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Unsupervised learning
Unsupervised clustering is used to group similar data points into clusters without any 
predefined labels or categories. Unsupervised clustering is suitable for solving 
problems where the goal is to discover patterns and relationships in the data.  

● There is no clear relationship between the input data and the output labels.  
● There is a large amount of unlabeled data available.  
● The goal is to discover patterns and relationships in the data.  
● The data can be grouped into natural clusters based on similarity.  

Some examples of applications that use unsupervised clustering include image 
segmentation, clustering, dimensionality reduction. 
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Dimensionality reduction
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Principal Component Analysis (PCA)
PCA is a linear dimensionality reduction method used to identify the underlying 
patterns in a dataset by finding the principal components that explain the most 
variation in the data. Each principal component is a linear combination of the 
original variables, and the first principal component explains the most variance in the 
data, followed by the second principal component, and so on. The key idea of PCA is 
to preserve the maximum amount of variance in the data by generating linear 
projections of the data into a lower-dimensional space. It is often used in data 
preprocessing and visualization.
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)
Principal component analysis (PCA) 
is a technique that transforms 
high-dimensions data into 
lower-dimensions while retaining as 
much information as possible.
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Principal Component Analysis (PCA)
The principal components are calculated in such a way that they are orthogonal to 
each other, which means they are perpendicular and independent of each other. This 
property ensures that the principal components do not duplicate each other and 
capture unique information in the data. PCA is commonly used in data science to 
reduce the dimensionality of a dataset by selecting the most important principal 
components and discarding the rest. This approach helps in visualizing the data, 
identifying outliers, and detecting underlying patterns that are not apparent in the 
original data.
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Principal Component Analysis (PCA)
500 genes were measured for a large 
number of samples. The factors f1, f2, 
f3 obtained by traditional PCA each 
use all 500 genes.
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Principal Component Analysis (PCA)
500 genes were measured for a large 
number of samples. The factors f1, f2, 
f3 obtained by traditional PCA each 
use all 500 genes.

The sparse factors g1, g2, g3 and on 
the right together involve only 14 
genes, which can be useful for 
developing parsimonious hypotheses. 
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Independent Component Analysis (ICA)
Independent Component Analysis (ICA) is a method that separates a multivariate 
signal into independent, non-Gaussian components. ICA assumes that the observed 
data is a linear combination of the independent components with unknown mixing 
coefficients. Unlike PCA, which identifies the principal components that explain the 
most variance in the data, ICA focuses on identifying the sources that are statistically 
independent of each other.
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Independent Component Analysis (ICA)
Independent component analysis (ICA) is a widely used data exploration technique 
in neuroscience, it is part of most EEG/MEG processing pipelines. It aims at 
decomposing signals into a mixture of independent sources.
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t-distributed Stochastic Neighbor Embedding (t-SNE)
t-SNE is a nonlinear dimensionality reduction method that aims to preserve the 
pairwise similarity between data points in a lower-dimensional space. It is often used 
in data visualization and clustering. It is based on Stochastic Neighbor Embedding

17
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Stochastic Neighbor Embedding (SNE)
Given a set of N high-dimensional objects x1 , . . . , xN  t-SNE first computes 
probabilities pi|j that are proportional to the similarity of objects xi and xj as follows:

The similarity of datapoint xj to datapoint xi is the conditional probability p(j|i) that 
xi would pick xj as its neighbor if neighbors were picked in proportion to their 
probability density under a Gaussian centered at xi
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Stochastic Neighbor Embedding (SNE)
Since from the probability we need to translate to distance measure, we need to make 
this probability symmetric. For a sample size N, we can assign 1/N to each sample, and 
then pij is

From the definition of pi|j it follows that pi|j = pj|i and therefore pi|j= Npij

The bandwidth of the gaussian distribution is adapted to the density of the data.  
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t-Stochastic Neighbor Embedding (tSNE)
The Gaussian kernel uses the Euclidean distance ǁx i − x jǁ and as such for higher 
dimensional data pij asymptotically converges towards a constant value. Therefore it is 
not possible to discriminate points of higher dimensions (curse of dimensionality). 

