Graphs and Networks



Graph analysis



Graphs

Graphs are widely used to model complex systems and analyze data in social
networks, biology, computer science. However, characterizing graph complexity is a
challenging task as it is a subjective measure that can vary depending on the context
and the observer. There is no universal metric for graph complexity, and different
measures may emphasize different aspects of the graph’s properties.




Graphs

Graphs are typically high-dimensional
objects, which are hard to visualize
and analyze. In addition, they can
exhibit emergent properties that arise
from the interactions between their
nodes, which can be difficult to
predict. Therefore, characterizing a
graph requires a better understanding
of the underlying structure and
properties of the graph, and there is no
unique approach to this problem.

Binary graph (Undirected)

Binary graph (Directed)

Weighted graph (Undirected)

Weighted graph (Directed)



Graphs

Graphs can be described by their
connectivity matrices.

There are several different formats for
connectivity matrices, as the graphs
can be undirected, directed or

weighted.

Binary graph (Undirected)

Binary graph (Directed)

Weighted graph (Undirected)

Weighted graph (Directed)



Connectivity matrices: adjacency matrix

For undirected graphs, the adjacency
matrix is symmetric and it represents the
connections between vertices i, j:

A(i,j) =1, if (i,j) is an edge
0, if (i,j) not an edge
If the graph has weights then the

adjacency matrix is respectively:

A(iyj) = W, if (i,j) is an edge
0, if (i,j) not an edge



Connectivity matrices: adjacency matrix

A

For directed graphs, the adjacency matrix
is not necessarily symmetric and it
represents the connections between
vertices1-> j:

A(ij) =1, if (i->j) is an edge

0, if (i -> j) not an edge

0000 0100 001 1
0000 0010 1010
(3->2) is not then 000 1 000 I 010 1
1100 1000 1100

For example if (2->3) is an edge but

A(2,3) =1while A(3,2) =0



Connectivity matrices: incidence matrix

For undirected graphs, the incidence
matrix is an m x n matrix that
represents the relationship between
vertices and edges

I(ei,vj) =1, if e_is participating in v,

0, if e. is not in v,



Connectivity matrices: incidence matrix

For directed graphs, the incidence matrix
is an m x n matrix that represents the
relationship between vertices and edges

I(ei,vj) =1, if e. is the first element in v,
-1, if e. is the second element in v,

0, if e. is not in v,




Connectivity matrices: incidence matrix

For example, for directed graphs the sum of each column is 0 (for undirected it is 2)
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Measurements on graphs : degree of vertices

The degree of a vertex describes the
number of edges it participates in.

Given a graph G(V, E), the degree of a
vertex v. is the sum of all its edges:

The degree can also be computed
efficiently from the incidence matrix. For
undirected graphs the degree of a vertex
is given by the sum of its rows.
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Measurements on graphs : degree of vertices

The sum of all degrees in an unweighted
graph G(V, E) is twice the number of
edges in the graph:

) deg(v) = 2|E|
veV
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Measurements on graphs : edge length

Edge length is meaningful in weighted graphs
and the length usually refers to the weights of
the edges. The edge length distribution is a
measure of how the lengths are spread out
across the range of possible edge lengths and it ed ge
can provide insights into the structure of a

lengths

graph, such as the presence of clusters or hubs.
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Measurements on graphs : clustering coefficient

The local clustering coefficient of a vertex (node) in a graph quantifies how close
its neighbours are to being a clique (complete graph).

For a graph G=(V, E) the neighbourhood N. for a vertex v_ is defined as its
immediately connected neighbours as follows:
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Measurements on graphs : clustering coefficient

The local clustering coefficient C. of a vertex v. is defined as the fraction of the
number of connections t. between the vertices within its neighbourhood N. divided
by the number of all possible connections that could exist between them. For a
directed graph, because e, not equal to e, for each neighbourhood N. with k.
neighbors there are k. * (k. — 1) possible connections that could exist among them.
Thus, the local clustering coefficient for directed graphs is given as
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Measurements on graphs : clustering coefficient

For a undirected graph, because e, is equal to e, for each neighbourhood N. with k.

neighbors there are k. * (k. — 1) / 2 possible connections that could exist among them.

