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Statistical methods

Statistics is the mathematical discipline that studies how collected data can be analyzed
rigorously, to prove or disprove a hypothesis.

The use of statistical methods to ensure accuracy of scientific results is present in almost
every publication, and certainly in every field. However, especially with new technologies,
such as machine learning, it is often hard to judge the results of a statistical test in order to
accept or reject a scientific hypothesis.



Statistical methods

Important points to keep in mind when analyzing a scientific dataset:

Data are noisy

Sample size is important

Metadata, units and normalization of data are important
The appropriate method of analysis depends on the dataset

W N



Statistical methods

Some data analysis methods that can be useful:

[. Approximation of statistical distributions
II. Comparison of multiple populations
[II. Identify correlations



|. Approximate a distribution



Approximate a distribution

Example: Scores in a computational task (i.e. IQ score) from a group of people. We
want to test the hypothesis that they follow a normal distribution.

%

L.
o

o
o
=
(<]

>
9]
=
)
=
o
&

L

Observation



Approximate a distribution

Example: First let’s examine the properties of the normal distribution

1. Probability distribution function (PDF)

PDF of a real valued random variable X is the mathematical formulation of the
probability that X will take the value x. This equation describes the probabilities of all
possible outcomes to occur during a random experiment.



Approximate a distribution

Example: First let’s examine the properties of the normal distribution

1. For a normal distribution the probability distribution function (PDF) for an
observation x is given by:




Approximate a distribution

Example: First let’s examine the properties of the normal distribution

2. Cumulative distribution function (CDF)

The CDF of a real-valued random variable X, evaluated at x, is the probability that X
will take a value less than or equal to x.
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Approximate a distribution

Example: First let’s examine the properties of the normal distribution

2. CDF and PDF

The CDF of a continuous random variable X can be expressed as the integral of its
probability density function f (x)
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Approximate a distribution

Example: First let’s examine the properties of the normal distribution

2. For a normal distribution the probability CDF for an observation x is given by:

T—p\2
= ) dx
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Approximate a distribution

Example: First let’s examine the properties of the normal distribution

2. For a normal distribution the probability CDF for a parametrization of
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Approximate a distribution

Example: First let’s examine the properties of the normal distribution

2. For a normal distribution the probability CDF for a parametrization of
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Approximate a distribution

Example: First let’s examine the properties of the normal distribution

2. For a normal distribution the probability CDF
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Approximate a distribution

Let’s take an example of a normal distribution:

Value
Mean 10
Standard deviation 1
Number of sample points 1000
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Approximate a distribution
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Approximate a distribution

For the normal distribution (TR-ESENN

X X f(x): value

10 M 0.56
9/11 o 0.3
8/12 20 0.08
7/13 30 0.006
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Approximate a distribution
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Approximate a distribution

For the normal distribution [ENICXASENY
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Approximate a distribution

For the normal distribution (TR-ESENN

X X d(x): value

10 M 0.50
9/11 o 0.16/0.84
8/12 20 0.02/0.98
7/13 30 0.001/0.998
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Approximate a distribution

For the normal distribution [ENICXASENY
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Approximate a distribution

So if we go back to the random experiment of scores, we can test our normal
distribution hypothesis by the following process:

Identify the mean and standard deviation

Generate a normal distribution with these properties

Compute the probability of a score to appear (we need to bin the data)
Compute the cumulative probability of scores

Compare the PDF and CDF of the observations to the normal distribution

Vi W N
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Approximate a distribution

The pdf of the normal distribution:
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Approximate a distribution

The cdf of the normal distribution:

—— Normal
B Observations
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Approximate a distribution

We can test normality of the dataset
with the Shapiro - Wilk test

This test computes the difference
between the PDF of the expected
and the observed distributions

SHAPIRO-WILK NORMALITY TEST
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Approximate a distribution

We can test normality of the dataset
with the Shapiro - Wilk test

In our case, that corresponds to the
plot we generated for PDF
distributions
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Approximate a distribution

We can test normality of the dataset with the Shapiro - Wilk test:
Shapiro test

e statistic=0.99
e pvalue=0.63

If p > 0.05 -> supports the hypothesis that data are normally distributed. The data
appear to follow a normal distribution.
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Approximate a distribution

We can also test normality of the
dataset with the
Kolmogorov-Smirnov test

KS-test finds the maximum
distance between the CDF of the
expected and the observed
distributions
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Approximate a distribution