For this reason, t-SNE adjusts the distances with a power transform that depends on 
the dimensionality of the data. 
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t-SNE
An additional term is introduced 

 

So that the points in the embedded space will be computed by minimizing the KL 
divergence:
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t-SNE
Main parameter in t-SNE is perplexity. This parameter is used to balance the focus 
between local and global structure. It determines the number of nearest neighbors 
used to compute the conditional probability distribution of the data points in the 
high-dimensional space. Increasing the perplexity will result in a more global view of 
the data, while decreasing it will focus on the local structure. A typical value is 
between 5 and 100.

22



t-SNE
Example of 
parameter tuning 
for different 
example datasets. 

sklearn
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t-SNE
Perplexity = 3
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t-SNE
Perplexity = 13
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t-SNE
Perplexity = 20
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t-SNE
Perplexity = 30
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UMAP (Uniform Manifold Approximation and Projection)
UMAP is an algorithm for dimension reduction based on manifold learning 
techniques and ideas from topological data analysis. It provides a very general 
framework for approaching manifold learning and dimension reduction, but can also 
provide specific concrete realizations. UMAP is used for visualizing and analyzing 
high-dimensional data. 

UMAP, at its core, works very similarly to t-SNE. Both use graph layout algorithms to 
arrange data in low-dimensional space. 
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UMAP (Uniform Manifold Approximation and Projection)
UMAP constructs a high dimensional graph representation of the data then optimizes 
a low-dimensional graph to be as structurally similar as possible. More specifically, it 
constructs a high-dimensional graph of the data points using a nearest neighbor 
approach, where each point is connected to its k nearest neighbors. It then applies a 
series of optimization steps to find a low-dimensional representation of the data that 
preserves the topology of the high-dimensional graph.
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UMAP (Uniform Manifold Approximation and Projection)
One of the key features of UMAP is that it is designed to be highly scalable and can 
handle very large datasets. It uses a stochastic gradient descent approach to optimize 
the embedding, which makes it computationally efficient.

UMAP is also highly flexible and can be used for a variety of tasks, including data 
exploration, visualization, and clustering. It has been shown to be particularly 
effective at preserving global structure in the data, making it a useful tool for tasks 
such as visualizing complex datasets or identifying clusters of similar data points.
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UMAP 
The main parameters in UMAP are the number of neighbors and the minimum 
distance. 

Number of neighbors: controls the parameter k in the k-nearest neighbors that are 
connected to each point in the higher dimensional representation.

Minimum distance: controls the minimum distance between embedded points in the 
low-dimensional space. Specifically, it controls the tightness of the clusters in the 
resulting embedding. For small values, the clusters in the low-dimensional space are 
more tightly packed (more pronounced clusters). For large values, the clusters are 
more spread out, resulting in more gradual transitions between clusters.
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UMAP
Min_dist = 0.0

N_neigh = 2
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UMAP
Min_dist = 0.0

N_neigh = 10
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UMAP
Min_dist = 0.01

N_neigh = 2
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UMAP
Min_dist = 0.01

N_neigh = 5
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UMAP
Min_dist = 1.0

N_neigh = 5
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UMAP
Min_dist = 1.0

N_neigh = 50
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Unsupervised classification problems
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K-means
K-means clustering is an unsupervised machine learning algorithm used for grouping 
data into K clusters based on their similarity. The algorithm works by iteratively 
assigning data points to the nearest cluster centroid and recalculating the centroid of 
each cluster based on the new assignments. This process continues until the centroids 
no longer change or a maximum number of iterations is reached.
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K-means
The K-means algorithm aims to select the centroids of the groups, with the objective 
of minimising the within-cluster sum-of-squares criterion:
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K-means
1) The first step chooses the initial centroids, with the most basic method being to 

choose samples from the dataset . 
2) After initialization, K-means consists of looping between the two other steps. 

The first step assigns each sample to its nearest centroid. 
3) The second step creates new centroids by taking the mean value of all of the 

samples assigned to each previous centroid. 

