
Graphs and Networks 



Graph analysis
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Graphs 
Graphs are widely used to model complex systems and analyze data in social 
networks, biology, computer science. However, characterizing graph complexity is a 
challenging task  as it is a subjective measure that can vary depending on the context 
and the observer. There is no universal metric for graph complexity, and different 
measures may emphasize different aspects of the graph’s properties. 
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Graphs 
Graphs are typically high-dimensional 
objects, which are hard to visualize 
and analyze. In addition, they can 
exhibit emergent properties that arise 
from the interactions between their 
nodes, which can be difficult to 
predict. Therefore, characterizing a 
graph requires a better understanding 
of the underlying structure and 
properties of the graph, and there is no 
unique approach to this problem.
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Graphs 
Graphs can be described by their 
connectivity matrices. 

There are several different formats for 
connectivity matrices, as the graphs 
can be undirected, directed or 
weighted. 
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Connectivity matrices: adjacency matrix
For undirected graphs, the adjacency 
matrix is symmetric and it represents the 
connections between vertices i, j:

A(i,j) = 1, if (i,j) is an edge

     0, if (i,j) not an edge

If the graph has weights then the 
adjacency matrix is respectively:

A(i,j) = wij, if (i,j) is an edge

     0, if (i,j) not an edge
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Connectivity matrices: adjacency matrix
For directed graphs, the adjacency matrix 
is not necessarily symmetric and it 
represents the connections between 
vertices i -> j:

A(i,j) = 1, if (i -> j) is an edge

     0, if (i -> j) not an edge

For example if (2->3) is an edge but 
(3->2) is not then

A(2,3) = 1 while A(3,2) = 0
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Connectivity matrices: incidence matrix
For undirected graphs, the incidence 
matrix is an m x n matrix that 
represents the relationship between 
vertices and edges

I(ei,vj) = 1, if ei is participating in vj

     0, if ei is not in vj
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Connectivity matrices: incidence matrix
For directed graphs, the incidence matrix 
is an m x n matrix that represents the 
relationship between vertices and edges

I(ei,vj) = 1, if ei is the first element in vj

            - 1, if ei is the second element in vj

     0, if ei is not in vj
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Connectivity matrices: incidence matrix
For example, for directed graphs the sum of each column is 0 (for undirected it is 2)
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Measurements on graphs : degree of vertices
The degree of a vertex describes the 
number of edges it participates in. 

Given a graph G(V, E), the degree of a 
vertex vi is the sum of all its edges: 

The degree can also be computed 
efficiently from the incidence matrix. For 
undirected graphs the degree of a vertex 
is given by the sum of its rows. 
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Measurements on graphs : degree of vertices
The sum of all degrees in an unweighted 
graph  G(V, E) is twice the number of 
edges in the graph:
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Measurements on graphs : edge length

Edge length is meaningful in weighted graphs 
and the length usually refers to the weights of 
the edges. The edge length distribution is a 
measure of how the lengths are spread out 
across the range of possible edge lengths and it 
can provide insights into the structure of a 
graph, such as the presence of clusters or hubs. 

13



Measurements on graphs : clustering coefficient
The local clustering coefficient of a vertex (node) in a graph quantifies how close 
its neighbours are to being a clique (complete graph).

For a graph G=(V, E) the neighbourhood Ni for a vertex vi is defined as its 
immediately connected neighbours as follows:  
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Measurements on graphs : clustering coefficient
The local clustering coefficient Ci of a vertex vi is defined as the fraction of the 
number of connections ti between the vertices within its neighbourhood Ni divided 
by the number of all possible connections that could exist between them. For a 
directed graph, because eij not equal to eji  for each neighbourhood Ni with  ki 
neighbors there are ki * (ki − 1) possible connections that could exist among them. 
Thus, the local clustering coefficient for directed graphs is given as
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Measurements on graphs : clustering coefficient
For a undirected graph, because eij is equal to eji  for each neighbourhood Ni with  ki 
neighbors there are ki * (ki − 1) / 2 possible connections that could exist among them. 
Thus, the local clustering coefficient for undirected graphs is given as
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Measurements on graphs : clustering coefficient
For an undirected network, in which N is the set of all vertices in the network, 
and n is the number of vertices, the clustering coefficient is
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Measurements on graphs : clustering coefficient
The local clustering coefficient of a vertex (node) in a graph quantifies how close its 
neighbours are to being a clique (complete graph). High clustering coefficient 
indicates larger number of connections between neighbors, low indicates small 
number of connections
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Measurements on graphs : clustering coefficient

The local clustering coefficient of a vertex (node) in a graph 
quantifies how close its neighbours are to being a clique 
(complete graph). 