We can also test normality of the
dataset with the
Kolmogorov-Smirnov test

o
™

0.6

So in our case, this can be

©
IS

computed from the plot that we

>
@)
=
]
= |
O
U]
—
y—
=
-}
O

generated before

o
[N]

Maximum difference

30



Approximate a distribution

We can also test normality of the dataset with the Kolmogorov-Smirnov test:

KS test not normalized
e statistic=0.99
e pvalue=

KS test normalized
e statistic=0.0055
e pvalue=0.92

If p > 0.05 -> supports the hypothesis that data are normally distributed. The data
appear to follow a normal distribution.
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Approximate a distribution - Summary

Identify the properties of the distribution

Generate a normal distribution with these properties

Plot the data (PDF, CDF) and compare to normal distribution
Compute the statistical scores

W N

Important points:

1. Sample size must be large enough for a statistical test to be accurate
2. Data need to be normalized for more accurate results
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|l. Comparison of multiple populations
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Comparison of multiple populations

Example: Scores in a computational task (i.e. IQ score) from two groups of people. We
want to test the hypothesis that two groups of people perform differently at this

computational task.

e Plotting the results
e Statistical tests
e Basic machine learning tools

Which one do you think would be more useful?
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|l. Comparison of multiple populations
(A) plot results
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Comparison of multiple populations

Example A: List of scores in a computational task (i.e. IQ score) from two groups of
people. We want to test the hypothesis that two groups of people perform differently at

this computational task. (sample size: 100)
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Comparison of multiple populations

Example A: List of scores in a computational task (i.e. IQ score) from two groups of
people. We want to test the hypothesis that two groups of people perform differently at
this computational task. (sample size: 1000)
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Comparison of multiple populations

Example A: List of scores in a computational task (i.e. IQ score) from two groups of
people. We want to test the hypothesis that two groups of people perform differently at
this computational task. (sample size: 10000)

6000 8000 10000 2000 4000 6000 8000 10000

2000 4000 6000 8000 10000 0 2000 4000
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Comparison of multiple populations

Example A: List of scores in a computational task (i.e. IQ score) from two groups of
people. We want to test the hypothesis that two groups of people perform differently at
this computational task (G1-G2) and (G1-G3).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 16
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Comparison of multiple populations

Example A2: Similarly to the previous task we can evaluate a set of 2d data: list of
scores in two computational tasks (i.e. score I and score II) from the same two groups
of people. We want to test the hypothesis that two groups of people perform differently
at these computational tasks.

® Groupl ® Group?2
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|l. Comparison of multiple populations
(B) statistical analysis
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Comparison of multiple populations

Example A

GI1: Mean: 0.65 Std: 0.23 Sample size: 100
G2: Mean: 0.73 Std: 0.19 Sample size: 100
G3: Mean: 0.82 Std: 0.19 Sample size: 100
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Comparison of multiple populations

Example A

GI1: Mean: 0.70 Std: 0.20 Sample size: 1000
G2: Mean: 0.73 Std: 0.19 Sample size: 1000
G3: Mean: 0.81 Std: 0.20 Sample size: 1000
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Comparison of multiple populations

Example A:

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

GI1: Mean: 0.70 Std: 0.20 Sample size: 10000
G2: Mean: 0.73 Std: 0.20 Sample size: 10000
G3: Mean: 0.80 Std: 0.20 Sample size: 10000

2000

4000

6000

8000

10000
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Comparison of multiple populations

Example A: List of scores in a computational task (i.e. IQ score) from two groups of
people. Let’s use a statistical test, for example Kolmogorov-Smirnov test

A: KS test
e distance=0.07
e pvalue=lle-19

B: KS test
e distance=0.20
e pvalue=5e-173

In both cases the distributions show statistically significant differences!
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Comparison of multiple populations

Example A: List of scores in a computational task (i.e. IQ score) from two groups of
people. However... if we test a smaller sample size (#200)

A: KS test
e distance=0.08
e pvalue=

B: KS test
e distance=0.22
e pvalue=0.0001

The p-value is highly sensitive on sample size. So it’s important to always report
sample size on data! The distances between the two datasets are more consistent.
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Comparison of multiple populations: plotting

Example A2: scores for two independent tasks for two groups of people.