The difference between the old and the new centroids are computed and the 
algorithm repeats these last two steps until the centroids do not move significantly.
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K-means
Inertia is a measure of how coherent clusters are 
internally 

- inertia makes the assumption that clusters 
are convex and isotropic

- It responds poorly to elongated clusters, or 
manifolds with irregular shapes
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internally 
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are convex and isotropic
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K-means
Inertia can be recognized as a measure of how 
coherent clusters are internally 

- inertia makes the assumption that clusters 
are convex and isotropic

- It responds poorly to elongated clusters, or 
manifolds with irregular shapes
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Gaussian Mixture Model (GMM)
A Gaussian mixture model (GMM) is a probabilistic model that assumes all the data 
points are generated from a mixture of a finite number of Gaussian distributions with 
unknown parameters. One can think of mixture models as generalizing k-means 
clustering that incorporate information about the covariance structure of the data as 
well as the centers of the latent Gaussians. GMM estimates the parameters of the 
distributions using the Expectation-Maximization (EM) algorithm and assigns each 
data point to the most likely cluster. 
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GMM 
Although GMM are often used for 
clustering, we can compare the 
obtained clusters with the actual 
classes from the dataset. By 
initializing the means of the 
Gaussians with the means of the 
classes from the training set to make 
this comparison valid.
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GMM 
The predicted labels on both training 
and test data can be plotted using a 
variety of GMM covariance types on 
the iris dataset. 

Train data is shown as dots, while test 
data is shown as crosses. The iris 
dataset is four-dimensional. Only the 
first two dimensions are shown here, 
and thus some points are better 
separated in other dimensions. 
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GMM
We compare GMMs with spherical, 
diagonal, full, and tied covariance 
matrices in increasing order of 
performance. Although one would 
expect full covariance to perform best 
in general, it is prone to overfitting on 
small datasets and does not 
generalize well to held out test data.
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Hierarchical clustering
Hierarchical clustering is a 
general family of clustering 
algorithms that build nested 
clusters by merging or splitting 
them successively. This hierarchy 
of clusters is represented as a tree 
(or dendrogram). The root of the 
tree is the unique cluster that 
gathers all the samples, the leaves 
being the clusters with only one 
sample. 
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Hierarchical clustering
There are two main types of 
hierarchical clustering: 
agglomerative and divisive. 
Agglomerative clustering starts with 
each item as its own cluster and 
then recursively merges clusters 
based on their similarity until a 
single, all-encompassing cluster is 
formed. Divisive clustering, on the 
other hand, starts with all items in a 
single cluster and recursively splits 
them into smaller, more specialized 
clusters.
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Agglomerative clustering
The Agglomerative Clustering algorithm performs a hierarchical clustering using a 
bottom up approach: each observation starts in its own cluster, and clusters are 
successively merged together. The linkage criteria determines the metric used for the 
merge strategy.   
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Agglomerative clustering (Single)
Single linkage minimizes the distance between the closest observations of pairs of 
clusters. The distance between two clusters is defined as the shortest distance 
between any two items in the clusters.
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Agglomerative clustering (Maximum)
Maximum or complete linkage minimizes the maximum distance between 
observations of pairs of clusters.  The distance between two clusters is defined as the 
maximum distance between any two items in the clusters.
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Agglomerative clustering (Average)
Average linkage minimizes the average of the distances between all observations of 
pairs of clusters. The distance between two clusters is defined as the average distance 
between all pairs of items in the clusters.
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Agglomerative clustering (Ward)
Ward minimizes the sum of squared differences within all clusters. It is a 
variance-minimizing approach and in this sense is similar to the k-means objective 
function but tackled with an agglomerative hierarchical approach.  The distance 
between two clusters is defined as the increase in variance that results from merging 
the clusters.
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Agglomerative clustering 

57
sklearn



Agglomerative clustering 
Clusters: 30
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Agglomerative clustering 
Clusters: 3
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Agglomerative clustering (connectivity constraint)
An interesting aspect of Agglomerative Clustering is that connectivity constraints can 
be added to this algorithm (only adjacent clusters can be merged together), through a 
connectivity matrix that defines for each sample the neighboring samples following a 
given structure of the data. 
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Agglomerative clustering (connectivity constraint)
There are two advantages of imposing a connectivity. 