For clustering coefficient 1 the neighborhood is a clique

For a clustering coefficient 0 no neighbors are connected
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Measurements on graphs : shortest path length
In graph theory, the shortest path length is a path between two vertices (or nodes) in 
a graph such that the sum of the weights of its constituent edges is minimized.
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Measurements on graphs : shortest path length
In graph theory, the shortest path length is defined by the path between two vertices 
in a graph such that the sum of the weights of its constituent edges is minimized.

Where gi<->j is the shortest path that connects i and j. For a pair of paths that are 
disconnected dij is infinite. 
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Measurements on graphs : shortest path distance
An example of an algorithm to compute 
the shortest path distances in a graph is 
shown. 
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Measurements on graphs : betweenness centrality

Betweenness centrality is a measure of how “central” is a node within a graph, based 
on the shortest paths. For every pair of vertices in a connected graph, there exists at 
least one shortest path between the vertices such that either the number of edges that 
the path passes through (for unweighted graphs) or the sum of the weights of the 
edges (for weighted graphs) is minimized. The betweenness centrality of a vertex is 
the number of shortest paths that pass through the vertex.
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Measurements on graphs : betweenness centrality

The betweenness centrality of a vertex is the number of shortest paths that pass 
through the vertex.

Where ρhj is the number of shortest paths between h and j, and ρhj(i) is the number of 
shortest paths between h and j that pass through i.
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Measurements on graphs : modularity
Networks can be divided into modules, 
which represent different functional 
subnetworks. However, there are many 
different ways to define modules within a 
network and there is no optimal way for 
all types of networks. 
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Measurements on graphs : modularity

Modularity of the network (Newman, 2004), can be computed as 

where the network is fully subdivided into a set of nonoverlapping modules M, and 
euv is the proportion of edges that connect vertices in module u with vertices in 
module v.
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Measurements on graphs : motifs
Network motifs are recurrent and statistically 
significant subgraphs or patterns of a larger 
graph. Each of these sub-graphs, defined by a 
particular pattern of interactions between 
vertices, may reflect a framework in which 
particular functions are achieved efficiently. 
They have recently gathered much attention as 
a useful concept to uncover structural design 
principles of complex networks. Although 
network motifs may provide a deep insight 
into the network's functional abilities, their 
detection is computationally challenging.
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Measurements on graphs : motifs
For example, network triangles around a 
vertex i are defined as:

Which is a measurement of segregation in the 
network. 
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Measurements on graphs : motifs
Jh is the number of occurrences of a motif h in all subsets of the network 
(subnetworks). This number can be compared to the probability of motif to appear 
randomly, and respectively the z-score of a motif can be computed

where 〈Jrand,h〉 and σ Jrand,h are the respective mean and standard deviation for the 
number of occurrences of h motif in an ensemble of random networks. 
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Measurements on graphs: small world networks 
Small-worldness off a network has been quantified by a small-coefficient, σ , 
calculated by comparing clustering and path length of a given network to an 
equivalent random network with the same average degree

Effectively this measurement quantifies how “far” from random is a given network. 
However, it is highly influenced by the size of the network and therefore it is not 
necessary a reliable metric to characterize a network. See Collective dynamics of 
‘small-world’ networks, Watts & Strogatz 1998
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Measurements on graphs: small world networks 
Random rewiring: start with a ring of n vertices, each connected to its k nearest 
neighbours by undirected edges. (n = 20, k = 4). Choose a vertex and the edge that 
connects it to its nearest neighbour in a clockwise sense. With probability p, we 
reconnect this edge to a vertex chosen uniformly at random over the entire ring, 
considering each vertex in turn until one lap is completed.
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Measurements on graphs: small world networks 
Various types 
of Networks, 
Sole and 
Valverde 
(2004).
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Complex network measures of brain connectivity: Uses and 
interpretations

