 12 to the right hand side, we obtain
n 2
(s [;;gml — )| > 0 BT < L (25)

The inequality of (22) follows from (23), (24) and (25). O
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Lemma 17 (Estimation error of Q()). Let Q() be the (1 — a)-quantile of the ran-
dom variable Y < supyeyr, ¢+ |H| and Q(a) be the (1 — «)-quantile of the random variable

SUDye(t, 4] ]ﬁn| There exist positive constants Cr2 and C13 such that for large n:

(i) P[Qa) < @ (a+ Cro U212 ) — e < 3,

3/8

.. A ogn ogn)3/
(ii) P [Q(a) >Q (a — C’12(li17/)8) + O3 51/)83 8} <3,

Proof. Define AH,(f;) := H/i\ln(ft) — Hn(ft). Consider the set S, 1 € 8" of values 5\’11 such
that, if AT € S, 1, then

Q)

1 1/2
Jogm) 7= all t € [t 7],

(t)
am‘l’f@

By Lemma 16, P(A} € Sp1) > 1 —2/n. Fix A € Sp1. Then

S = > K-l (20 )

is a zero-mean Gaussian process with variance
~9 2 1
B20) (o) 1) _ calomn,
a?(t) \on(t) n

Let G. = {ag : a € (0,1],9 € G.}. G, is VC type with some constants A and V > 1 and
envelope 72/(4¢?). Moreover, the uniform covering number of the process AH,, (A7, £7)(f;)
with respect to the natural semi-metric (standard deviation) is bounded by the uniform
covering number of G.. Therefore we can apply Theorem 2.4 in [16] (see also Section A.2.2

in [19]) and obtain
g )

<P ( sup [AH, (AL, €1)(fi)] > Bn>
tE [t t*]
v 2
<D ( QBnn ) Co+/logn exp (_ gnn ) ’ (26)
Célogn Bnv/n 2C3 logn
for some constant D. For Cyy = v/2Cy(1 + V/2)Y/? and B, = Cis(logn)/n'/?, the last
quantity is bounded by C5/[n(logn)'/?], for some constant Cy5. Therefore, for large n,

sup [HAD)(f)| — sup [HA)(f)
tE [t t¥] tE[tw,t¥]

. . 1 3/8
P ( sup [T ()] = sup [ ()] > 014(°g1"/)8>
t t "
< P (|sup G0 - sup A | = Cua o
! ! nl/2
(log n)*/*
< Crsposem < O ogg— (27)
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/
By Theorem 9 with § = (log n)? 8, for large n, there exists a set S, 2 € 8™ such

/8
that P(A} € Sp2) > 1 —3/n, and for any A} € Sy, 2, one can construct a random variable
3 3
. logn)s logn)s
p(| sup (O] - Y| 2 01BN < 0 LB (28)
tE [ty ] nl/ nl/
Combining (27) and (28), we have that, for large n and 5\711 € Sno = Sn,1 NSy,
3 3
% \n (logn)s (logn)s
IP)(‘ sup |[H(A?)(fe)] *Y‘ > Ci3 Y ) < Ci2 Y (29)

tE [ty t*]
for some constants C1g, C13.

Let @(a,ﬂ’f) be the conditional (1 — a)-quantile of sup;cp, 4 |]I?H(5\§‘)(ft)| Then
Q) = Q(a, A7) is a random quantity and for A? e Sn.,0, we have that

~ . 1 3/8
P Ys@(a,A?HClg(‘)gm)

/8
~ . (logn)3/® = v (log n)*/®
> < 4 ~° 7 n — < o
oo({rsoesn st} ]| g movn ]ty
~ o ~, v logn)3/8
2P<sw H@ﬁ@ﬂg@@ﬂ@)—qJéyg
tE[tw t*] n
(log n)?/8
>1l—a-C
e! 12178
Therefore ) <a + 012(1051#) < @\(a) + Clg(brgll#/);/g whenever A\ € S, o, which happens
with probability at least 1 — 5/n. This proves part (i) of the theorem. The proof of part

(ii) is similar and therefore is omitted. O

C Main Proofs

Proof of Theorem 2. Let F* ={f € F : t € [t«,t*]} and let @ be a probability measure on
Lr. The Lipschitz property implies that for every A € L, |fi(A) — fu(A)] = [A(t) — A(u)| <
|t — u| and hence ||fi — fullg2 < [t —u|. Construct a grid, 0 =ty <t; <--- <ty =T
where tj11 —t; = ¢||F|lg2 = €T/2. In the last equality, we used the constant envelope
F(\) =T/2. We claim that {f;; : 1 <j < N} is an (¢7/2)—net of F*: choosing f; € F*,
then there exists a j so that t; <t <t;41 and

I ft;on — fillg2 < [tjr1 =t < [tjp1 =ty =eT/2.

