Machine Learning

Unsupervised learning

Machine Learning problems

Machine learning

Supervised learning

Unsupervised learning

Unsupervised learning

Unsupervised clustering is used to group similar data points into clusters without any
predefined labels or categories. Unsupervised clustering is suitable for solving
problems where the goal is to discover patterns and relationships in the data.

There is no clear relationship between the input data and the output labels.
There is a large amount of unlabeled data available.
The goal is to discover patterns and relationships in the data.

The data can be grouped into natural clusters based on similarity.

Some examples of applications that use unsupervised clustering include image
segmentation, clustering, dimensionality reduction.

Dimensionality reduction

Principal Component Analysis (PCA)

PCA is a linear dimensionality reduction method used to identify the underlying
patterns in a dataset by finding the principal components that explain the most
variation in the data. Each principal component is a linear combination of the
original variables, and the first principal component explains the most variance in the
data, followed by the second principal component, and so on. The key idea of PCA is
to preserve the maximum amount of variance in the data by generating linear
projections of the data into a lower-dimensional space. It is often used in data
preprocessing and visualization.

Principal Component Analysis (PCA)

Variable 2 Variable 2

Variable 1 ® @b {.‘:)3‘/1 -"-: \ Variable 1

https:/[www.scaler.com/topics/nlp/what-is-pca/

Principal Component Analysis (PCA)

Principal component analysis (PCA)
is a technique that transforms
high-dimensions data into
lower-dimensions while retaining as
much information as possible.

Casey Cheng 2022

10

Principal Component Analysis (PCA)

Principal component analysis (PCA)
is a technique that transforms
high-dimensions data into
lower-dimensions while retaining as
much information as possible.

Casey Cheng 2022

11

Principal Component Analysis (PCA)

The principal components are calculated in such a way that they are orthogonal to
each other, which means they are perpendicular and independent of each other. This
property ensures that the principal components do not duplicate each other and
capture unique information in the data. PCA is commonly used in data science to
reduce the dimensionality of a dataset by selecting the most important principal
components and discarding the rest. This approach helps in visualizing the data,
identifying outliers, and detecting underlying patterns that are not apparent in the
original data.

12

Principal Component Analysis (PCA)

500 genes were measured for a large
number of samples. The factors fI, {2,
{3 obtained by traditional PCA each
use all 500 genes.

Alex Williams 2016

13

Principal Component Analysis (PCA)

500 genes were measured for a large
number of samples. The factors fI, {2,
{3 obtained by traditional PCA each
use all 500 genes.

The sparse factors gl, g2, g3 and on
the right together involve only 14
genes, which can be useful for
developing parsimonious hypotheses.

Sparse PCA

Alex Williams 2016

14

Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a method that separates a multivariate
signal into independent, non-Gaussian components. ICA assumes that the observed
data is a linear combination of the independent components with unknown mixing
coefficients. Unlike PCA, which identifies the principal components that explain the
most variance in the data, ICA focuses on identifying the sources that are statistically
independent of each other.

15

Independent Component Analysis (ICA)

Independent component analysis (ICA) is a widely used data exploration technique
in neuroscience, it is part of most EEG/MEG processing pipelines. It aims at
decomposing signals into a mixture of independent sources.

Observations (mixed signal) True Sources

|

. - & :
> .. o

R ———
250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000

https:/[team.inria.fr

16

t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a nonlinear dimensionality reduction method that aims to preserve the
pairwise similarity between data points in a lower-dimensional space. It is often used
in data visualization and clustering. It is based on Stochastic Neighbor Embedding

&
o
oo 0?0 o
o 00 00
oo°gppoa @ aoovao A
o o 0% o o
o %0,°% 2%0 0 5 000
© 6,0 0p2°00 " 00" F
00g00 0 2090° 55 900

Stochastic Neighbor
Embedding

7 /// /;
s
7777 I/

W ek eoffrey Hinton and Sam
Roweis 2002

17

Stochastic Neighbor Embedding (SNE)

Given a set of N high-dimensional objects x_, ..., x,; t-SNE first computes
probabilities Py that are proportional to the similarity of objects x. and X; as follows:

exp(—|[|x; — x;|? /207)
Pjli =

Zk?": exP(“Hx,' — Xk HQ,."‘QO'?)

