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Impact of Active Dendrites and Structural
Plasticity on the Memory Capacity
of Neural Tissue

abstract synaptic weights of connectionist theory and
the physical substrate for long-term learning and mem-
ory in the brain. First, a spate of recent experiments
indicates that the efficacy of synaptic transmission at
cortical synapses can undergo substantial fluctuations
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up (facilitation) or down (depression), or both, during
brief trains of synaptic stimulation, and that these dy-Summary
namics are characteristic of a particular synapse type
(Thomson et al., 1993; Markram and Tsodyks, 1996; Va-We consider the combined effects of active dendrites
rela et al., 1997; Reyes et al., 1998; Hempel et al., 2000).and structural plasticity on the storage capacity of
Short-term synaptic dynamics of this kind are inconsis-neural tissue. We compare capacity for two different
tent with the conventional connectionist assumption ofmodes of dendritic integration: (1) linear, where synap-
stable, high-resolution synaptic weight values as thetic inputs are summed across the entire dendritic
physical substrate for long-term memory. The conven-arbor, and (2) nonlinear, where each dendritic com-
tional notion could perhaps be rescued by assumingpartment functions as a separately thresholded neu-
that long-term memories are encoded in synaptic weightron-like summing unit. We calculate much larger stor-
values averaged over longer timescales. Nevertheless,age capacities for cells with nonlinear subunits and
to the extent that short-term synaptic dynamics are ashow that this capacity is accessible to a structural
pervasive phenomenon in vivo, involving substantiallearning rule that combines random synapse forma-
changes in synaptic efficacy from moment to momenttion with activity-dependent stabilization/elimination.
based on the recent activation history of the synapse,In a departure from the common view that memories
the straightforward mapping of stable numerical weightsare encoded in the overall connection strengths be-
from a connectionist learning system onto synapses intween neurons, our results suggest that long-term in-
the brain becomes more strained (Liaw and Berger,formation storage in neural tissue could reside primar-
1996; Abbott et al., 1997; Maass and Zador, 1999).ily in the selective addressing of synaptic contacts

Second, a recent experimental study of long-term po-onto dendritic subunits.
tentiation (LTP) in the hippocampus—a region known
to participate in the formation of explicit memories—Introduction
suggests that excitatory synapses may exist in only a
small number of long-term stable states, where the con-Both physiological evidence and connectionist theory
tinuous grading of synaptic strength seen in standardseem to support the notion that in the brain learning
measures of LTP may exist only in the average over ainvolves modifying the strengths of connections be-
large population of two-state synapses with randomlytween neurons. In the physiological realm, various forms
staggered thresholds for learning (Petersen et al., 1998).of long-term synaptic plasticity have been identified,
According to conventional connectionist notions, themost notably long-term potentiation (LTP) and depres-
possibility that individual synapses hold only one or twosion (LTD) (Bliss and Collingridge, 1993; Bear and Abra-
bits of long-term state information would seem to haveham, 1996; Mainen, 1999; Lüscher et al., 2000). In the
serious implications for the storage capacity of neuraltheoretical realm, the notion that synaptic weights are
tissue. The impact of this limitation might be lessenedthe principal modifiable parameters available for learn-
if multiple synapses could be used to achieve finer grad-

ing is one of the central tenets of “connectionist” compu-
ing of connection strength between neurons. However,

tation (Hebb, 1949; Rosenblatt, 1962; Rumelhart et al.,
at a minimum, the finding that individual synaptic con-

1986), and the mathematical basis for learning in such tacts may on long timescales be scarcely more than
systems has been clearly laid out (Bishop, 1995). Finally, binary-valued connections creates further distance be-
in the practical realm, neural network architectures pow- tween abstract synaptic weights—the memory contain-
ered by biologically inspired synaptic learning rules have ers of artificial neural learning systems—and the physi-
been successfully applied to a variety of difficult learn- cal synapses of the brain.
ing-related tasks, including problems in pattern recogni- Third, it is now well established that dendrites of pyra-
tion, associative memory, clustering, and map formation midal cells contain a large number and variety of volt-
(Arbib, 1995). Taken together, these physiological, theo- age-dependent channels that are likely to profoundly
retical, and practical considerations form a mutually re- affect their integrative behavior. These include NMDA
inforcing collection of ideas, founded on the core princi- channels and voltage-dependent Na1 and Ca21 conduc-
ple that in networks of neuron-like units, learned tances capable of amplifying synaptic inputs (Thomson
information is encoded in the patterning of synaptic et al., 1988; Fox et al., 1990; Cauller and Connors, 1993;
weight values. Schwindt and Crill, 1995; Lipowsky et al., 1996; Seamans

Upon more careful examination, however, four types et al., 1997; Margulis and Tang, 1998; Schiller et al.,
of experimental evidence weaken the link between the 2000) (though, see Urban et al., 1998; Cash and Yuste,