Thus, the local clustering coefficient for undirected graphs is given as
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Measurements on graphs : clustering coefficient

For an undirected network, in which N is the set of all vertices in the network,

and n is the number of vertices, the clustering coefficient is
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Measurements on graphs : clustering coefficient

The local clustering coefficient of a vertex (node) in a graph quantifies how close its
neighbours are to being a clique (complete graph). High clustering coefficient
indicates larger number of connections between neighbors, low indicates small
number of connections

low clustering
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high clustering
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Measurements on graphs : clustering coefficient

The local clustering coefficient of a vertex (node) in a graph
quantifies how close its neighbours are to being a clique
(complete graph).

For clustering coefficient 1 the neighborhood is a clique

For a clustering coefficient 0 no neighbors are connected
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Measurements on graphs : shortest path length

In graph theory, the shortest path length is a path between two vertices (or nodes) in
a graph such that the sum of the weights of its constituent edges is minimized.

Shortest path distance
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Measurements on graphs : shortest path length

In graph theory, the shortest path length is defined by the path between two vertices
in a graph such that the sum of the weights of its constituent edges is minimized.

dij - Z Ayy-

duv Sgjesj

Where 8ic; 18 the shortest path that connects i and j. For a pair of paths that are
disconnected dij is infinite.
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Measurements on graphs : shortest path distance

An example of an algorithm to compute
the shortest path distances in a graph is
shown.
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Measurements on graphs : betweenness centrality

Betweenness centrality is a measure of how “central” is a node within a graph, based
on the shortest paths. For every pair of vertices in a connected graph, there exists at
least one shortest path between the vertices such that either the number of edges that
the path passes through (for unweighted graphs) or the sum of the weights of the
edges (for weighted graphs) is minimized. The betweenness centrality of a vertex is
the number of shortest paths that pass through the vertex.
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Measurements on graphs : betweenness centrality

The betweenness centrality of a vertex is the number of shortest paths that pass
through the vertex.

1 S oyl)

(n—1)(n—2) hjeNn Wi

h#j.h#i.j#1,

Where Py; 1S the number of shortest paths between h and j, and phj(i) is the number of
shortest paths between h and j that pass through i.
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Measurements on graphs : modularity

Networks can be divided into modules,
which represent different functional
subnetworks. However, there are many
different ways to define modules within a
network and there is no optimal way for
all types of networks.
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Measurements on graphs : modularity

Modularity of the network (Newman, 2004), can be computed as

. |i uu _(Z euv) ]
ueM veM

where the network is fully subdivided into a set of nonoverlapping modules M, and
e . is the proportion of edges that connect vertices in module u with vertices in

module v.
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Measurements on graphs : motifs

Network motifs are recurrent and statistically
significant subgraphs or patterns of a larger
graph. Each of these sub-graphs, defined by a
particular pattern of interactions between
vertices, may reflect a framework in which
particular functions are achieved efficiently.
They have recently gathered much attention as
a useful concept to uncover structural design
principles of complex networks. Although
network motifs may provide a deep insight
into the network's functional abilities, their
detection is computationally challenging.

Motifs of triads
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Measurements on graphs : motifs

For example, network triangles around a
vertex i are defined as:

1
t; = §Z ;i Ajp, -

J.heN

Which is a measurement of segregation in the
network.

Motifs of triads
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Measurements on graphs : motifs

J, is the number of occurrences of a motif h in all subsets of the network
(subnetworks). This number can be compared to the probability of motif to appear
randomly, and respectively the z-score of a motif can be computed

z, = Jh - <]rand.h>

()'.]rand.h

where (Jrand,h) and o /™% are the respective mean and standard deviation for the
number of occurrences of h motif in an ensemble of random networks.
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Measurements on graphs: small world networks

Small-worldness off a network has been quantified by a small-coefficient, ¢,
calculated by comparing clustering and path length of a given network to an
equivalent random network with the same average degree

Effectively this measurement quantifies how “far” from random is a given network.
However, it is highly influenced by the size of the network and therefore it is not
necessary a reliable metric to characterize a network. See Collective dynamics of
‘small-world” networks, Watts & Strogatz 1998
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Measurements on graphs: small world networks

Random rewiring: start with a ring of n vertices, each connected to its k nearest
neighbours by undirected edges. (n = 20, k = 4). Choose a vertex and the edge that
connects it to its nearest neighbour in a clockwise sense. With probability p, we
reconnect this edge to a vertex chosen uniformly at random over the entire ring,
considering each vertex in turn until one lap is completed.