Thus, we can bound the covering number of F*, as in (18):

. T
%§NUULAQ£WWQﬁ§;—4*—
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where the supremum is taken over all measures ) on L.
By Theorem 8, with b = o0 =T7/2, v = 1, K,, = A(logn V 1) for some constant A, there

exists W < sup e 7+ G such that, for n > 2,

TAlogn  T'?(Alogn)’* T(Alogn)*/? log
' <’ te?tlil,)t*] Gal = W] > 2y1/2n1/2 * 21/2~1/2p1/4 2y1/3p1/6 <G <7 + >

holds for n > 2 and for some constant Cs.

Define the event E := {‘ supyefr, 4+ |Gnl — w| > g(n,fy,T)}, where

TAlogn n T2(Alogn)®*  T(Alogn)?/3

g(n,7,T) = N1/2p1/2 91/241/2p1/4 2y1/3p1/6

Then, for any z and large n,

IF’( sup |Gy| < z) —P(W < 2)

tE [ty ¥
<P(W < z+g(n,7,T)) = P(W < 2) + P(E°)

c logn
< T),/log ———
_049(71,’)’, ) og g(n,%T) +CQ <’Y+ n ) )

where in the last step we used the anti-concentration inequality of Theorem 11. Similarly,

P(W < z2) —P( sup |Gy| < z>

e[t ,t*]
<P(W <z E)—P| sup |G,| <z E|+ P(E
tE[tx ,t7]
<P(z—g(n,v,T)<W <z, FE)+ P(E°)

1
<Cyg(n,y,T 1llog; +C’2( ogn>.

IP’( sup |Gy| < z) —P(W < 2)
te ]

It follows that

c logn
( ) 9(n,7,T) n

sup
z [t* Jt*
(30)
Choosing v = % we have
g(n,~,T) = (AQIZ%??/IG + Tl/z(lj‘;z%]}zf”ﬁ + T(A;O%/Z)S/B. The result follows by noticing that,
1 3/8
g(n7’77T) =0 (%) and log (n’yT) =0 ((logn)l/Z) ]

Proof of Theorem 4 (Variable Width Band).

Let H(f;) be the Brownian bridge with covariance function given in (19). Consider Y 4
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supyes, 4+ [H|. Let Q(a) be the (1 — a)-quantile of Y and Q(a) be the (1 — a)-quantile of
the random variable sup,c;, 4+ [Hn|.
Let e1(n) = Cr(logn)'/2/n/8, e9(n) = Ci3(logn)®/®/n/3, e3(n) = Cy(logn)'/?/n'/2, and
define e(n) = e1(n) + e2(n) + e3(n)Q().

Similarly let &;(n) = Cg(logn)'/2/n'/8, 65(n) = 5/n, d3(n) = 2/n, and define §(n) =
61(n) + 62(n) + 83(n). Define 7(n) = C1a(logn)>/®/n/8. Then, for large n,

P(ﬁo(t) < u(t) < up(t) for all t € [t ,t*])

—P < sup ‘Hn(ft) o(t) ' < @(@)

tE [t t*] on(t)

v

P [ sup [Hn(fs)] < (1 —e3(n)) Q (v + 7(n)) — 62(n)] — 0a(n) = d3(n),

tE[ts,t]

where we applied Lemmas 16 and 17. Using Lemma 15, the last quantity is no smaller than

PIY < (1 e3(n)) @ (o + 7(n)) — ea(n) — £1(n)] — 81 (n) — da(n) — 83(n)
> BY < Q(a+7(n)) - £(n)] - 5(n)
(

> F[Y < Qo+ 7(n)] ~ supP (‘Y - x‘ <e(n) - d(n)

>1—a—171(n)—4dn) _ilelgp (‘Y —x‘ < 5(n)>

>1—a—r71(n)—d(n)— As(n),

where in the last step we applied the anti-concentration inequality of Theorem 10. O


http://jocg.org/

	Introduction
	Diagrams and Landscapes
	Uniform Convergence of Landscapes
	The Bootstrap for Landscapes
	The Weighted Silhouette
	Examples
	Earthquake Data
	Toy Example: Rings

	Discussion
	Results from Chernozhukov et al.
	Technical Tools
	Main Proofs