First, clustering with a connectivity matrix is much faster.  

Second, when using a connectivity matrix, single, average and complete linkage are 
unstable and tend to create a few clusters that grow very quickly. Indeed, average and 
complete linkage fight this percolation behavior by considering all the distances 
between two clusters when merging them ( while single linkage exaggerates the 
behaviour by considering only the shortest distance between clusters). The 
connectivity graph breaks this mechanism for average and complete linkage, making 
them resemble the more brittle single linkage. 
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Agglomerative clustering (connectivity constraint)
For instance, in the swiss-roll example above, the connectivity constraints forbid the 
merging of points that are not adjacent on the swiss roll, and thus avoid forming 
clusters that extend across overlapping folds of the roll.
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Agglomerative clustering (connectivity constraint)
Clusters: 30
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Agglomerative clustering (connectivity constraint)
Clusters: 3
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DBSCAN (Density-Based Spatial Clustering of Applications with 
Noise)
The DBSCAN algorithm views clusters as areas of high density separated by areas of 
low density. Due to this rather generic view, clusters found by DBSCAN can be any 
shape, as opposed to k-means which assumes that clusters are convex shaped. The 
central component to the DBSCAN is the concept of core samples, which are samples 
that are in areas of high density. 

65



DBSCAN
A cluster is therefore a set of core samples, each close to each other (measured by 
some distance measure) and a set of non-core samples that are close to a core sample 
(but are not themselves core samples). 

There are two parameters (eps, min_samples) to the algorithm which define formally 
what we mean when we say dense. Higher min_samples or lower eps indicate higher 
density necessary to form a cluster.
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DBSCAN
Epsilon (ε): This parameter determines the radius of the neighborhood around each 
point. Points within this radius are considered to be part of the same cluster.  

Min samples: This parameter specifies the minimum number of points that must be 
within the ε-neighborhood of a core point. Core points are the central points in a 
cluster, and they form the backbone of the clustering process.
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DBSCAN
Color indicates cluster membership, 
with large circles indicating core 
samples found by the algorithm. 
Smaller circles are non-core samples 
that are still part of a cluster. 
Moreover, the outliers are indicated 
by black points.
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BIRCH (Balanced Iterative Reducing and Clustering using 
Hierarchies) 

BIRCH is a hierarchical clustering algorithm and it is designed to efficiently cluster 
large datasets by constructing a compact representation of the data in memory, and 
then performing clustering on this representation.
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BIRCH
The BIRCH algorithm has three main components: 

Clustering Feature (CF): BIRCH uses a clustering feature that compresses the data 
into a compact summary. The CF Subclusters hold the necessary information for 
clustering, which prevents the need to hold the entire input data in memory. The CF 
consists of a set of sub-clusters, each with a center, a radius, and a count of the 
number of points in the sub-cluster. The clustering feature is updated as new data 
points are added to the dataset.  =

70



BIRCH
CF Tree: BIRCH organizes the clustering features into a tree structure called a CF 
tree. The CF tree is a hierarchical structure that enables BIRCH to efficiently cluster 
the data in a top-down manner. Each node in the tree corresponds to a sub-cluster, 
and the tree is constructed by recursively merging sub-clusters until the entire dataset 
is represented by a single root node.  

Clustering: Once the CF tree is constructed, BIRCH performs clustering by traversing 
the tree in a bottom-up manner. At each node, BIRCH checks whether the sub-cluster 
represented by the node is dense enough to be considered a cluster. If so, the 
sub-cluster is assigned a cluster label, and the process continues up the tree.
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BIRCH
The BIRCH algorithm has two parameters, the threshold and the branching factor. 
The branching factor limits the number of subclusters in a node and the threshold 
limits the distance between the entering sample and the existing subclusters.
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BIRCH
Each new sample is inserted into the root of the CF Tree. BIRCH finds the leaf node 
in the CF tree that is closest to the new sample and updates the summary in that node 
to include the new point. If the radius of the subcluster obtained by merging the two 
nearest subclusters is greater than the threshold, BIRCH splits the node into two new 
sub-nodes, and updates the summary statistics accordingly. 