Rubinov and Sporns 2010

33



Complex network measures
Construction of brain networks from large scale 
anatomical and functional connectivity datasets. 
Structural networks are commonly extracted 
from histological (tract tracing) or neuroimaging 
(diffusion MRI) data. Functional networks are 
commonly extracted from neuroimaging (fMRI) 
or neurophysiological (EEG, MEG) data. For 
computational convenience, networks are 
commonly represented by their connectivity 
matrices, with rows and columns representing 
nodes and matrix entries representing links. To 
simplify analysis, networks are often reduced to 
a sparse binary undirected form, through 
thresholding, binarizing, and symmetrizing.
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Complex network measures
Anatomical, 
functional, and 
effective connectivity 
networks. Large-scale 
anatomical connection 
network of the 
macaque cortex, 
including the ventral 
and dorsal streams of 
visual cortex, as well as 
groups of 
somatosensory and 
somatomotor regions.
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Complex network measures

Key complex network measures .Measures of integration are based on shortest path lengths (green), while 
measures of segregation are often based on triangle counts (blue) but also include more sophisticated 
decomposition into modules (ovals). Measures of centrality may be based on node degree (red) or on the 
length and number of shortest paths between nodes. Hub nodes (black) often lie on a high number of shortest 
paths and consequently often have high betweenness centrality. Patterns of local connectivity are quantified by 
network motifs (yellow). 36



Complex network measures

Key complex network measures .Measures of integration are based on shortest path lengths (green), 
while measures of segregation are often based on triangle counts (blue) but also include more 
sophisticated decomposition into modules (ovals). Measures of centrality may be based on node 
degree (red) or on the length and number of shortest paths between nodes. Hub nodes (black) often 
lie on a high number of shortest paths and consequently often have high betweenness centrality. 
Patterns of local connectivity are quantified by network motifs (yellow). 37



Computational synthesis of cortical dendritic
morphologies

Kanari et al. 2022
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Computational synthesis of cortical dendritic morphologies
Neuronal morphologies provide the foundation for the electrical behavior of neurons, the 
connectomes they form, and the dynamical properties of the brain. Comprehensive neuron models 
are essential for defining cell types, discerning their functional roles, and investigating 
brain-disease-related dendritic alterations. However, a lack of understanding of the principles 
underlying neuron morphologies has hindered attempts to computationally synthesize 
morphologies for decades. We introduce a synthesis algorithm based on a topological descriptor of 
neurons, which enables the rapid digital reconstruction of entire brain regions from few reference 
cells. This topology-guided synthesis generates dendrites that are statistically similar to biological 
reconstructions in terms of morpho-electrical and connectivity properties and offers a significant 
opportunity to investigate the links between neuronal morphology and brain function across 
different spatiotemporal scales. Synthesized cortical networks based on structurally altered 
dendrites associated with diverse brain pathologies revealed principles linking branching properties 
to the structure of large-scale networks.
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Computational synthesis of cortical dendritic morphologies
Highlights

1) Topological synthesis generates healthy 
and diseased cortical dendrites

2) Synthesized dendrites are 
indistinguishable from biological 
reconstructions

3) Topological model enables the 
investigation of the functional roles of cell 
types

4) Links of branching properties and 
structure of large-scale networks are 
revealed
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Computational synthesis of cortical dendritic morphologies
Generalization of topological 
synthesis for varying cortical 
thickness. (A) Exemplar biological 
reconstructions of three layer 4 
pyramidal cell types: L4_TPC (gray), 
L4_UPC (deep blue), L4_SSC (light 
blue), and the corresponding 
persistence barcodes, used as synthesis 
input. (B) Scaling of input persistence 
barcodes and resulting synthesized 
dendrites ([1.0, 0.8, 0.6, 0.5] of original 
barcodes). The scaled (from 1.0 to 0.2) 
barcodes of synthesized L4_TPC 
apicals presented at the bottom.
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Computational synthesis of cortical dendritic morphologies
(C–E) Total dendritic length of layer 
4 cells, as a function of shrinkage 
factor for basal (bottom) and apical 
(top) dendrites compared with 
expected values of scaled biological 
lengths (black dashed, computed as 
scaling factor multiplied by total 
length of reconstructed dendrites) 
and synthesized (gray continuous) 
dendrites of L4_TPC (C), L4_UPC 
(D), and L4_SSC (E). Note that 
L4_SSC do not have apical dendrites 
even though they are excitatory cells, 
therefore only basal dendrite 
statistics are shown.
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Computational synthesis of cortical dendritic morphologies
Connectivity of synthesized and 
reconstructed networks. (A) The 
connectivity properties of a 
reconstructed microcircuit (Markram 
et al., 2015).  (B) The connectivity 
properties of a microcircuit of fully 
synthesized dendrites, and 
reconstructed axons.  (C) Difference 
between reconstructed and synthesized 
microcircuits. (1) The connectomes of 
the microcircuits grouped by m-type. 
(2) Connection probability. (3) 
Synapses per connection. 