Score | Score |
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Comparison of multiple populations: statistical analysis

Example A2: scores for two independent tasks for two groups of people.
A: KS

e distance=0.059
e pvalue=1.0e-15

B: KS

e distance=0.52,
e pvalue=0.0

Statistical scores indicate a clear difference between GI and G2. Even more evidently in
Gl and G3
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|l. Comparison of multiple populations
(C) machine learning
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Comparison of multiple populations: machine learning

Example A2: scores for two independent tasks for two groups of people. Plotting data
using umap
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Comparison of multiple populations: machine learning

Example A2: scores for two independent tasks for two groups of people.

We can train basic classifiers (for example DecisionTrees for supervised, Kmeans for
unsupervised learning) to see if they can recognize the individual observations from

different groups.

We define accuracy as the number of correct predictions divided by the sample size.

1 N

acc = N Z ]-(yp'red — yTCCLl)

0

51



Comparison of multiple populations: machine learning

Example A2: scores for two independent tasks for two groups of people.
DecisionTrees:

We train the classifier on 50% of the data and test on the remaining 50%. The accuracy

of the classifier is:
A: 0.501
B: 0.675
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Comparison of multiple populations: machine learning

Similarly, let’s collect the scores for two independent tasks for two groups of people.
Kmeans:

We cluster the dataset in two groups. The accuracy of kmeans clustering is:

A: 0502

B: 0.638
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Comparison of multiple populations: machine learning

Using machine learning indicates that the first two groups are similar while the first
and third groups differ significantly. This is closer to our intuition but mathematically
this result is less accurate since the data originally came from different distributions.

Why do we get a less accurate result with ML, i.e. with a more advanced technique?
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Comparison of multiple populations: machine learning

Why do we get a less accurate result with ML?

To understand this, we need to delve deeper
into the algorithm of kmeans, which depends

on the spatial separation of data

train time: 0.02s. .5 . . .
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Comparison of multiple populations: machine learning

Why do we get a less accurate result with ML? The problem is not the technique but
the application to the specific problem:

train time: 0.02s. «.5 © .
inertia: 2470: e
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Comparison of multiple populations: machine learning

ML typically separates a dataset of collected observables into groups. However, in our
use-case we have only two data points for each individual (score I, score II) and we
have seen before that each observable is normally distributed.

train time: 0.02s. .5 .
inertia: 2470s
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Comparison of multiple populations: machine learning

The problem here arises from our attempt to approach a statistical problem with
machine learning. How can we evaluate the nature of a problem:

Number of observables: Typically more dimensions make statistical analysis harder and
machine learning can be more effective, while smaller dimensions allow the use of

statistics.
Sample size: Small sample size is not suitable for machine learning techniques.

Number of groups: Statistical scores can be used for pairs of groups, so problems that
need separation into i.e. 10 populations cannot be studied statistically
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|l. Comparison of multiple populations
Conclusions
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Comparison of multiple populations

1. Plotting can be deceiving
2. Statistical tests are more reliable, however they depend on the sample size
3. More advanced techniques (Machine learning) are not always appropriate
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[1l. Correlations in data
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Find correlations in measurements

We have a dataset of measurements collected from a set of neurons. For example we
measure anatomical properties for a list of neuronal morphologies:

B B 1]

|__|propertyjname laxon|mean_number_of_bifurcatio»axonjmean_number_of_leaveaxonjmean_number_of_sectioraxon|mean_remote_bifurcation_angh3

2 |C050800E2_corh5 59 60 19 12029861559104
3 |C120398A-P2.n5 25 26 51 1.31538621816681
4 |C120398A-P3.h5 40 41 81 1.42040152246122
5 |C271097A-P1h5 37 38 75 1.17331024837382
6 |C271097A-P2.h5 21 22 43 1.18553678311865
7 |C271097A-P3.n5 34 35 69 1.30503361454563

. |rp110111_L5-2_idH.h5 61 62 123 1.39761281141949
\rp120608_P_3_idC. 44 47 92 1.18236947545108
|rp120608_P_3_idD. 69 70 139 1.08486835209442
sm100429a1-5_INT_idE.b» 38 39 77 14799778645049
|sm100429a1-5_INT_idG.b 28 29 57 1.73913560953665
[vd101102b_INT_idAhS 43 44 87 1.45461104222372

|” 71| C060998B-P4.n5 10 u 21 1.47125481505973
15 |C120398A-P1.h5 10 u 21 1.6064295953642
16 _|C140600C-P3.n5 12 13 1.11694986036925

(17 _|C150897B-P2.h5 1.21858139632941

|C200897C-P2.h5 1.70497037908832
|C200897C-P4.h5 1.37332234508014
|C220498B-P3_corhs 151601242237315
|C231296A-P4B2.h5 15199786142752

22 |C260199A-P2.h5 1.47696729610387

23 |C300797C-P2.h5 152795803970122

15769699580797
1.24321043670234
1.31227750969831
1.25173531651878
28 |Fluo9_lefths 1.30945300169143




Find correlations in measurements

We have a dataset of measurements collected from a set of neurons.