Once the CF tree is constructed, BIRCH performs clustering by traversing the tree in 
a bottom-up manner. At each node, BIRCH checks whether the sub-cluster 
represented by the node is dense enough to be considered a cluster. If so, the 
sub-cluster is assigned a cluster label, and the process continues up the tree.
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BIRCH
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BIRCH
This algorithm can be viewed as an instance of data reduction method, since it 
reduces the input data to a set of subclusters which are obtained directly from the 
leaves of the CFT. 

If the number of clusters is selected, a global clustering step labels these subclusters 
into global clusters (labels) and the samples are mapped to the global label of the 
nearest subcluster. If n_clusters is set to None, the subclusters from the leaves are 
directly used.
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BIRCH
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Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

Scala, Kobak, Bernabucci et al.
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Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

Cortical neurons exhibit extreme diversity in gene expression as well as in morphological and 
electrophysiological properties. Most existing neural taxonomies are based on either transcriptomic or 
morpho-electric criteria, as it has been technically challenging to study both aspects of neuronal diversity in 
the same set of cells. Here we used Patch-seq to combine patch-clamp recording, biocytin staining, and 
single-cell RNA sequencing of more than 1,300 neurons in adult mouse primary motor cortex, providing a 
morpho-electric annotation of almost all transcriptomically defined neural cell types. We found that, 
although broad families of transcriptomic types (those expressing Vip, Pvalb, Sst and so on) had distinct and 
essentially non-overlapping morpho-electric phenotypes, individual transcriptomic types within the same 
family were not well separated in the morpho-electric space. Instead, there was a continuum of variability in 
morphology and electrophysiology, with neighbouring transcriptomic cell types showing similar 
morpho-electric features, often without clear boundaries between them. Our results suggest that neuronal 
types in the neocortex do not always form discrete entities. Instead, neurons form a hierarchy that consists of 
distinct non-overlapping branches at the level of families, but can form continuous and correlated 
transcriptomic and morpho-electrical landscapes within families.
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Phenotypic variation of transcriptomic cell types in mouse motor 
cortex
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(a) Number of Patch-seq cells assigned to each of the neural transcriptomic types 
(t-types). (b) Normalized soma depths of all neurons of each t-type.



Phenotypic variation of transcriptomic cell types in mouse motor 
cortex
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Example morphologies coloured by t-type. For interneurons, dendrites are shown in darker colours. 
For excitatory neurons, only dendrites are shown. Black dots mark soma locations. Voltage traces are 
shown below for some exemplary cells: the hyperpolarization trace obtained with the smallest 
current stimulation, the first depolarization trace that elicited at least one action potential, and the 
depolarization trace showing maximal firing rate. Stimulation length, 600 ms.



Phenotypic variation of transcriptomic cell types in mouse motor 
cortex
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(c) t-SNE representation of CGE-derived interneurons (n = 15K, perplexity: 30). (d) MGE-derived 
interneurons (n = 12K, perplexity, 30). (e) Excitatory neurons (n = 93K; perplexity: 100).



Phenotypic variation of transcriptomic cell types in mouse 
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Sparse reduced-rank regression for exploratory visualisation of 
paired multivariate data

Kobak et al. 2021
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 Sparse reduced-rank regression

(a) Schematic illustration of a Patch- seq experiment: electrophysiological activity is recorded by patch 
clamping, followed by RNA extraction and sequencing. Below: data matrices after computational 
characterisation of electrophysiological properties (Y) and estimation of gene counts (X). (b–e). 
Schematic illustrations and loss functions for several regression methods. (b) Simple regression. (c) 
Multivariate regression. (d) Reduced- rank regression. (e) Regularised reduced-rank regression. Grey 
circles denote predictors that are left out of the sparse model



Phenotypic variation of transcriptomic cell types in mouse motor 
cortex
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A sparse reduced-rank regression (RRR) 
model to predict combined 
electrophysiological features from gene 
expression. Transcriptomic data are 
linearly projected to a low-dimensional 
space that allows reconstruction of 
electrophysiological data; components 1 
and 2 (a) and 1 and 3 (b) of rank-5 model 
are shown. n = 1,219. Colour corresponds 
to t-type. The model selected 25 genes 
(left). 