43



Computational synthesis of cortical dendritic morphologies
Medical applications. (A–C) 
Connectivity of synthesized networks 
based on structural alterations of 
dendritic morphologies. Schematic 
representation and examples of layer 
5 synthesized pyramidal cells (A), in 
comparison with cut dendritic 
branches (B) (lengths above 10, 100, 
200, and 400 μm), and shrunk 
dendrites (C) (98%, 90%, 60%, and 
30%). Connectome (presented in 
subpanel 1) of each synthesized 
microcircuit: (A) synthesized, (B) cut 
branches of lengths above 400 μm, 
(C) shrunk dendrites 10%.
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Computational synthesis of cortical dendritic morphologies
(D) Total number of 
connections for alterations 
of type B (red) and C (blue) 
compared with synthesized 
network A (black).  (E) 
Topological analysis of 
corresponding networks; 
distribution of directed 
simplices for alterations of 
type B (red, top) and C 
(blue, bottom). 
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Computational synthesis of cortical dendritic morphologies
(F) Morphological characteristics and 
connectivity with respect to 
alterations of type B (top) and C 
(bottom). The main branches form 
the majority of connections (top) and 
larger dendritic extents (bottom) form 
more connections. Colormap 
corresponds to normalized number of 
connections: from maximum number 
of connections (3.5 × 108 in red) to 
minimum (107 in blue).
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Computational synthesis of cortical dendritic morphologies
Comparison of synthesis methods. 
Comparison of synthesized cells for 
different synthesis methods. A. 
Density and marginal projections of 
persistence diagrams for 
reconstructed cells (I), synthesized 
cells (II), synthesized without 
correlation of branching / termination 
(III), and synthesized without 
correlation between branching and 
bifurcation angles (IV). B. Examples 
for the same data. C. Respective 
persistence diagrams. 
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Computational synthesis of cortical dendritic morphologies
Morphological diversity. Comparison of 
dendrites from 44 reconstructed L4 TPC cells 
(in blue) to synthesized dendrites (based on 
subsets of increasing numbers of cells from 
the original population used as inputs: from 2 
to 15, red shades from lighter to darker). 
Comparison of path distance (A, direct input) 
and branch order (B, emergent property) for 
basal dendrites. Comparison of path distances 
(D, direct input) and radial distance (E, 
emergent property) for apical dendrites. The 
original distributions are well approximated 
by a subset of input cells (15 out of 44). 
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Computational synthesis of cortical dendritic morphologies
C. Average statistical 
(Kolmogorov-Smirnov) distance for 
numerous morphometrics, within 
reconstructed cells (in blue) and 
between reconstructed and 
synthesized cells (in red) as a 
function of increasing synthesis 
inputs. F. TMD based classification of 
three L4 PC types for reconstructed 
(top left, blue) and synthesized 
(bottom right, red) cells. 
Classification accuracy is same or 
higher for the synthesized population.
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Rich cell-type-specific network topology in neocortical
microcircuitry