The similarity of datapoint x; to datapoint x. is the conditional probability p(jli) that
x. would pick X; as its neighbor if neighbors were picked in proportion to their
probability density under a Gaussian centered at x.

18

Stochastic Neighbor Embedding (SNE)

Since from the probability we need to translate to distance measure, we need to make
this probability symmetric. For a sample size N, we can assign 1/N to each sample, and
then p; is

_ Pjli +Pij

"
Pis 2N

From the definition of Py it follows that Py = Py and therefore p,= Np,

The bandwidth of the gaussian distribution is adapted to the density of the data.

19

t-Stochastic Neighbor Embedding (tSNE)

The Gaussian kernel uses the Euclidean distance Ix - X | and as such for higher
dimensional data P; asymptotically converges towards a constant value. Therefore it is
not possible to discriminate points of higher dimensions (curse of dimensionality).

For this reason, t-SNE adjusts the distances with a power transform that depends on
the dimensionality of the data.

20

t-SNE

An additional term is introduced

(1+ |ly; yj||2)~l

ai;

N Dok 2L+ llye — yul?) !

So that the points in the embedded space will be computed by minimizing the KL

divergence:

Pij
KL(P || Q)= pilog q—’—

i g

21

t-SNE

Main parameter in t-SNE is perplexity. This parameter is used to balance the focus
between local and global structure. It determines the number of nearest neighbors
used to compute the conditional probability distribution of the data points in the
high-dimensional space. Increasing the perplexity will result in a more global view of
the data, while decreasing it will focus on the local structure. A typical value is
between 5 and 100.

22

t-SNE

Example of
parameter tuning
for different
example datasets.

sklearn

Perplexity=5

Perplexity=30

Perplexity=50

Perplexity=100

23

t-SNE

Perplexity = 3

24

t-SNE

Perplexity =13

25

t-SNE

Perplexity = 20

26

t-SNE

Perplexity = 30

27

UMAP (Uniform Manifold Approximation and Projection)

UMAP is an algorithm for dimension reduction based on manifold learning
techniques and ideas from topological data analysis. It provides a very general
framework for approaching manifold learning and dimension reduction, but can also
provide specific concrete realizations. UMAP is used for visualizing and analyzing
high-dimensional data.

UMAP, at its core, works very similarly to t-SNE. Both use graph layout algorithms to
arrange data in low-dimensional space.

28

UMAP (Uniform Manifold Approximation and Projection)

UMAP constructs a high dimensional graph representation of the data then optimizes
a low-dimensional graph to be as structurally similar as possible. More specifically, it
constructs a high-dimensional graph of the data points using a nearest neighbor
approach, where each point is connected to its k nearest neighbors. It then applies a
series of optimization steps to find a low-dimensional representation of the data that
preserves the topology of the high-dimensional graph.

29

UMAP (Uniform Manifold Approximation and Projection)

One of the key features of UMAP is that it is designed to be highly scalable and can
handle very large datasets. It uses a stochastic gradient descent approach to optimize
the embedding, which makes it computationally efficient.

UMAP is also highly flexible and can be used for a variety of tasks, including data
exploration, visualization, and clustering. It has been shown to be particularly
effective at preserving global structure in the data, making it a useful tool for tasks
such as visualizing complex datasets or identifying clusters of similar data points.

30

UMAP

The main parameters in UMAP are the number of neighbors and the minimum
distance.

Number of neighbors: controls the parameter k in the k-nearest neighbors that are
connected to each point in the higher dimensional representation.

Minimum distance: controls the minimum distance between embedded points in the
low-dimensional space. Specifically, it controls the tightness of the clusters in the
resulting embedding. For small values, the clusters in the low-dimensional space are
more tightly packed (more pronounced clusters). For large values, the clusters are
more spread out, resulting in more gradual transitions between clusters.

