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Statistical methods 
Statistics is the mathematical discipline that studies how collected data can be analyzed 
rigorously, to prove or disprove a hypothesis. 

The use of statistical methods to ensure accuracy of scientific results is present in almost 
every publication, and certainly in every field. However, especially with new technologies, 
such as machine learning, it is often hard to judge the results of a statistical test in order to 
accept or reject a scientific hypothesis. 



Statistical methods 
Important points to keep in mind when analyzing a scientific dataset:

1. Data are noisy
2. Sample size is important
3. Metadata, units and normalization of data are important 
4. The appropriate method of analysis depends on the dataset



Statistical methods 
Some data analysis methods that can be useful:

I. Approximation of statistical distributions
II. Comparison of multiple populations

III. Identify correlations 



I. Approximate a distribution
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Approximate a distribution
Example: Scores in a computational task (i.e. IQ score) from a group of people. We 
want to test the hypothesis that they follow a normal distribution.
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Approximate a distribution
Example: First let’s examine the properties of the normal distribution

1. Probability distribution function (PDF)

PDF of a real valued random variable X is the mathematical formulation of the 
probability that X will take the value x.  This equation describes the probabilities of all 
possible outcomes to occur during a random experiment.
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Approximate a distribution
Example: First let’s examine the properties of the normal distribution

1. For a normal distribution the probability distribution function (PDF) for an 
observation x is given by:
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Approximate a distribution
Example: First let’s examine the properties of the normal distribution

2. Cumulative distribution function (CDF)

The CDF of a real-valued random variable X, evaluated at x, is the probability that X 
will take a value less than or equal to x.
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Approximate a distribution
Example: First let’s examine the properties of the normal distribution

2. CDF and PDF

The CDF of a continuous random variable X can be expressed as the integral of its 
probability density function f (x)
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Approximate a distribution
Example: First let’s examine the properties of the normal distribution

2. For a normal distribution the probability CDF for an observation x is given by:
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Approximate a distribution
Example: First let’s examine the properties of the normal distribution

2. For a normal distribution the probability CDF for a parametrization of 
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Approximate a distribution
Example: First let’s examine the properties of the normal distribution

2. For a normal distribution the probability CDF for a parametrization of 
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Approximate a distribution
Example: First let’s examine the properties of the normal distribution

2. For a normal distribution the probability CDF 
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Approximate a distribution
Let’s take an example of a normal distribution:

Value

Mean 10

Standard deviation 1

Number of sample points 1000
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Approximate a distribution
For the normal distribution 
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Approximate a distribution

For the normal distribution 

X x f(x): value

10 μ 0.56

9 / 11 σ 0.3

8 / 12 2σ 0.08

7 / 13 3σ 0.006
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Approximate a distribution
For the normal distribution 
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Approximate a distribution
For the normal distribution 
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Approximate a distribution

For the normal distribution 

X x Φ(x): value

10 μ 0.50

9 / 11 σ 0.16 / 0.84

8 / 12 2σ  0.02 / 0.98

7 / 13 3σ 0.001 / 0.998
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Approximate a distribution
For the normal distribution 
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Approximate a distribution
So if we go back to the random experiment of scores, we can test our normal 
distribution hypothesis by the following process:

1. Identify the mean and standard deviation 
2. Generate a normal distribution with these properties
3. Compute the probability of a score to appear (we need to bin the data)
4. Compute the cumulative probability of scores
5. Compare the PDF and CDF of the observations to the normal distribution
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Approximate a distribution
The pdf of the normal distribution:

PDF
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Approximate a distribution
The cdf of the normal distribution:

CDF
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Approximate a distribution
We can test normality of the dataset 
with the Shapiro - Wilk test

This test computes the difference 
between the PDF of the expected 
and the observed distributions
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Source: 
https://www.spss-tutorials.com/spss-shapi
ro-wilk-test-for-normality/



Approximate a distribution
We can test normality of the dataset 
with the Shapiro - Wilk test

In our case, that corresponds to the 
plot we generated for PDF 
distributions
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Approximate a distribution
We can test normality of the dataset with the Shapiro - Wilk test:

Shapiro test

● statistic=0.99
● pvalue=0.63

If p > 0.05 -> supports the hypothesis that data are normally distributed. The data 
appear to follow a normal distribution.
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Approximate a distribution
We can also test normality of the 
dataset with the 
Kolmogorov-Smirnov test

KS-test finds the maximum 
distance between the CDF of the 
expected and the observed 
distributions
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Source: wikipedia 



Approximate a distribution
We can also test normality of the 
dataset with the 
Kolmogorov-Smirnov test

So in our case, this can be 
computed from the plot that we 
generated before
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Approximate a distribution
We can also test normality of the dataset with the Kolmogorov-Smirnov test:

KS test not normalized
● statistic=0.99
● pvalue=0.0

KS test normalized
● statistic=0.0055
● pvalue=0.92

If p > 0.05 -> supports the hypothesis that data are normally distributed. The data 
appear to follow a normal distribution. 
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Approximate a distribution - Summary
1. Identify the properties of the distribution
2. Generate a normal distribution with these properties
3. Plot the data (PDF, CDF) and compare to normal distribution
4. Compute the statistical scores

Important points:

1. Sample size must be large enough for a statistical test to be accurate
2. Data need to be normalized for more accurate results
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II. Comparison of multiple populations
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Comparison of multiple populations
Example: Scores in a computational task (i.e. IQ score) from two groups of people. We 
want to test the hypothesis that two groups of people perform differently at this 
computational task. 

● Plotting the results
● Statistical tests 
● Basic machine learning tools

Which one do you think would be more useful?
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II. Comparison of multiple populations
(A) plot results
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Comparison of multiple populations
Example A: List of scores in a computational task (i.e. IQ score) from two groups of 
people. We want to test the hypothesis that two groups of people perform differently at 
this computational task. (sample size: 100)
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Comparison of multiple populations
Example A: List of scores in a computational task (i.e. IQ score) from two groups of 
people. We want to test the hypothesis that two groups of people perform differently at 
this computational task.  (sample size: 1000)
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Comparison of multiple populations
Example A: List of scores in a computational task (i.e. IQ score) from two groups of 
people. We want to test the hypothesis that two groups of people perform differently at 
this computational task.  (sample size: 10000)
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Comparison of multiple populations
Example A: List of scores in a computational task (i.e. IQ score) from two groups of 
people. We want to test the hypothesis that two groups of people perform differently at 
this computational task (G1-G2) and (G1-G3). 

A B

39



Comparison of multiple populations
Example A2: Similarly to the previous task we can evaluate a set of 2d data: list of 
scores in two computational tasks (i.e. score I and score II) from the same two groups 
of people. We want to test the hypothesis that two groups of people perform differently 
at these computational tasks. 
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II. Comparison of multiple populations
(B) statistical analysis

41



Comparison of multiple populations
Example A 

G1: Mean: 0.65 Std: 0.23 Sample size: 100 
G2: Mean: 0.73 Std: 0.19 Sample size: 100 
G3: Mean: 0.82 Std: 0.19 Sample size: 100
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Comparison of multiple populations
Example A

G1: Mean: 0.70 Std: 0.20 Sample size: 1000
G2: Mean: 0.73 Std: 0.19 Sample size: 1000
G3: Mean: 0.81 Std: 0.20 Sample size: 1000
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Comparison of multiple populations
Example A:

G1: Mean: 0.70 Std: 0.20 Sample size: 10000
G2: Mean: 0.73 Std: 0.20 Sample size: 10000
G3: Mean: 0.80 Std: 0.20 Sample size: 10000
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Comparison of multiple populations
Example A: List of scores in a computational task (i.e. IQ score) from two groups of 
people. Let’s use a statistical test, for example Kolmogorov-Smirnov test

A: KS test
● distance=0.07
● pvalue=1.1e-19

B: KS test
● distance=0.20
● pvalue=5e-173

In both cases the distributions show statistically significant differences!
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Comparison of multiple populations
Example A: List of scores in a computational task (i.e. IQ score) from two groups of 
people. However… if we test a smaller sample size (#200)

A: KS test
● distance=0.08
● pvalue=0.55

B: KS test
● distance=0.22
● pvalue=0.0001

The p-value is highly sensitive on sample size. So it’s important to always report 
sample size on data! The distances between the two datasets are more consistent. 
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Comparison of multiple populations: plotting
Example A2: scores for two independent tasks for two groups of people.
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Comparison of multiple populations: statistical analysis
Example A2: scores for two independent tasks for two groups of people.