Phenotypic variation of transcriptomic cell types in mouse motor 
cortex
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t-SNE embedding (perplexity=30) using (a) 
electrophysiological features, (b) using morphometric 
features and z-profiles and (c) using electrophysiological 
and morphological features. Ellipses show 80% coverage 
for the most prominent t-types (shaded) and for some 
groups of related t-types and some layer-restricted 
families (unshaded). We chose these groups to reduce the 
overlap between ellipses. (d) Confusion matrices for 
classifying cells into seven transcriptomic families using 
kNN classifier (k = 10) and three feature sets. Each row 
shows what fraction of cells from a given family is 
classified in each of the seven families. The values in each 
row sum to 100% but only values above 5% are shown.



Phenotypic variation of transcriptomic cell types in mouse motor 
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Vip neurons mapped to the reference t-SNE 
embedding from Fig. 1c, coloured by 
membrane time constant (τ). Correlation 
between transcriptomic distances and 
electrophysiological distances across all 200 
pairs of t-types from the same family (for 50 
t-types with at least 5 cells), pooled across all 
families. Transcriptomic distance was 
computed based on correlation between 
average log-expression across most variable 
genes. Electrophysiological distance is 
Euclidean distance between the average 
feature vectors.



Phenotypic variation of transcriptomic cell types in mouse motor 
cortex
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IT neurons mapped to the reference t-SNE 
embedding from Fig. 1e, coloured by 
normalized soma depth. Inset, examples of IT 
neurons at different depths, coloured by t-type. 
Scatter plot used eight t-types with at least five 
cells and shows correlation between 
transcriptomic distances and cortical depth 
distances. Cortical depth distance is Euclidean 
distance between the average normalized 
soma depths. e, Pvalb neurons from layer 5 
mapped to the reference t-SNE embedding 
from Fig. 1d, coloured by axonal width/height 
log-ratio. Insets, example morphologies.



Phenotypic variation of transcriptomic cell types in mouse motor 
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a, Confusion matrix for classifying cells from each 
t-type into seven transcriptomic families using 
electrophysiological features. Only t-types with at 
least ten cells are shown. Arrows mark t-types that 
are classified into wrong families more than 25% of 
the time. We used a kNN-based classifier with k = 
10. b, Normalized total variance of features in each 
t-type. c, Three exemplary traces from Vip 
Mybpc1_2 cells (all with confidence ≥ 95%) and 
t-SNE overlay coloured by rebound. d, Three 
exemplary traces from Sst Pvalb Calb2 cells 
(confidence ≥ 95%) and t-SNE overlay coloured by 
maximum firing rate.



Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

We used Patch-seq to provide the missing link between transcriptomic and 
morpho-electric descriptions of neurons in adult mouse motor cortex.

Morpho-electric properties within transcriptomic families are highly variable and 
this variation is structured across the transcriptomic landscape, such that the 
morpho-electric distance between t-types within a family is correlated with their 
transcriptomic distance.
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Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

We therefore suggest that the ‘tree of cortical cell types’ may look more like a 
banana tree with a few large leaves, rather than an olive tree with many small ones:  
neurons follow a hierarchy consisting of distinct, non-overlapping branches at the 
level of families (large leaves), but with a spectrum of cells forming continuous and 
correlated transcriptomic and morpho-electrical landscapes within each leaf.

Thus, the goal to assemble an exhaustive inventory of neural cell types might be 
unattainable if the types, unlike the chemical elements in the periodic table, are not 
discrete entities.
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