31

UMAP

Min_dist = 0.0

N_neigh = 2

32

UMAP

Min_dist = 0.0

N_neigh = 10

33

UMAP

Min_dist = 0.01

N_neigh = 2

34

UMAP

Min_dist = 0.01

N_neigh =5

35

UMAP

Min_dist = 1.0

N_neigh =5

36

UMAP

Min_dist = 1.0

N_neigh = 50

37

—
<
()

Min dist: ¢

Unsupervised classification problems

39

K-means

K-means clustering is an unsupervised machine learning algorithm used for grouping
data into K clusters based on their similarity. The algorithm works by iteratively
assigning data points to the nearest cluster centroid and recalculating the centroid of
each cluster based on the new assignments. This process continues until the centroids
no longer change or a maximum number of iterations is reached.

40

K-means

The K-means algorithm aims to select the centroids of the groups, with the objective
of minimising the within-cluster sum-of-squares criterion:

n

> min(||z; — p;|?)

i=0 HI%

41

K-means

1) The first step chooses the initial centroids, with the most basic method being to
choose samples from the dataset .

2) After initialization, K-means consists of looping between the two other steps.
The first step assigns each sample to its nearest centroid.

3) The second step creates new centroids by taking the mean value of all of the
samples assigned to each previous centroid.

The difference between the old and the new centroids are computed and the
algorithm repeats these last two steps until the centroids do not move significantly.

)

K-means

Inertia is a measure of how coherent clusters are
internally

- inertia makes the assumption that clusters
are convex and isotropic

- It responds poorly to elongated clusters, or
manifolds with irregular shapes

sklearn

Mixture of Gaussian Blobs

=100 =75 =50 =25 0.0

2.5

43

K-means

Inertia is a measure of how coherent clusters are
internally

- inertia makes the assumption that clusters
are convex and isotropic

- It responds poorly to elongated clusters, or
manifolds with irregular shapes

sklearn

Non-optimal Number of Clusters

44

K-means

Inertia can be recognized as a measure of how
coherent clusters are internally

- inertia makes the assumption that clusters
are convex and isotropic

- It responds poorly to elongated clusters, or
manifolds with irregular shapes

sklearn

Anisotropically Distributed Blobs

45

Gaussian Mixture Model (GMM)

A Gaussian mixture model (GMM) is a probabilistic model that assumes all the data
points are generated from a mixture of a finite number of Gaussian distributions with
unknown parameters. One can think of mixture models as generalizing k-means
clustering that incorporate information about the covariance structure of the data as
well as the centers of the latent Gaussians. GMM estimates the parameters of the
distributions using the Expectation-Maximization (EM) algorithm and assigns each
data point to the most likely cluster.

46

GMM

Although GMM are often used for
clustering, we can compare the
obtained clusters with the actual
classes from the dataset. By
initializing the means of the
Gaussians with the means of the
classes from the training set to make
this comparison valid.

sklearn

spherical

Train accuracy: 88.4
Test accuracy:*92.1

Train accuracy: 95.5

Test accuracy:*100.0

Train accuracy: 89.3
Test accuracy:*94.7

Train accuracy: 87.5
Test accuracy:*89.5

x- X+
X

setosa

versicolor

virginica

47

GMM

The predicted labels on both training
and test data can be plotted using a
variety of GMM covariance types on
the iris dataset.

Train data is shown as dots, while test
data is shown as crosses. The iris
dataset is four-dimensional. Only the
first two dimensions are shown here,
and thus some points are better
separated in other dimensions.

sklearn

spherical

Train accuracy: 88.4
Test accuracy:*92.1

Train accuracy: 95.5

Test accuracy:*100.0

Train accuracy: 89.3
Test accuracy:*94.7

Train accuracy: 87.5
Test accuracy:*89.5

setosa

versicolor

virginica

48

GMM

We compare GMMs with spherical,
diagonal, full, and tied covariance
matrices in increasing order of
performance. Although one would
expect full covariance to perform best
in general, it is prone to overfitting on
small datasets and does not
generalize well to held out test data.