A: KS 

● distance=0.059
● pvalue=1.0e-15

B: KS 

● distance=0.52,
● pvalue=0.0

Statistical scores indicate a clear difference between G1 and G2. Even more evidently in 
G1 and G3
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II. Comparison of multiple populations
(C) machine learning
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Comparison of multiple populations: machine learning 
Example A2: scores for two independent tasks for two groups of people. Plotting data 
using umap

50



Comparison of multiple populations: machine learning
Example A2: scores for two independent tasks for two groups of people.

We can train basic classifiers (for example DecisionTrees for supervised, Kmeans for 
unsupervised learning) to see if they can recognize the individual observations from 
different groups. 

We define accuracy as the number of correct predictions divided by the sample size. 
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Comparison of multiple populations: machine learning
Example A2: scores for two independent tasks for two groups of people.

DecisionTrees:

We train the classifier on 50% of the data and test on the remaining 50%. The accuracy 
of the classifier is:

A: 0.501

B: 0.675
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Comparison of multiple populations: machine learning
Similarly, let’s collect the scores for two independent tasks for two groups of people.

Kmeans:

We cluster the dataset in two groups. The accuracy of kmeans clustering is:

A: 0.502

B: 0.638
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Comparison of multiple populations: machine learning
Using machine learning indicates that the first two groups are similar while the first 
and third groups differ significantly. This is closer to our intuition but mathematically 
this result is less accurate since the data originally came from different distributions. 

Why do we get a less accurate result with ML, i.e. with a more advanced technique?
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Comparison of multiple populations: machine learning
Why do we get a less accurate result with ML?

To understand this, we need to delve deeper 

into the algorithm of kmeans, which depends

on the spatial separation of data 
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Comparison of multiple populations: machine learning
Why do we get a less accurate result with ML? The problem is not the technique but 
the application to the specific problem:
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Comparison of multiple populations: machine learning
ML typically separates a dataset of collected observables into groups. However, in our 
use-case we have only two data points for each individual (score I, score II) and we 
have seen before that each observable is normally distributed. 
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Comparison of multiple populations: machine learning
The problem here arises from our attempt to approach a statistical problem with 
machine learning. How can we evaluate the nature of a problem:

Number of observables: Typically more dimensions make statistical analysis harder and 
machine learning can be more effective, while smaller dimensions allow the use of 
statistics.

Sample size: Small sample size is not suitable for machine learning techniques. 

Number of groups: Statistical scores can be used for pairs of groups, so problems that 
need separation into i.e. 10 populations cannot be studied statistically
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II. Comparison of multiple populations
Conclusions
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Comparison of multiple populations
1. Plotting can be deceiving
2. Statistical tests are more reliable, however they depend on the sample size
3. More advanced techniques (Machine learning) are not always appropriate 
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III. Correlations in data
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Find correlations in measurements
We have a dataset of measurements collected from a set of neurons. For example we 
measure anatomical properties for a list of neuronal morphologies:

62



Find correlations in measurements
We have a dataset of measurements collected from a set of neurons. 

Two variables can be:

● Positively Correlated: variables change in the same direction. 
● Negatively Correlated: variables change in opposite directions.
● Not Correlated: no relationship in the change of the variables. 
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Find correlations in measurements
We have a dataset of measurements collected from a set of neurons. 

Examples of possible correlations include:

● One variable could be strongly correlated on the values of another variable: one 
variable is a function of another.

● One variable could be slightly associated with another variable.
● Two variables could depend on a third unknown variable.
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We have a dataset of measurements collected from a set of neurons. How can we check 
if two measurements are correlated or independent?

Find correlations in measurements

A B C
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Find correlations in measurements
Pearson correlation test between datasets X and Y is computing the covariance divided 
by the standard deviation of the two datasets.