Regular Small-world Random

Increasing randomness

31



Measurements on graphs: small world networks

Various types
of Networks,
Sole and
Valverde
(2004).

SF-like networks
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mesh tree

FIG. 3 A zoo of complex networks. In this qualitative space, three relevant characteristics are included:
randomness, heterogeneity and modularity. The first introduces the amount of randomness involved in the
process of network’s building. The second measures how diverse is the link distribution and the third would
measure how modular is the architecture. The position of different examples are only a visual guide. The
domain of highly heterogeneous, random hierarchical networks appears much more occupied than others.

Scale-free like networks belong to this domain.
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Complex network measures of brain connectivity: Uses and
interpretations

Rubinov and Sporns 2010
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Complex network measures

Construction of brain networks from large scale
anatomical and functional connectivity datasets.
Structural networks are commonly extracted
from histological (tract tracing) or neuroimaging
(diffusion MRI) data. Functional networks are
commonly extracted from neuroimaging (fMRI)
or neurophysiological (EEG, MEG) data. For
computational convenience, networks are
commonly represented by their connectivity
matrices, with rows and columns representing
nodes and matrix entries representing links. To
simplify analysis, networks are often reduced to
a sparse binary undirected form, through
thresholding, binarizing, and symmetrizing.

weighted directed networks
structural datasets: tract tracing

effective datasets: inference of causality

from functional data

symmetrize

undirected networks

weighted undirected networks
structural datasets: diffusion MRI, structural MRI
functional datasets: functional MRI, MEG, EEG

e




Complex network measures

A Anatomical connectivity (binary directed network) B Functional connectivity

AnatOmicaL L i (weighted undirected network)

functional, and : -
effective connectivity ’ R
networks. Large-scale F| modiiar svctne
anatomical connection
network of the
macaque corfex,
including the ventral
and dorsal streams of
visual cortex, as well as
groups of

somatosensory and
somatomotor regions.

threshold

Cc

Effective connectivity
(weighted directed network)

threshold
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Complex network measures

modules hub nodes
modular structure betweenness centrality
modularity other centralities

shortest path triangle motif degree

characteristic path length clustering coefficient anatomical motifs degree centrality
global efficiency transitivity functional motifs participation coefficien
closeness centrality degree distribution

Key complex network measures .Measures of integration are based on shortest path lengths (green), while
measures of segregation are often based on triangle counts (blue) but also include more sophisticated
decomposition into modules (ovals). Measures of centrality may be based on node degree (red) or on the
length and number of shortest paths between nodes. Hub nodes (black) often lie on a high number of shortest
paths and consequently often have high betweenness centrality. Patterns of local connectivity are quantified by
network motifs (yellow).
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Complex network measures

modules hub nodes
modular structure betweenness centrality
modularity other centralities

shortest path triangle motif degree

characteristic path length clustering coefficient anatomical motifs degree centrality
global efficiency transitivity functional motifs participation coefficien
closeness centrality degree distribution

Key complex network measures .Measures of integration are based on shortest path lengths (green),
while measures of segregation are often based on triangle counts (blue) but also include more
sophisticated decomposition into modules (ovals). Measures of centrality may be based on node

degree (red) or on the length and number of shortest paths between nodes. Hub nodes (black) often

lie on a high number of shortest paths and consequently often have high betweenness centrality.
Patterns of local connectivity are quantified by network motifs (yellow). 37



Computational synthesis of cortical dendritic
morphologies

Kanari et al. 2022
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Computational synthesis of cortical dendritic morphologies