sklearn

spherical

Train accuracy: 88.4

Test accuracy:*92.1

Train accuracy: 95.5

Test accuracy:*100.0

Train accuracy: 89.3

Test accuracy:*94.7

Train accuracy: 87.5

Test accuracy:*89.5

setosa

versicolor

virginica

49

Hierarchical clustering

Hierarchical Clustering Dendrogram

Hierarchical clustering is a
general family of clustering
algorithms that build nested
clusters by merging or splitting
them successively. This hierarchy
of clusters is represented as a tree
(or dendrogram). The root of the
tree is the unique cluster that
gathers all the samples, the leaves
being the clusters with only one
sample.

(7) (8) 41 (5)(10)(7) (4) (8) (9)(15)(5) (7) (4)(22)(15)(23)
Number of points in node (or index of point if no parenthesis).

sklearn 5%

Hierarchical clustering

Hierarchical Clustering Dendrogram

There are two main types of
hierarchical clustering:
agglomerative and divisive.
Agglomerative clustering starts with
each item as its own cluster and
then recursively merges clusters
based on their similarity until a
single, all-encompassing cluster is
formed. Divisive clustering, on the
other hand, starts with all items in a
single cluster and recursively splits
them into smaller, more specialized
clusters.

(7) (8) 41 (5)(10)(7) (4) (8) (9)(15)(5) (7) (4)(22)(15)(23)
Number of points in node (or index of point if no parenthesis).

Agglomerative clustering

The Agglomerative Clustering algorithm performs a hierarchical clustering using a
bottom up approach: each observation starts in its own cluster, and clusters are
successively merged together. The linkage criteria determines the metric used for the
merge strategy.

52

Agglomerative clustering (Single)

Single linkage minimizes the distance between the closest observations of pairs of
clusters. The distance between two clusters is defined as the shortest distance
between any two items in the clusters.

53

Agglomerative clustering (Maximum)

Maximum or complete linkage minimizes the maximum distance between
observations of pairs of clusters. The distance between two clusters is defined as the
maximum distance between any two items in the clusters.

54

Agglomerative clustering (Average)

Average linkage minimizes the average of the distances between all observations of
pairs of clusters. The distance between two clusters is defined as the average distance
between all pairs of items in the clusters.

55

Agglomerative clustering (Ward)

Ward minimizes the sum of squared differences within all clusters. It is a
variance-minimizing approach and in this sense is similar to the k-means objective
function but tackled with an agglomerative hierarchical approach. The distance
between two clusters is defined as the increase in variance that results from merging
the clusters.

56

Agglomerative clustering

Single Linkage

sklearn

Average Linkage

Complete Linkage

Ward Linkage

57

Agglomerative clustering

Clusters: 30

linkage=average linkage=complete
(time 0.04s) (time 0.05s)

sklearn

linkage=ward
(time 0.04s)

linkage=single
(time 0.02s)

58

Agglomerative clustering

Clusters: 3

linkage=average linkage=complete linkage=ward linkage=single
(time 0.03s) (time 0.05s) (time 0.04s) (time 0.02s)

©C Y

sklearn

59

Agglomerative clustering (connectivity constraint)

An interesting aspect of Agglomerative Clustering is that connectivity constraints can
be added to this algorithm (only adjacent clusters can be merged together), through a
connectivity matrix that defines for each sample the neighboring samples following a
given structure of the data.

60

Agglomerative clustering (connectivity constraint)

There are two advantages of imposing a connectivity.
First, clustering with a connectivity matrix is much faster.

Second, when using a connectivity matrix, single, average and complete linkage are
unstable and tend to create a few clusters that grow very quickly. Indeed, average and
complete linkage fight this percolation behavior by considering all the distances
between two clusters when merging them (while single linkage exaggerates the
behaviour by considering only the shortest distance between clusters). The
connectivity graph breaks this mechanism for average and complete linkage, making
them resemble the more brittle single linkage.