The P-correlation can be computed as follows from the two datasets:
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Find correlations in measurements
Pearson correlation test 

stats.pearsonr(XA, YA)

Pc: 0.999

pvalue: 6.6e-135
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Find correlations in measurements
Pearson correlation test 

stats.pearsonr(XB, YB)

Pc: 0.887

pvalue: 5.5e-31
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Find correlations in measurements
Pearson correlation test 

stats.pearsonr(XC, YC)

Pc: 0.0079

pvalue: 0.94
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Find correlations in measurements
Chi square is used to test whether there is a relationship between two categorical 
variables. Practically it can be used to test whether or not a number of outcomes is 
occurring in the expected frequency:

O: observed frequency
E: expected frequency
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Find correlations in measurements
Chi square test 

stats.chi2_contingency(XA, YA)

x2: 0.0

pvalue: 1.0
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Find correlations in measurements
Chi square test 

stats.chi2_contingency(XB, YB)

x2: 0.0

pvalue: 1.0
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Find correlations in measurements
Chi square test 

stats.chi2_contingency(XC, YC)

x2: 0.0

pvalue: 1.0
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C



Find correlations in measurements
Chi square is assuming that the distribution of observations is following the chi2 
distribution. If this is not the case, it is not an appropriate test to use.
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Find correlations in measurements
T-test is used to test the difference between two groups on some continuous variable. 
For example for two datasets X, Y the t-test can detect if they are correlated or not:

X, Y: is the mean of each dataset

nX, nY: sample size 

SS: sum of squares

75



Find correlations in measurements
T-test test 

stats.ttest_ind(XA, YA)

ttest: -0.47

pvalue: 0.635

76

A



Find correlations in measurements
T-test test 

stats.ttest_ind(XB, YB)

ttest: -14.97

pvalue: 3.2e-33
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Find correlations in measurements
T-test test 

stats.ttest_ind(XC, YC)

ttest: -22.2

pvalue: 4.4e-53
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Find correlations in measurements
T-test doesn’t seem to work well as an independence test. However… an important 
point is that we need to normalize the datasets. If we divide each measurement with 
the maximum element we transform the data:

(0, max) -> (0, 1)

This normalization is important when values of the two variables are in different units 
and therefore they are not directly comparable. 
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What would be a better way to compare them using t-test?
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Find correlations in measurements
T-test test 

stats.ttest_ind(XA/max(XA), YA/max(YA))

ttest: -0.33

pvalue: 0.739 (was 0.635)
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Find correlations in measurements
T-test test 

stats.ttest_ind(XB/max(XB), YB/max(YB))

ttest: 2.28

pvalue: 0.024 (was 3.2e-33)

82

B



Find correlations in measurements
T-test test 

stats.ttest_ind(XC/max(XC), YC/max(YC))

ttest: -9.53

pvalue: 1.2e-17 (was 4.4e-53)
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Find correlations in measurements
Once a correlation is identified, the precise relation between the two variables can be 
explored. One possible method to explore this relation is regression (we will talk more 
about this in machine learning)

For example linear regression
can be used to finds the line 
that minimizes the distance 
of points.
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Find correlations in measurements
In summary to find correlations between two datasets we can use a variety of methods:

● Pearson, (similar methods: Spearman, Kendall)
● Chi2 
● T-test
● Anova

However, we need to be careful about:

● The sample size
● The distribution of the data
● Normalization
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Data Detective Methods for Revealing Questionable Research 
Practices

Gregory Francis and Evelina Thunell
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Data Detective Methods for Revealing Questionable Research 
Practices

There are many types of Questionable Research Practices (QRPs) that all tend to 
generate statistical information that misrepresents reality. This chapter discusses some 
methods for detecting the presence of QRPs, mostly by looking for conflicts in different 
sources of information. These methods typically cannot identify precisely which QRPs 
were used, and sometimes the conflicts are due to typos or simple mistakes, but either 
way readers should be skeptical about the validity of studies with inconsistent statistical 
information. An appropriate mindset for identifying inconsistencies is that of a “data 
detective” who looks for patterns that do not make sense. We start by describing 
mathematical inconsistencies between sample sizes and the degrees of freedom in 
hypothesis tests, which are easy to detect and indicate either a QRP, unreported outlier 
removal, or sloppiness in reporting.
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Data Detective Methods for Revealing Questionable Research 
Practices