Two variables can be:

e Positively Correlated: variables change in the same direction.
e Negatively Correlated: variables change in opposite directions.
e Not Correlated: no relationship in the change of the variables.
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Find correlations in measurements

We have a dataset of measurements collected from a set of neurons.

Examples of possible correlations include:

® One variable could be strongly correlated on the values of another variable: one

variable is a function of another.
® One variable could be slightly associated with another variable.
e Two variables could depend on a third unknown variable.
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Find correlations in measurements

We have a dataset of measurements collected from a set of neurons. How can we check
if two measurements are correlated or independent?
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Find correlations in measurements

Pearson correlation test between datasets X and Y is computing the covariance divided

by the standard deviation of the two datasets.

The P-correlation can be computed as follows from the two datasets:

> (x —my)(y — my)

y l——

v (@ —me)? ) (y—my)*
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Find correlations in measurements

Pearson correlation test

stats.pearsonr(X " Y A)
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Find correlations in measurements

Pearson correlation test
stats.pearsonr(XB, YB)

Pc: 0.887

pvalue: 5.5e-31
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Find correlations in measurements

Pearson correlation test
stats.pearsonr(XC, Yc)

Pc: 0.0079

pvalue: 0.94
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Find correlations in measurements

Chi square is used to test whether there is a relationship between two categorical
variables. Practically it can be used to test whether or not a number of outcomes is
occurring in the expected frequency:

O: observed frequency
E: expected frequency
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Find correlations in measurements

Chi square test

stats.chi2_contingency(X N,
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Find correlations in measurements

Chi square test
stats.chiZ_contingency(XB, Yo)
x2:0.0

pvalue: 1.0
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Find correlations in measurements

Chi square test
stats.chiZ_contingency(XC, Y.)
x2:0.0

pvalue: 1.0
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Find correlations in measurements

Chi square is assuming that the distribution of observations is following the chi2
distribution. If this is not the case, it is not an appropriate test to use.

< Scribbr
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Find correlations in measurements

T-test is used to test the difference between two groups on some continuous variable.
For example for two datasets X, Y the t-test can detect if they are correlated or not:

X, Y: is the mean of each dataset

n,, n,: sample size

XY

SS: sum of squares
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Find correlations in measurements

T-test test

stats.ttest_ind(X N,
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Find correlations in measurements

T-test test
stats.ttest_ind(XB, Yo)
ttest: -14.97

pvalue: 3.2e-33
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Find correlations in measurements

T-test test
stats.ttest_ind(XC, Y.)
ttest: -22.2

pvalue: 4.4e-53
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Find correlations in measurements

T-test doesn’t seem to work well as an independence test. However... an important
point is that we need to normalize the datasets. If we divide each measurement with

the maximum element we transform the data:
(0, max) -> (0, 1)

This normalization is important when values of the two variables are in different units
and therefore they are not directly comparable.
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What would be a better way to compare them using t-test?
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Find correlations in measurements

T-test test

stats.ttest_ind(X,/max(X,), Y,/max(Y,))
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Find correlations in measurements

T-test test
stats.ttest_ind(X,/max(X;), Y, /max(Y}))
ttest: 2.28

pvalue: 0.024 (was 3.2e-33)
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Find correlations in measurements

T-test test
stats.ttest_ind(X ./max(X.), Y /max(Y.))
ttest: -9.53

pvalue: 1.2e-17 (was 4.4e-53)
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Find correlations in measurements

Once a correlation is identified, the precise relation between the two variables can be
explored. One possible method to explore this relation is regression (we will talk more
about this in machine learning)

For example linear regression
can be used to finds the line
that minimizes the distance
of points.
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Find correlations in measurements

In summary to find correlations between two datasets we can use a variety of methods:

Pearson, (similar methods: Spearman, Kendall)
Chi2

T-test

Anova

However, we need to be careful about:

e The sample size
e The distribution of the data
e Normalization
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Data Detective Methods for Revealing Questionable Research
Practices

Gregory Francis and Evelina Thunell
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Data Detective Methods for Revealing Questionable Research
Practices

There are many types of Questionable Research Practices (QRPs) that all tend to
generate statistical information that misrepresents reality. This chapter discusses some
methods for detecting the presence of QRPs, mostly by looking for conflicts in different
sources of information. These methods typically cannot identify precisely which QRPs
were used, and sometimes the conflicts are due to typos or simple mistakes, but either
way readers should be skeptical about the validity of studies with inconsistent statistical
information. An appropriate mindset for identifying inconsistencies is that of a “data
detective” who looks for patterns that do not make sense. We start by describing
mathematical inconsistencies between sample sizes and the degrees of freedom in

hypothesis tests, which are easy to detect and indicate either a QRP, unreported outlier
removal, or sloppiness in reporting.
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Data Detective Methods for Revealing Questionable Research
Practices

Two additional tests explore inconsistencies across experiments. First, the Test for
Excess Success compares the frequency of reported successful outcomes to the
expected frequency if the tests were run properly, fully reported, and analyzed
without QRPs. Too much success indicates a problem with the reported results.
Second, the p-curve analysis examines the distribution of reported p-values for
properties that indicate invalid data sets (that are perhaps the result of QRPs).

88



Data Detective Methods for RQP: Mathematical Inconsistencies
and Data Gleaning

A simple test to start from entails the comparison between the degrees of freedom
and the reported p-values.
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Data Detective Methods for RQP: Mathematical Inconsistencies
and Data Gleaning

Degrees of freedom (df): indicate the number of independent values that can vary
in an analysis without breaking any constraints. For a sample size N and P
parameters:

df=N-P
For example, given a set of observations: x1, x2, .., x10 and a reported mean
(m=0.65) and sample size (N=10), if we know the values of x1, .., xX9 we can

compute x10.

In this casedf=10-1=9
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Data Detective Methods for RQP: Mathematical Inconsistencies
and Data Gleaning

Degrees of freedom (df): indicate the number of independent values that can vary
in an analysis without breaking any constraints.

For t-test (which tests statistical significance of the mean)
df = n - 1, where n is the sample size

df =nl + n2 - 2, where nl and n2 are the sizes of the two samples
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Data Detective Methods for RQP: Mathematical Inconsistencies
and Data Gleaning

Usually scientific papers report number of df and sample size. For example

“As predicted, with nl = 35 and n2 = 27, we found a significant difference between
the control and experimental means t(58) = 2.1, p = 0.04.”

For a t-test of nl = 35, n2 = 27, df = nl + n2 - 2 = 60 which differs from the reported
df=58.
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Data Detective Methods for RQP: Mathematical Inconsistencies
and Data Gleaning

Degrees of freedom (df): indicate the number of independent values that can vary
in an analysis without breaking any constraints.

For one-way ANOVA F-test we have two df terms

=K-1

numerator

=N-K

denominator

Here, K is the number of conditions and N is the sum of sample sizes across all
conditions.
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Data Detective Methods for RQP: Mathematical Inconsistencies
and Data Gleaning

STATCHECK

When testing whether a drug is effective at reducing the duration of a cold, the null
hypothesis HO might look like:

HO: m1 =m?2

where ml and m2 denote the duration of the cold with and without the drug,
respectively.

The goal of the hypothesis test is to decide whether to reject the null hypothesis. This
decision is based on “statistical significance,” which is determined by a test statistic that is
derived from the experimental data.
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Data Detective Methods for RQP: Mathematical Inconsistencies
and Data Gleaning

STATCHECK:

the statistical test t is:

where X and Y are the sample means and SS is the standard deviation of the
sampling distribution of the difference of means, which is a function of the

standard deviation s, and the sample sizes n, and n.,.