Neuronal morphologies provide the foundation for the electrical behavior of neurons, the
connectomes they form, and the dynamical properties of the brain. Comprehensive neuron models
are essential for defining cell types, discerning their functional roles, and investigating
brain-disease-related dendritic alterations. However, a lack of understanding of the principles
underlying neuron morphologies has hindered attempts to computationally synthesize
morphologies for decades. We introduce a synthesis algorithm based on a topological descriptor of
neurons, which enables the rapid digital reconstruction of entire brain regions from few reference
cells. This topology-guided synthesis generates dendrites that are statistically similar to biological
reconstructions in terms of morpho-electrical and connectivity properties and offers a significant
opportunity to investigate the links between neuronal morphology and brain function across
different spatiotemporal scales. Synthesized cortical networks based on structurally altered
dendrites associated with diverse brain pathologies revealed principles linking branching properties
to the structure of large-scale networks.
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Computational synthesis of cortical dendritic morphologies

Reconstructed
pyramidal cells

Synthesis method

nghllghts Biological

reconstruction

1) TOpOIOgical SyntheSiS generates healthy \\&/;/I/Extracttopological
and diseased cortical dendrites hereode

2) Synthesized dendrites are

indistinguishable from biological Symesized neron
reconstructions

3) Topological model enables the L
investigation of the functional roles of cell S
types

4) Links of branching properties and
structure of large-scale networks are
revealed

synthesized column

Synthesized Column of synthesized
pyramidal cells dendrites

Connectome of

N L1 L3 M LS
N L2 L4 . L6 40




Computational synthesis of cortical dendritic morphologies

Generalization of topological
synthesis for varying cortical
thickness. (A) Exemplar biological
reconstructions of three layer 4
pyramidal cell types: L4_TPC (gray),
L4_UPC (deep blue), L4_SSC (light
blue), and the corresponding
persistence barcodes, used as synthesis
input. (B) Scaling of input persistence
barcodes and resulting synthesized
dendrites ([1.0, 0.8, 0.6, 0.5] of original
barcodes). The scaled (from 1.0 to 0.2)
barcodes of synthesized L4_TPC
apicals presented at the bottom.

A Reconstructed dendrites

5|
0 -

0 200 400 600
Path distance from soma (um)

0 200 400 600 0 200 400 600

C  Scaling of total dendritic length (L4 TPC) D  Scaling of total dendritic length (L4 _UPC)

Reconstructed cells
Synthesized cells

Reconstructed cells
Synthesized cells

Apical dendrites " Apical dendrites_+**

Total length (u

0.2 0.4 0.6

Scaling factor Scaling factor

Synthesized dendrites according to cortical thickness

E Scaling of total dendritic length (L4_SSC)

Reconstructed cells
Synthesized cells

Total length (um)

0.2 0.4 0.6 0.8 1.0
Scaling factor
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Computational synthesis of cortical dendritic morphologies

(C-E) Total dendritic length of layer
4 cells, as a function of shrinkage
factor for basal (bottom) and apical
(top) dendrites compared with
expected values of scaled biological
lengths (black dashed, computed as
scaling factor multiplied by total
length of reconstructed dendrites)
and synthesized (gray continuous)
dendrites of L4_TPC (C), L4_UPC
(D), and L4_SSC (E). Note that
L4_SSC do not have apical dendrites
even though they are excitatory cells,
therefore only basal dendrite
statistics are shown.

A Reconstructed dendrites

5|
0 -

0 200 400 600
Path distance from soma (um)

0 z
0 200 400 600 0 200 400 600

C  Scaling of total dendritic length (L4 TPC) D  Scaling of total dendritic length (L4 _UPC)

Reconstructed cells
Synthesized cells

Reconstructed cells
Synthesized cells

Apical dendrites " Apical dendrites_+**

Total length (u

0.2 0.4 0.6

Scaling factor Scaling factor

Synthesized dendrites according to cortical thickness

E Scaling of total dendritic length (L4_SSC)

Reconstructed cells
Synthesized cells

Total length (um)

0.2 0.4 0.6 0.8 1.0
Scaling factor
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Computational synthesis of cortical dendritic morphologies

A . . B . . .. C .
Reconstructed microcircuit Synthesized microcircuit Difference between

Connectivity of synthesized and
reconstructed networks. (A) The
connectivity properties of a
reconstructed microcircuit (Markram
et al., 2015). (B) The connectivity
properties of a microcircuit of fully
synthesized dendrites, and
reconstructed axons. (C) Difference
between reconstructed and synthesized
microcircuits. (1) The connectomes of
the microcircuits grouped by m-type.
(2) Connection probability. (3)
Synapses per connection.