1999), and of generating locally regenerative responses
including full blown fast and slow dendritic spikes both* To whom correspondence should be addressed (e-mail: mel@

usc.edu [B. W. M.], poirazi@lnc.usc.edu [P. P.]). in vivo (Pockberger, 1991; Hirsch et al., 1995; Svoboda
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et al., 1997; Kamondi et al., 1998; Zhu and Connors, (Cline et al., 1997; Lüscher et al., 2000; Segal et al.,
1999) and in vitro (Spencer and Kandel, 1961; Wong et 2000). In keeping with standard connectionist notions,
al., 1979; Poolos and Kocsis, 1990; Jaffe et al., 1992; such a scheme might be used to dynamically regulate
Wong and Stewart, 1992; Amitai et al., 1993; Kim and the overall connection strength between any two neu-
Connors, 1993; Stuart and Sakmann, 1994; Spruston et rons, through a balance of learning-induced synapse
al., 1995; Magee and Johnston, 1997; Larkum et al., formation and elimination. However, given nonlinear
1999)—(see Hausser et al., 2000). Moreover, active non- dendritic physiology, changes in the addressing of syn-
linear responses to synaptic inputs can be localized aptic contacts onto existing dendritic subunits, or for-
within the dendritic arbor (Benardo et al., 1982; Schwindt mation of entirely new dendritric subunits, could consti-
and Crill, 1997; Schiller et al., 1997; Golding and Sprus- tute forms of plasticity that cannot be expressed in terms
ton, 1998) or even confined to a single thin dendritic of simple weight changes from one neuron to the next.
branch (Schiller et al., 2000; K. Holthoff et al., 2000, Soc. In short, the evidence in cortical structures for (1)
Neurosci., abstract). In this light, the very notion of a highly variable synaptic weight values measured on short
“connection strength” between two neurons is compli- timescales, (2) low-resolution synaptic weight values
cated by the fact that the efficacy of a given synaptic measured on longer timescales, (3) active membrane
contact—that is, its weight—is likely to vary significantly mechanisms that lead synaptic weight values to depend
depending on the ongoing activity of other synapses on the ongoing activity of other synapses, and (4) a
within the dendritic compartment. For example, when capacity for learning-induced remodeling of the inter-
stimulated alone, a synapse’s effective weight may be face between axons and dendrites, together suggest
close to zero if it is unable to activate the resident volt- that the setting of finely graded connection strengths
age-dependent currents. However, combined with de- between whole neurons may not provide the exclusive,
polarization arising from other synapses within the den- or even the primary form of parameter flexibility used
dritic compartment, a previously ineffective synapse by the brain to store learned information. Exploration of
could add the “final straw” that drives the compartment an alternative form of long term information storage is
into a fully regenerative state. Given active dendritic the main theme of this paper.
currents, therefore, the usual concept of a synaptic
weight requires elaboration to take account of nonlinear Comparing Storage Capacity for Two Different
synaptic interactions. Modes of Dendritic Integration

Fourth, structural plasticity at the axo-dendritic inter- In previous biophysical modeling studies, we have found
face, including synaptogenesis and dendritic and axonal that nonlinear interactions between synapses coacti-
growth and remodeling (Greenough and Bailey, 1988; vated on the same branch of an active dendritic tree
Goodman and Shatz, 1993; Cline, 1999; Woolley, 1999; could provide an alternative medium for long-term stor-
Harris, 1999; McAllister et al., 1999; Lüscher et al., 2000; age that does not involve graded patterning of synaptic
Segal et al., 2000), could provide mechanisms for infor- weight values. This “structural” capacity, which is or-
mation storage that go beyond those associated with a thogonal to that contained in synaptic weights, resides
classical Hebbian learning scheme. Axons, dendrites, and

in the selective addressing of synaptic contacts onto
spines are highly dynamic structures: new dendritic spines

dendritic subunits (Mel, 1992a, 1992b, 1993).
or filopodia can emerge within minutes in vitro (Dailey and

In the present work, our goals have been (1) to calcu-
Smith, 1996; Maletic-Savatic et al., 1999; Toni et al., 1999;

late the excess capacity contained in the selective tar-Engert and Bonhoeffer, 2000) or in vivo (O’Rourke and
geting of synapses onto dendritic subunits, (2) to char-Fraser, 1990; Lendvai et al., 2000), while large-scale
acterize how this excess capacity depends on dendriticgrowth and remodeling of axonal and dendritic arbors
geometry, and (3) to determine using computer simula-and/or proliferation of new spinous synapses can occur
tions whether the excess capacity predicted on theoreti-in the adult brain within days (Greenough et al., 1985;
cal grounds is accessible to a biologically plausibleWoolley et al., 1990; Darian-Smith and Gilbert, 1994).
structural learning rule. We extend a previously devel-Such lability of structure is consistent with the high con-
oped function-counting approach (Poirazi and Mel,centration of actin found in dendrites and spines (Crick,
2000) to compare the capacity of a simplified neuron1982; Matus, 1999).
with m branches (subunits) and k synapses per branchOne conception regarding the role of structural plas-
under two different assumptions regarding dendritic in-ticity involves correlation-based sorting of synaptic con-
tegration (Figure 1). Letting x represent the collectiontacts on their postsynaptic targets (Shatz, 1990; Cline,
of activity levels xij arriving at the ith synapse on the jth1999). According to this idea, (1) synapses are initially
branch, we contrastformed between axons and dendrites in a random activ-
• linear integration (Equation 1), where the cell’s activa-ity-independent fashion, (2) newly formed synapses be-