61

Agglomerative clustering (connectivity constraint)

For instance, in the swiss-roll example above, the connectivity constraints forbid the
merging of points that are not adjacent on the swiss roll, and thus avoid forming
clusters that extend across overlapping folds of the roll.

62

Agglomerative clustering (connectivity constraint)

Clusters: 30

sklearn

63

Agglomerative clustering (connectivity constraint)

Clusters: 3

S

sklearn

64

DBSCAN (Density-Based Spatial Clustering of Applications with
Noise)

The DBSCAN algorithm views clusters as areas of high density separated by areas of
low density. Due to this rather generic view, clusters found by DBSCAN can be any
shape, as opposed to k-means which assumes that clusters are convex shaped. The
central component to the DBSCAN is the concept of core samples, which are samples
that are in areas of high density.

65

DBSCAN

A cluster is therefore a set of core samples, each close to each other (measured by
some distance measure) and a set of non-core samples that are close to a core sample
(but are not themselves core samples).

There are two parameters (eps, min_samples) to the algorithm which define formally
what we mean when we say dense. Higher min_samples or lower eps indicate higher
density necessary to form a cluster.

66

DBSCAN

Epsilon (¢): This parameter determines the radius of the neighborhood around each
point. Points within this radius are considered to be part of the same cluster.

Min samples: This parameter specifies the minimum number of points that must be
within the e-neighborhood of a core point. Core points are the central points in a
cluster, and they form the backbone of the clustering process.

Y

DBSCAN

Color indicates cluster membership,
with large circles indicating core
samples found by the algorithm.
Smaller circles are non-core samples
that are still part of a cluster.
Moreover, the outliers are indicated
by black points.

sklearn

Estimated number of clusters: 3

68

BIRCH (Balanced Iterative Reducing and Clustering using
Hierarchies)

BIRCH is a hierarchical clustering algorithm and it is designed to efficiently cluster
large datasets by constructing a compact representation of the data in memory, and
then performing clustering on this representation.

69

BIRCH

The BIRCH algorithm has three main components:

Clustering Feature (CF): BIRCH uses a clustering feature that compresses the data
into a compact summary. The CF Subclusters hold the necessary information for
clustering, which prevents the need to hold the entire input data in memory. The CF
consists of a set of sub-clusters, each with a center, a radius, and a count of the
number of points in the sub-cluster. The clustering feature is updated as new data
points are added to the dataset. =

70

BIRCH

CF Tree: BIRCH organizes the clustering features into a tree structure called a CF
tree. The CF tree is a hierarchical structure that enables BIRCH to efficiently cluster
the data in a top-down manner. Each node in the tree corresponds to a sub-cluster,
and the tree is constructed by recursively merging sub-clusters until the entire dataset
is represented by a single root node.

Clustering: Once the CF tree is constructed, BIRCH performs clustering by traversing
the tree in a bottom-up manner. At each node, BIRCH checks whether the sub-cluster
represented by the node is dense enough to be considered a cluster. If so, the
sub-cluster is assigned a cluster label, and the process continues up the tree.

71

BIRCH

The BIRCH algorithm has two parameters, the threshold and the branching factor.
The branching factor limits the number of subclusters in a node and the threshold
limits the distance between the entering sample and the existing subclusters.

72

BIRCH

Each new sample is inserted into the root of the CF Tree. BIRCH finds the leaf node
in the CF tree that is closest to the new sample and updates the summary in that node
to include the new point. If the radius of the subcluster obtained by merging the two
nearest subclusters is greater than the threshold, BIRCH splits the node into two new
sub-nodes, and updates the summary statistics accordingly.

Once the CF tree is constructed, BIRCH performs clustering by traversing the tree in
a bottom-up manner. At each node, BIRCH checks whether the sub-cluster
represented by the node is dense enough to be considered a cluster. If so, the
sub-cluster is assigned a cluster label, and the process continues up the tree.

73

BIRCH

sc8 scl sc2 sc3

STC Computer Science and Engineering

sc4 sch

scb

sc’/

74

BIRCH

This algorithm can be viewed as an instance of data reduction method, since it

reduces the input data to a set of subclusters which are obtained directly from the
leaves of the CFT.