Presynaptic

Presynaptic

reconstructed - synthesized

1. Connectome: total number of synapses between pre and post synaptic m-types

Postsynaptic

3. Number of synapses
per connection

Postsynaptic

Postsynaptic

P
a
I
72
4
o

Presynaptic

Postsynaptic

Postsynaptic

43



Computational synthesis of cortical dendritic morphologies

Medical applications. (A-C)
Connectivity of synthesized networks
based on structural alterations of
dendritic morphologies. Schematic
representation and examples of layer
5 synthesized pyramidal cells (A), in
comparison with cut dendritic
branches (B) (lengths above 10, 100,
200, and 400 pm), and shrunk
dendrites (C) (98%, 90%, 60%, and
30%). Connectome (presented in
subpanel 1) of each synthesized
microcircuit: (A) synthesized, (B) cut
branches of lengths above 400 pm,
(C) shrunk dendrites 10%.

A Synthesized dendrites

A1 Connectome

B Dendrites - cut branches

B1 connectome

C  Dendrites - shrunk branches
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Computational synthesis of cortical dendritic morphologies

D cConnectivity statistics E  Topology analysis
(D) Total number of

Connectivity of cut dendritic branches Distribution of simplices for cut dendrites

connections for alterations
of type B (red) and C (blue)
compared with synthesized

network A (black). (E) Memoides | Smisaneskn

TOPOIOglcal analySIS Of Connectivity of shrunk dendritic branches Distribution of simplices for shrunk dendrites
corresponding networks;

Cut branches 500
Cut branches 400
Cut branches 300

— Cut branches 10

0
S
i) %)
° 0]
5 °
=
=
<} £
2 7
S s
o 3
Q Ee
£ =
= =
= =2
o]
]
'_

Shrunk 10%

distribution of directed
simplices for alterations of = Sk s
type B (red, top) and C

(blue, bottom).

0 20 40 60 80 100 012 3 456
Percentage of lost total dendritic lengths Simplex dimension

Total number of connections
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Computational synthesis of cortical dendritic morphologies

F cConnectivity vs. morphology

(F) Morphological characteristics and

Persistence diagram

connectivity with respect to

alterations of type B (top) and C %g
(bottom). The main branches form %é
the majority of connections (top) and : o. :Oo T
larger dendritic extents (bottom) form P W

Persistence diagram

more connections. Colormap
corresponds to normalized number of
connections: from maximum number

Start radial
distance from soma

of connections (3.5 x 108 in red) to

5 o 0 0 500 1,0001,500
minimum (107 in blue). —

distance from soma




Computational synthesis of cortical dendritic morphologies

C. Persistence diagram

A. Branchmg densites B I. Biological reconstructions

Comparison of synthesis methods.

Comparison of synthesized cells for // ‘

different synthesis methods. A.

Density and marginal projections of ey I Synthesized cels
persistence diagrams for /

reconstructed cells (I), synthesized s’ L

cells (II), synthesized without b Se
correlation of branching / termination —_—

(III), and synthesized without " L

correlation between branching and
bifurcation angles (IV). B. Examples
for the same data. C. Respective
persistence diagrams.

IV. Marginal bifurcation angles
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Computational synthesis of cortical dendritic morphologies

Morphological diversity. Comparison of A
Basal dendrite's path distances
dendrites from 44 reconstructed L4 TPC cells | ———

— Synthesized (# input 15)
-~ Synthesized (# input 10)

(in blue) to synthesized dendrites (based on go. Seses ot
Synthesized (i input 5
Synthesized (# input 4)

subsets of increasing numbers of cells from §000s| Synsid ¢t 9

Synthesized (# input 2)

the original population used as inputs: from 2
to 15, red shades from lighter to darker). R

Section path distances (um)

Comparison of path distance (A, direct input)

D Basal dendrites branch orders

and branch order (B, emergent property) for 5
e i€
basal dendrites. Comparison of path distances g 10
< 08
(D, direct input) and radial distance (E, § oe
: : g o4
emergent property) for apical dendrites. The § oz|
original distributions are well approximated v 6 8 01

Section branch orders

by a subset of input cells (15 out of 44).