X
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Data Detective Methods for RQP: Mathematical Inconsistencies
and Data Gleaning

STATCHECK:

If the null hypothesis is true, the t-value is close to 0 (null hypothesis not
rejected). If the alternative hypothesis is true and the sample sizes are large
enough, the t-value will typically deviate substantially from O
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Data Detective Methods for RQP: Mathematical Inconsistencies
and Data Gleaning

STATCHECK:

Given the degrees of freedom, there is a relationship between t-test and p-value

that can be computed. For example, you can use this calculator:

https://www.statology.org/t-score-p-value-calculator/*

To test if a t-test and a p-value are consistent.
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Data Detective Methods for RQP: Mathematical Inconsistencies
and Data Gleaning

STATCHECK:

Due to random sampling, the t-test value will sometimes deviate from 0 even if the
null hypothesis is true, and the researcher will reject the null hypothesis by error.
The decision about whether to reject the null hypothesis is often based on the
p-value. If p < a (typically a = 0.05 or 5%), then the observed t-test value deviates
more from 0 than what should be common if the null hypothesis is true.
Therefore, there seems to be an effect: the null hypothesis is rejected and the
observed difference of means is statistically significant.
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Data Detective Methods for RQP: Mathematical Inconsistencies
and Data Gleaning

STATCHECK:

For example the statement “As predicted we found a significant difference between
the control and experimental conditions, t(22) = 2.00, p < 0.05.” can be easily
tested™

For df = 22, t=2.00 p-value is p = 0.058 > 0.05

So due to common mistakes (ie. incorrect computations, mistyping etc) these
errors are possible to occur, but they can (and should) be easily tested.
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Summary

Statistical errors are easy to make. However, even small errors can change the
results of a study significantly. It is therefore important to pay attention to the
details and double check the final results.

Interesting to read:
Data Detective Methods for Revealing Questionable Research Practices

Publication bias and the failure of replication in experimental psychology
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Questions?
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Publication bias and the failure of replication in experimental
psychology

Gregory Francis
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Publication bias and the failure of replication in experimental
psychology

Replication of empirical findings plays a fundamental role in science:

e successful replication enhances belief in a finding
e failure to replicate is often interpreted to mean that one of the experiments is flawed.

This view is not necessarily accurate.

Because experimental psychology uses statistics, empirical findings should appear with
predictable probabilities.

The problem is that in a misguided effort to demonstrate successful replication of empirical
findings and avoid failures to replicate, experimental psychologists sometimes report too
many positive results.
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Publication bias and the failure of replication in experimental
psychology

Rather than strengthen confidence in an effect, too much successful replication
actually indicates publication bias, which invalidates entire sets of experimental
findings.

This article shows how an investigation of the effect sizes from reported experiments
can test for publication bias by looking for too much successful replication. Simulated
experiments demonstrate that the publication bias test is able to discriminate biased
experiment sets from unbiased experiment sets, but it is conservative about reporting
bias.
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Publication bias and the failure of replication in experimental
psychology

Ioannidis and Trikalinos (2007) described a test for whether a set of experimental
findings contains an excess of statistically significant results. This publication bias test,
is central to the present discussion:

The ability of repeated experiments to provide compelling evidence for the validity of
an effect must consider the statistical power of the experiments.

If all of the experiments have high power (the probability of rejecting the null
hypothesis when it is false), multiple experiments that reject the null hypothesis will
indeed be strong evidence for the validity of an effect.
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Publication bias and the failure of replication in experimental
psychology

Even populations with strong effects should have some experiments that do not reject
the null hypothesis. Such null findings should not be interpreted as failures to
replicate, because if the experiments are run properly and reported fully, such
nonsignificant findings are an expected outcome of random sampling.

Some researchers in experimental psychology appear to misunderstand this
fundamental characteristic, and they engage in a misguided effort to publish more
successful replications than are believable.

If there are not enough null findings in a set of moderately powered experiments, the
experiments were either not run properly or not fully reported, hence there is no
reason to believe the reported effect is real.
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Publication bias and the failure of replication in experimental
psychology

The difference between the observed (O) and the expected (E) number of studies that
reject the null hypothesis for a set of (N) reported experiments can be analyzed by a
x* test:

The observed number of rejections is the number of reported experiments that reject
the null hypothesis. The expected number of rejections is found by first estimating the
effect size of a phenomenon across a set of experiments.
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Publication bias and the failure of replication in experimental
psychology

The difference between the observed (O) and the expected (E) number of studies that
reject the null hypothesis for a set of (N) reported experiments can be analyzed by a
x* test:

The observed number of rejections is the number of reported experiments that reject
the null hypothesis. The expected number of rejections is found by first estimating the
effect size of a phenomenon across a set of experiments.
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