If the number of clusters is selected, a global clustering step labels these subclusters
into global clusters (labels) and the samples are mapped to the global label of the
nearest subcluster. If n_clusters is set to None, the subclusters from the leaves are
directly used.

75

BIRCH

76

Phenotypic variation of transcriptomic cell types in mouse motor
cortex

Scala, Kobak, Bernabucci et al.

77

Phenotypic variation of transcriptomic cell types in mouse motor
cortex

Cortical neurons exhibit extreme diversity in gene expression as well as in morphological and
electrophysiological properties. Most existing neural taxonomies are based on either transcriptomic or
morpho-electric criteria, as it has been technically challenging to study both aspects of neuronal diversity in
the same set of cells. Here we used Patch-seq to combine patch-clamp recording, biocytin staining, and
single-cell RNA sequencing of more than 1,300 neurons in adult mouse primary motor cortex, providing a
morpho-electric annotation of almost all transcriptomically defined neural cell types. We found that,
although broad families of transcriptomic types (those expressing Vip, Pvalb, Sst and so on) had distinct and
essentially non-overlapping morpho-electric phenotypes, individual transcriptomic types within the same
family were not well separated in the morpho-electric space. Instead, there was a continuum of variability in
morphology and electrophysiology, with neighbouring transcriptomic cell types showing similar
morpho-electric features, often without clear boundaries between them. Our results suggest that neuronal
types in the neocortex do not always form discrete entities. Instead, neurons form a hierarchy that consists of
distinct non-overlapping branches at the level of families, but can form continuous and correlated
transcriptomic and morpho-electrical landscapes within families.

78

r
(s] Ldiuoy q9]
L4104 991
b 2 98s1ys 991
(] 1~98s14S a9
189/00 A9
m 214 10 91
L1713 10 91
24enod 10 91
a ain 1091
9edD 10 91
(J0] o 6£410D 10 91
c
= 5
=
S 2
=
= g
3]
o
| 5 20 1
I

v—‘N!—va‘v—C\lf’]'—Nmﬁ'v‘N
EeEEEEEE S

ujey qrend
2 Lq[eD qrend
L~ LqreD qrend
pyuey qfend
61 L1dD qlend
Lwajb3 qrend
Lbiqes qrend
RTTRES
Z Yl iss
1YL 1SS
2o8[1SS
2 ebLo1ss
L ebLD 1sS
edded 1sS
2q[eD qfend 1ss
2q/e0 ¥ss
9sdH 1SS
2 20 IS
12D 1S
LAY gfend 1SS
LN IS
B e mtI 1SS
€ 8UAN IS
Z 8UYAN 1SS
L 8YAN IS
yuad 1SS
1POYD 1SS

cortex

(2]
c
e
5
@
£
5]
2
LS
o
@
.2
b
@
P
L)
=

2 18yd diA
L3840 diA

€ 10dgApy dip
Z_LodgAp dip
L LodgAw dip
LIbLO dIA
£0do dip
$LAH dIA

£ Lyuidiag dip
2 1juidiag dip
L 1purdiag dip
boug dip
JgAdN bous
Z_LqeD bous
L~ Lq[eD boug
88/ 19]S Bous
LepL[0D Bous
9xy7 gdwe

tion of transcriptomic cell types

E-derived interneurons

L~ gulb3 gdwe]
9xed Gdue

te] o Yol o
~ [Te] N

SJ|89 40 JaquinN yidep BWOS pazi[ewioN

Phenotyp

2

(a) Number of Patch-seq cells assigned to each of the neural transcriptomic types

(t-types). (b) Normalized soma depths of all neurons of each t-type.

79

Phenotypic variation of transcriptomic cell types in mouse motor
cortex

7

b&mwwg%&g @5.515@55&55 a&b&%%gg&

Example morphologies coloured by t-type. For interneurons, dendrites are shown in darker colours.
For excitatory neurons, only dendrites are shown. Black dots mark soma locations. Voltage traces are
shown below for some exemplary cells: the hyperpolarization trace obtained with the smallest
current stimulation, the first depolarization trace that elicited at least one action potential, and the
depolarization trace showing maximal firing rate. Stimulation length, 600 m:s.