Gal et al. 2017
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Rich cell-type-specific network topology in neocortical microcircuitry
Neuronal morphologies provide the foundation for the electrical behavior of neurons, the 
connectomes they form, and the dynamical properties of the brain. Comprehensive neuron models 
are essential for defining cell types, discerning their functional roles, and investigating 
brain-disease-related dendritic alterations. However, a lack of understanding of the principles 
underlying neuron morphologies has hindered attempts to computationally synthesize 
morphologies for decades. We introduce a synthesis algorithm based on a topological descriptor of 
neurons, which enables the rapid digital reconstruction of entire brain regions from few reference 
cells. This topology-guided synthesis generates dendrites that are statistically similar to biological 
reconstructions in terms of morpho-electrical and connectivity properties and offers a significant 
opportunity to investigate the links between neuronal morphology and brain function across 
different spatiotemporal scales. Synthesized cortical networks based on structurally altered 
dendrites associated with diverse brain pathologies revealed principles linking branching properties 
to the structure of large-scale networks.
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Rich cell-type-specific network topology in neocortical microcircuitry
In silico model of neocortical microcircuitry 
(NMC) (a) Left: blue stripe in rat cartoon 
indicates the sagittal plane of the neocortex used 
to obtain somatosensory slices; black lines in 
brain image indicate location of the modeled 
NMC. Right: dimensions and number of cells per 
layer in the seven instances of the model (mean ± 
s.d., N = 7). The total number of neurons in this 
circuit is depicted at the top. (b) Example of 
reconstructions of two morphological cell types 
(layer (L) 2/3 ChC (chandelier) inhibitory 
interneuron, left, and L5 TTPC2 (thick-tufted 
pyramidal) neuron, right) out of the 55 neuron 
types used in this study. 
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Rich cell-type-specific network topology in neocortical microcircuitry
Cellular-level E/I balance is emphasized when 
considering synaptic conductance. (a) The 
percentage of E (arrow head) and I (circular 
head) pathways in terms of the total number 
of connections (7,824,436 ± 104,092). Line 
thickness illustrates the percentage of 
connections in the corresponding pathway. 
(b) Incoming E/I connections for excitatory 
(left, nE = 26,567) and inhibitory (right, nI = 
4,779) cells. (d–i) Total number of synaptic 
contacts (synapses: 36,471,080 ± 554,503) and 
(g–h) total peak synaptic conductance (30.74 
± 0.47 mS). Note the excess excitation vs. 
inhibition in all three cases. 
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Rich cell-type-specific network topology in neocortical microcircuitry
In silico model of neocortical microcircuitry (NMC) 
(a) Left: blue stripe in rat cartoon indicates the sagittal 
planeIn-hub and out-hub neurons belonging to a small 
subset of cell types and forming a rich club. (a) 
Long-tail distributions of in-degrees (number of 
presynaptic cells per neuron) in the seven NMC 
instances. The top 157 (0.5%) in-degrees (in-hubs) arise 
primarily from only four cell types residing in deep 
layers (pie chart). (c) Within the central NMC, a 
neuron’s inclusive in-degree (when taking the extrinsic 
connections from surrounding NMCs into account) is 
correlated with its total dendritic length. (d) A 
neuron’s inclusive out-degree is less correlated with its 
total axonal length. P values of Pearson correlations 
coefficients, r, are both < 0.001 (N = 31,346 neurons). 
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Rich cell-type-specific network topology in neocortical microcircuitry
In silico model of neocortical 
microcircuitry (NMC) (b) Long-tail 
distribution of out-degrees (number of 
postsynaptic cells per neuron); the top 
157 out-degrees (out-hubs) arise from 
multiple cell types, the majority of 
which are pyramidal and Martinotti 
cells from intermediate layers (pie 
chart). (e,f) As in c and d but for 
thick-tufted pyramidal neurons from 
layer 5 (L5-TTPC1) only (N = 2,403). 
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Rich cell-type-specific network topology in neocortical microcircuitry

(g) Correlations between inclusive in-degrees and total dendritic lengths for all 55 cell types. (h) 
Correlations between inclusive out-degrees and total axonal lengths for all 55 cell types. (i) Ratios 
of the number of connections among NMC neurons whose total degree (in-degree + out-degree) > 
d to the number of connections expected from random networks with matching degree sequence. 
This ratio is > 1 for high-degree neurons (P < 0.001, Monte Carlo), reflecting the presence of a rich 
club of the neocortex used to obtain somatosensory slices.
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Rich cell-type-specific network topology in neocortical microcircuitry
Local wiring-specificities within the NMC show 
overrepresented three-neuron network motifs. 
(a) Significance level (z-score) for all 13 triads 
for all cells in the NMC with respect to three 
types of random networks (Monte Carlo with 
N = 100. ER random networks with matching 
numbers of overall connections, light gray with 
squares; ER with additional matching of 
reciprocal connections, dark gray with 
diamonds; dd-matched random networks, black 
with stars. (b) Normalized z-scores for all 13 
triads in both excitatory (black) and inhibitory 
(gray) subnetworks with respect to the 
dd-matched random networks (Monte Carlo 
with N = 100). 
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Rich cell-type-specific network topology in neocortical microcircuitry
(c,d) As in b but for cell- type-specific 
subnetworks (c) of all 13 excitatory neurons 
(each layer is depicted by a different color) 
and for (d) the 11 largest inhibitory cell type 
populations (total number of cells > 150 cells 
per type). Color codes correspond to specific 
layers, as in Figure 4. Red motifs in c were 
found to be overrepresented in experiments 
performed on L5–L5 thick-tufted pyramidal 
cells by Perin et al.16, and green motifs in d 
were found in cerebellar inhibitory cells by 
Rieubland et al.31. Both of these motifs were 
found in this study to be common to all 
excitatory and inhibitory cell types. Monte 
Carlo with N = 1,000 was used in c and d.
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Questions?
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