Two additional tests explore inconsistencies across experiments. First, the Test for 
Excess Success compares the frequency of reported successful outcomes to the 
expected frequency if the tests were run properly, fully reported, and analyzed 
without QRPs. Too much success indicates a problem with the reported results. 
Second, the p-curve analysis examines the distribution of reported p-values for 
properties that indicate invalid data sets (that are perhaps the result of QRPs).
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Data Detective Methods for RQP: Mathematical Inconsistencies 
and Data Gleaning

A simple test to start from entails the comparison between the degrees of freedom 
and the reported p-values. 
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Data Detective Methods for RQP: Mathematical Inconsistencies 
and Data Gleaning

Degrees of freedom (df): indicate the number of independent values that can vary 
in an analysis without breaking any constraints. For a sample size N and P 
parameters:

df = N - P

For example, given a set of observations: x1, x2, …, x10 and a reported mean 
(m=0.65) and sample size (N=10), if we know the values of x1, …, x9 we can 
compute x10. 

In this case df = 10 - 1 = 9 
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Data Detective Methods for RQP: Mathematical Inconsistencies 
and Data Gleaning

Degrees of freedom (df): indicate the number of independent values that can vary 
in an analysis without breaking any constraints.

For t-test (which tests statistical significance of the mean)

df = n − 1, where n is the sample size

df = n1 + n2 − 2, where n1 and n2 are the sizes of the two samples
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Data Detective Methods for RQP: Mathematical Inconsistencies 
and Data Gleaning

Usually scientific papers report number of df and sample size. For example

 “As predicted, with n1 = 35 and n2 = 27, we found a significant difference between 
the control and experimental means t(58) = 2.1, p = 0.04.”

For a t-test of n1 = 35, n2 = 27, df = n1 + n2 - 2 = 60 which differs from the reported 
df=58. 
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Data Detective Methods for RQP: Mathematical Inconsistencies 
and Data Gleaning

Degrees of freedom (df): indicate the number of independent values that can vary 
in an analysis without breaking any constraints.

For one-way ANOVA F-test we have two df terms

dfnumerator = K − 1

dfdenominator = N − K. 

Here, K is the number of conditions and N is the sum of sample sizes across all 
conditions.
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Data Detective Methods for RQP: Mathematical Inconsistencies 
and Data Gleaning

STATCHECK

When testing whether a drug is effective at reducing the duration of a cold, the null 
hypothesis H0 might look like: 

H0: m1 = m2

where m1 and m2 denote the duration of the cold with and without the drug, 
respectively.

The goal of the hypothesis test is to decide whether to reject the null hypothesis. This 
decision is based on “statistical significance,” which is determined by a test statistic that is 
derived from the experimental data.
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Data Detective Methods for RQP: Mathematical Inconsistencies 
and Data Gleaning

STATCHECK: 

the statistical test t is:

where X and Y are the sample means and SS is the standard deviation of the 
sampling distribution of the difference of means, which is a function of the 
standard deviation s, and the sample sizes nX and nY.
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Data Detective Methods for RQP: Mathematical Inconsistencies 
and Data Gleaning

STATCHECK: 

If the null hypothesis is true, the t-value is close to 0 (null hypothesis not 
rejected). If the alternative hypothesis is true and the sample sizes are large 
enough, the t-value will typically deviate substantially from 0
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Data Detective Methods for RQP: Mathematical Inconsistencies 
and Data Gleaning

STATCHECK: 

Given the degrees of freedom, there is a relationship between t-test and p-value 
that can be computed. For example, you can use this calculator:

https://www.statology.org/t-score-p-value-calculator/*

To test if a t-test and a p-value are consistent. 
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Data Detective Methods for RQP: Mathematical Inconsistencies 
and Data Gleaning

STATCHECK: 

Due to random sampling, the t-test value will sometimes deviate from 0 even if the 
null hypothesis is true, and the researcher will reject the null hypothesis by error. 
The decision about whether to reject the null hypothesis is often based on the 
p-value. If p < α (typically α = 0.05 or 5%), then the observed t-test value deviates 
more from 0 than what should be common if the null hypothesis is true. 
Therefore, there seems to be an effect: the null hypothesis is rejected and the 
observed difference of means is statistically significant.