80

Phenotypic variation of transcriptomic cell types in mouse motor
cortex

(c) t-SNE representation of CGE-derived interneurons (n = 15K, perplexity: 30). (d) MGE-derived
interneurons (n = 12K, perplexity, 30). (e) Excitatory neurons (n = 93K; perplexity: 100).

81

82

N MOoUSE

Lduoy g9

LY 10
gjenod 10 91
9 10 91
9edD 10 91

MM
i3
Connog
EEEERS
c 3
3

Excitatory neurons
oo
=3

ic cell types

N O) O
=

Iptom

Luiejb3 Glend
161g29 gpend
£ULIsS

Z i 1ss
L2 1ss
LN3 GRAd 1SS
L3 1SS
BLIH 1SS

£ 8UAN IS

Z_8UAN IS
L 8YAN isS
yusd IS
1PoYD 155

MGE-derived interneurons

Gpr149

,,
2y

L71eyD din

£ 1odgAy din
2 1odqAn diA
L~ 1odaAN diA
LbLO diA
£909 dip
JLAH din

£ Luidies dp
2" 1uidies dip

lon of transcr

{

IZha bous
2_1qpeQ bous

1d

[]
E-derived interneurons

9xy7 sdwe]
£pSEIS Gdwey
2_swiypd sduwe
]

1guib3 cdurey
9xed gdwe]

v 9 1 o
N B

g
|
E
i
0
E
{
|
1l
n
i
g
I
Eq
T
g
&)

$1[99 40 JaquINN

K-}

Phenotypic var

Sparse reduced-rank regression for exploratory visualisation of
paired multivariate data

Kobak et al. 2021

83

Sparse reduced-rank regression

e Reduced-rank regression

Cc Multivariate d

a b . ;
J“\ Regression regression Reduced-rank regression with elastic net regularization
/
= O
A 2, oo
O—bo <f-.0 O O

q e-phys. —F A ()
propertles p genes O X O
ly — X812 Y — XB||? Y - XWVT|? [Y = XWV |2+ p(W)

(a) Schematic illustration of a Patch- seq experiment: electrophysiological activity is recorded by patch
clamping, followed by RNA extraction and sequencing. Below: data matrices after computational
characterisation of electrophysiological properties (Y) and estimation of gene counts (X). (b—e).
Schematic illustrations and loss functions for several regression methods. (b) Simple regression. (c)
Multivariate regression. (d) Reduced- rank regression. (e) Regularised reduced-rank regression. Grey
circles denote predictors that are left out of the sparse model

Component 2

(]
p
=
@
c
9]

aQ
E

S

O

Phenotypic variation of transcriptomic cell types in mouse motor

]
|Lamp5]Bdnflprzp)

Component 1

0
Component 1

cortex

A sparse reduced-rank regression (RRR)
model to predict combined
electrophysiological features from gene
expression. Transcriptomic data are
linearly projected to a low-dimensional
space that allows reconstruction of
electrophysiological data; components 1
and 2 (a) and 1 and 3 (b) of rank-5 model
are shown. n =1,219. Colour corresponds

to t-type. The model selected 25 genes
(left).

85

Phenotypic variation of transcriptomic cell types in mouse motor
cortex

t-SNE embedding (perplexity=30) using (a)
electrophysiological features, (b) using morphometric
| features and z-profiles and (c) using electrophysiological
S momons § and morphological features. Ellipses show 80% coverage
+ for the most prominent t-types (shaded) and for some
groups of related t-types and some layer-restricted
families (unshaded). We chose these groups to reduce the
overlap between ellipses. (d) Confusion matrices for
classifying cells into seven transcriptomic families using

kNN classifier (k = 10) and three feature sets. Each row

L shows what fraction of cells from a given family is

Electrophysiology

classified in each of the seven families. The values in each
row sum to 100% but only values above 5% are shown.