B Apical dendrite's path distances

Proportion of sections

m

Proportion of sections

0.0035
0.0030
0.0025
0.0020
0.0015
0.0010
0.0005
0.0000

-200 0 200 400 600 8001,000 1,200
Section path distances (um)

Apical dendrite's radial distances

-200 O 200 400 600 8001,000 1,200
Section radial distances (um)
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Computational synthesis of cortical dendritic morphologies

C. Average statistical
(Kolmogorov-Smirnov) distance for
numerous morphometrics, within
reconstructed cells (in blue) and
between reconstructed and
synthesized cells (in red) as a
function of increasing synthesis
inputs. F. TMD based classification of
three L4 PC types for reconstructed
(top left, blue) and synthesized
(bottom right, red) cells.
Classification accuracy is same or

higher for the synthesized population.

C Morphological statistical distances
0.5 Synthesized basal dendrites
—— Synthesized apical dendrites
== Reconstructed basal dendrites
-~ — Reconstructed apical dendrites

KS - average distances
© o o
N w B

o

0 10 20 30 40
Number of cells

F Reproduce classification of L4-PC

REC
1.0
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Rich cell-type-specific network topology in neocortical
microcircuitry

Gal et al. 201/
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Rich cell-type-specific network topology in neocortical microcircuitry

Neuronal morphologies provide the foundation for the electrical behavior of neurons, the
connectomes they form, and the dynamical properties of the brain. Comprehensive neuron models
are essential for defining cell types, discerning their functional roles, and investigating
brain-disease-related dendritic alterations. However, a lack of understanding of the principles
underlying neuron morphologies has hindered attempts to computationally synthesize
morphologies for decades. We introduce a synthesis algorithm based on a topological descriptor of
neurons, which enables the rapid digital reconstruction of entire brain regions from few reference
cells. This topology-guided synthesis generates dendrites that are statistically similar to biological
reconstructions in terms of morpho-electrical and connectivity properties and offers a significant
opportunity to investigate the links between neuronal morphology and brain function across
different spatiotemporal scales. Synthesized cortical networks based on structurally altered
dendrites associated with diverse brain pathologies revealed principles linking branching properties
to the structure of large-scale networks.
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Rich cell-type-specific network topology in neocortical microcircuitry

In silico model of neocortical microcircuitry i
(NMC) (a) Left: blue stripe in rat cartoon

indicates the sagittal plane of the neocortex used
to obtain somatosensory slices; black lines in
brain image indicate location of the modeled
NMC. Right: dimensions and number of cells per
layer in the seven instances of the model (mean *
s.d., N = 7). The total number of neurons in this
circuit is depicted at the top. (b) Example of
reconstructions of two morphological cell types
(layer (L) 2/3 ChC (chandelier) inhibitory
interneuron, left, and L5 TTPC2 (thick-tufted
pyramidal) neuron, right) out of the 55 neuron g .78
types used in this study. Chandelier el

(from layer 2/3)

A\
£/ Y

L112/3L4 L5 L6
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Rich cell-type-specific network topology in neocortical microcircuitry

Cellular-level E/I balance is emphasized when
considering synaptic conductance. (a) The
percentage of E (arrow head) and I (circular
head) pathways in terms of the total number
of connections (7,824,436 + 104,092). Line
thickness illustrates the percentage of
connections in the corresponding pathway.
(b) Incoming E/I connections for excitatory o° 0@
(left, nE = 26,567) and inhibitory (right, nl =
4,779) cells. (d—i) Total number of synaptic B R T
contacts (synapses: 36,471,080 + 554,503) and

(g—h) total peak synaptic conductance (30.74
+ 047 mS). Note the excess excitation vs.
inhibition in all three cases.