98



Data Detective Methods for RQP: Mathematical Inconsistencies 
and Data Gleaning

STATCHECK: 

For example the statement “As predicted we found a significant difference between 
the control and experimental conditions, t(22) = 2.00, p < 0.05.” can be easily 
tested*

For df = 22, t=2.00 p-value is p = 0.058 > 0.05

So due to common mistakes (i.e. incorrect computations, mistyping etc) these 
errors are possible to occur, but they can (and should) be easily tested. 
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Summary

Statistical errors are easy to make. However, even small errors can change the 
results of a study significantly. It is therefore important to pay attention to the 
details and double check the final results. 

Interesting to read:

Data Detective Methods for Revealing Questionable Research Practices

Publication bias and the failure of replication in experimental psychology
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Questions?
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Publication bias and the failure of replication in experimental 
psychology

Gregory Francis
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Publication bias and the failure of replication in experimental 
psychology

Replication of empirical findings plays a fundamental role in science:

● successful replication enhances belief in a finding
● failure to replicate is often interpreted to mean that one of the experiments is flawed. 

This view is not necessarily accurate. 

Because experimental psychology uses statistics, empirical findings should appear with 
predictable probabilities.

The problem is that in a misguided effort to demonstrate successful replication of empirical 
findings and avoid failures to replicate, experimental psychologists sometimes report too 
many positive results. 
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Publication bias and the failure of replication in experimental 
psychology

Rather than strengthen confidence in an effect, too much successful replication 
actually indicates publication bias, which invalidates entire sets of experimental 
findings. 

This article shows how an investigation of the effect sizes from reported experiments 
can test for publication bias by looking for too much successful replication. Simulated 
experiments demonstrate that the publication bias test is able to discriminate biased 
experiment sets from unbiased experiment sets, but it is conservative about reporting 
bias. 
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Publication bias and the failure of replication in experimental 
psychology

Ioannidis and Trikalinos (2007) described a test for whether a set of experimental 
findings contains an excess of statistically significant results. This publication bias test, 
is central to the present discussion:

The ability of repeated experiments to provide compelling evidence for the validity of 
an effect must consider the statistical power of the experiments. 

If all of the experiments have high power (the probability of rejecting the null 
hypothesis when it is false), multiple experiments that reject the null hypothesis will 
indeed be strong evidence for the validity of an effect.
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Publication bias and the failure of replication in experimental 
psychology

Even populations with strong effects should have some experiments that do not reject 
the null hypothesis. Such null findings should not be interpreted as failures to 
replicate, because if the experiments are run properly and reported fully, such 
nonsignificant findings are an expected outcome of random sampling. 

Some researchers in experimental psychology appear to misunderstand this 
fundamental characteristic, and they engage in a misguided effort to publish more 
successful replications than are believable. 

If there are not enough null findings in a set of moderately powered experiments, the 
experiments were either not run properly or not fully reported, hence there is no 
reason to believe the reported effect is real.
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Publication bias and the failure of replication in experimental 
psychology

The difference between the observed (O) and the expected (E) number of studies that 
reject the null hypothesis for a set of (N) reported experiments can be analyzed by a 
x2 test: 

The observed number of rejections is the number of reported experiments that reject 
the null hypothesis. The expected number of rejections is found by first estimating the 
effect size of a phenomenon across a set of experiments.
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Publication bias and the failure of replication in experimental 
psychology

The difference between the observed (O) and the expected (E) number of studies that 
reject the null hypothesis for a set of (N) reported experiments can be analyzed by a 
x2 test: 

The observed number of rejections is the number of reported experiments that reject 
the null hypothesis. The expected number of rejections is found by first estimating the 
effect size of a phenomenon across a set of experiments.
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