Phenotypic variation of transcriptomic cell types in mouse motor

A g

10 20 30
1 (me)

c

S
gzx |

cortex

Poaled across all families

Rebound (mV)

distance

Electrophysological

Vip neurons mapped to the reference t-SNE
embedding from Fig. 1c, coloured by
membrane time constant (t). Correlation
between transcriptomic distances and
electrophysiological distances across all 200
pairs of t-types from the same family (for 50
t-types with at least 5 cells), pooled across all
families. Transcriptomic distance was
computed based on correlation between
average log-expression across most variable
genes. Electrophysiological distance is
Euclidean distance between the average
feature vectors.

87

Phenotypic variation of transcriptomic cell types in mouse motor

sg_

it

@

e

0.5
Normalzed
sorma depth

Depth distance

G 1.5

g, |widihvheight]

cortex

200°
Width

O

A0
« height

IT neurons mapped to the reference t-SNE
embedding from Fig. le, coloured by
normalized soma depth. Inset, examples of IT
neurons at different depths, coloured by t-type.
Scatter plot used eight t-types with at least five
cells and shows correlation between
transcriptomic distances and cortical depth
distances. Cortical depth distance is Euclidean
distance between the average normalized
soma depths. e, Pvalb neurons from layer 5
mapped to the reference t-SNE embedding
from Fig. 1d, coloured by axonal width/height
log-ratio. Insets, example morphologies.

88

Phenotypic variation of transcriptomic cell types in mouse motor
cortex

Electrophysiology a, Confusion matrix for classifying cells from each
t-type into seven transcriptomic families using
electrophysiological features. Only t-types with at
least ten cells are shown. Arrows mark t-types that
are classified into wrong families more than 25% of
the time. We used a kNN-based classifier with k =
10. b, Normalized total variance of features in each

L5 ET_1
L6 CT Cpab

rapl2
L6 CT Pou3f2

Sst Th_3
3IT_8
L6IT 2

Vip Sncg
Pvalb Egfem1

Vip Serpinf1_1
Vip Gpc3

Vip Mybpc1_2
Sst Hpse
Sst Calb2

Lamp5 Egin3_1
Lamp5 Egin3_2
Lamp5 Pdlim5_2
Lamp5 Slc35d3
Vip Mybpc1_3
Vip Chat _
Sst Crhr2
Sst Crhr2_2
Sst Pvalb Calb2
Pvalb Gpr149
Pvalb Kank4
Pvalb Calb1_1
Pvalb Calb1_2
Pvalb Reln
Pvalb If
Pvalb Vipr2_2
L2,

t-type. ¢, Three exemplary traces from Vip
Mybpcl_2 cells (all with confidence > 95%) and
t-SNE overlay coloured by rebound. d, Three

D o
Q
C
)
P
©
>
o
(]
N
g
(<}
P4

exemplary traces from Sst Pvalb Calb2 cells
Sst Pvalb Calb2

. (confidence > 95%) and t-SNE overlay coloured by
g .

maximum firing rate.

Phenotypic variation of transcriptomic cell types in mouse motor
cortex

We used Patch-seq to provide the missing link between transcriptomic and
morpho-electric descriptions of neurons in adult mouse motor cortex.

Morpho-electric properties within transcriptomic families are highly variable and
this variation is structured across the transcriptomic landscape, such that the

morpho-electric distance between t-types within a family is correlated with their
transcriptomic distance.

90

Phenotypic variation of transcriptomic cell types in mouse motor
cortex

We therefore suggest that the ‘tree of cortical cell types’ may look more like a
banana tree with a few large leaves, rather than an olive tree with many small ones:
neurons follow a hierarchy consisting of distinct, non-overlapping branches at the
level of families (large leaves), but with a spectrum of cells forming continuous and
correlated transcriptomic and morpho-electrical landscapes within each leaf.

Thus, the goal to assemble an exhaustive inventory of neural cell types might be

unattainable if the types, unlike the chemical elements in the periodic table, are not
discrete entities.

91