Conductance (nS)

O, &
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Rich cell-type-specific network topology in neocortical microcircuitry

In silico model of neocortical microcircuitry (NMC)
(a) Left: blue stripe in rat cartoon indicates the sagittal In-hubs (836-1,010)

planeln-hub and out-hub neurons belonging to a small L5-TTRCH .
subset of cell types and forming a rich club. (a) b
Ls_Bg L4-PC (1)

Long-tail distributions of in-degrees (number of
presynaptic cells per neuron) in the seven NMC ot s
instances. The top 157 (0.5%) in-degrees (in-hubs) arise M i

200 300 400 500 600 700 800 900 1,000
primarily from only four cell types residing in deep In-degree
layers (pie chart). (c) Within the central NMC, a
neuron’s inclusive in-degree (when taking the extrinsic
connections from surrounding NMCs into account) is
correlated with its total dendritic length. (d) A
neuron’s inclusive out-degree is less correlated with its
total axonal length. P values of Pearson correlations

coefficients, r, are both < 0.001 (N = 31,346 neurons). 500 1,000 1,500 500 1,000 1,500

Inclusive in-degree Inclusive out-degree

Probability

c

Total dendritic length (um)
Total axonal length (um)
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Rich cell-type-specific network topology in neocortical microcircuitry

In silico model of mneocortical
microcircuitry (NMC) (b) Long-tail
distribution of out-degrees (number of
postsynaptic cells per neuron); the top
157 out-degrees (out-hubs) arise from ! Mean =245.62

100 200 300 400 500 600

multiple cell types, the majority of Oudegree

f

which are pyramidal and Martinotti s " "

Z /
L5-TTPC1 sl L5-TTPC1
=

cells from intermediate layers (pie e

chart). (e,f) As in ¢ and d but for
thick-tufted pyramidal neurons from
layerS (LS—TTPCI) Ol’lly (N=2,403) ° 500 1,000 1500 % 500 1,00

Inclusive in-degree Inclusive out-degree

Total dendiitic length (pm)
Total axonal length (um)
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Rich cell-type-specific network topology in neocortical microcircuitry

Out-degree axon correlation =3
Rich-club ratio
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(g) Correlations between inclusive in-degrees and total dendritic lengths for all 55 cell types. (h)
Correlations between inclusive out-degrees and total axonal lengths for all 55 cell types. (i) Ratios
of the number of connections among NMC neurons whose total degree (in-degree + out-degree) >
d to the number of connections expected from random networks with matching degree sequence.
This ratio is > 1 for high-degree neurons (P < 0.001, Monte Carlo), reflecting the presence of a rich
club of the neocortex used to obtain somatosensory slices.
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Rich cell-type-specific network topology in neocortical microcircuitry

Local wiring-specificities within the NMC show 10?
— ER

overrepresented three-neuron network motifs. —0— EFl wilh rediprocily
(a) Significance level (z-score) for all 13 triads i

for all cells in the NMC with respect to three
types of random networks (Monte Carlo with
N = 100. ER random networks with matching S % % i b 6 5 8 B b s
numbers of overall connections, light gray with t t AANAQAAARAAANLALDD
squares; ER with additional matching of
reciprocal connections, dark gray with
diamonds; dd-matched random networks, black
with stars. (b) Normalized z-scores for all 13
triads in both excitatory (black) and inhibitory
(gray) subnetworks with respect to the : 3 4 5 6 7 8 9 10 11 12 13

dd-matched random networks (Monte Carlo td /\ /\ ATAT AT AVAY S VA VATATATA]
with N =100).
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Rich cell-type-specific network topology in neocortical microcircuitry

(c,d) As in b but for cell- type-specific
subnetworks (c) of all 13 excitatory neurons
(each layer is depicted by a different color)
and for (d) the 11 largest inhibitory cell type
populations (total number of cells > 150 cells v
per type). Color codes correspond to specific : : S e B
layers, as in Figure 4. Red motifs in c were t 4 /'\/"\ /\. é f\ J\A f\&[_:\ AT AT S
found to be overrepresented in experiments
performed on L5-L5 thick-tufted pyramidal
cells by Perin et al.16, and green motifs in d
were found in cerebellar inhibitory cells by
Rieubland et al.31. Both of these motifs were
found in this study to be common to all g

excitatory and inhibitory cell types. Monte ) /\ f\ f\
Carlo with N = 1,000 was used in c and d. J /\ A & A & APATATATA
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Questions?
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