tion level aL(x) prior to output thresholding is given bygin their life cycle in a probationary, or “silent,” phase
a weighted sum of inputs from across the entire cell,(i.e., containing only NMDA channels) that leaves them
andunable to unilaterally activate their postsynaptic targets

• nonlinear integration (Equation 2), where (1) the k in-(Isaac et al., 1995; Liao, et al., 1995; Durand et al., 1996),
puts to each branch are combined in a weighted sum,and (3) silent synapses that are frequently coactivated
(2) a static branch nonlinearity b, such as a sigmoidwith mature (nonsilent) synapses within the same post-
or power function, is applied to each of the m branchsynaptic compartment are structurally stabilized and
subtotals, and (3) the nonlinear branch responses arethus retained, perhaps via the insertion of AMPA recep-
summed to produce the cell’s overall activation leveltors (Lynch and Baudry, 1984), while those that are

poorly correlated with their neighbors may be eliminated aN(x):
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Figure 1. Simplified Abstraction of a Dendritic Tree

Cell is modeled as a set of m identical branches connected to a soma, where each branch contains k excitatory synaptic contacts. Each
synapse is driven by one of d input lines and is given a small integer-valued weight. Depicted cell is a layer 5 pyramidal cell from rat
somatosensory cortex, adapted with permission from Lübke et al. (1996).

into an “opponent” pair consisting of one excitatoryaL(x) 5 o
m

j51
o
k

i51

wijxij (1)
neuron a1 and one inhibitory neuron a2, giving an overall
response

aN(x) 5 o
m

j51

b1o
k

i51

wijxij2. (2)
y(x) 5 sgn [a1(x) 2 a2(x)] (3)

where the sgn operator maps the combined activity ofThe use of Equation 2 to represent active dendritic
the opponent pair into one of two response categoriesintegration is supported by two recent compartmental
(1, 2). y(x) is thus a binary-valued “discriminant func-modeling studies that found that, under certain condi-
tion,” which by firing (positively), indicates the input xtions, the time-averaged firing rate of a model pyramidal
is a preferred pattern. Similarly, a lack of firing indicatescell driven by high-frequency synaptic stimulation could
that x is a nonpreferred pattern.be closely approximated by a sum of independent non-

linear branch responses (T. M. Brannon and B. W. Mel,
1999, Soc. Neurosci., abstract; Archie and Mel, 2000). Measuring the Capacity to Learn and Remember

In the following, learning denotes the process by whichThese biophysically detailed models contained both
AMPA and NMDA-type synaptic conductances and as- the neuron comes to recognize and respond correctly

to the patterns in a given “training set” containing bothsumed uniform low concentrations of voltage-depen-
dent Na1 and K1 channels across the soma dendritic positive and negative exemplars. To accomplish this,

the learning rule can modify the response preferencesmembrane; earlier studies in a related vein showed that
a similar form of dendritic integration holds under wide of a neuron in two ways. First, the weight of an existing

synaptic contact can be increased or decreased (weightranging assumptions regarding channel properties and
distributions (Mel, 1992b, 1992a, 1993; Mel et al., 1998). change). Second, an existing contact can be eliminated

and replaced with a new contact from a different afferentThe expressions for aL and aN were written in similar
form to emphasize that the models have an identical input (structural change). In either case, the objective is

to tailor the cell’s “memory field” (by analogy with thenumber of synaptic weights, differing only in the pres-
ence or absence of a fixed nonlinear function b applied term “receptive field”) so that it responds selectively

and uniformly to the positive training exemplars, with ato the branch subtotals. Individual synaptic weights in
both models are constrained to have a small positive uniform lack of response to the negative exemplars.

In the following, memory capacity is assessed in twointeger value 0 , w , l. However, any of the d input
lines may form multiple synaptic connections on the ways. First, we derive combinatorial expressions that

count the number of different input–output functions asame or different branches as a means of representing
more finely graded synaptic strengths. Similarly, an in- cell could produce by exercising all possible settings

of its modifiable parameters, i.e., all possible ways ofput line that forms no connection has an implicit weight
of 0. In light of this restriction to positive synaptic weight connecting synapses to dendritic sites that result in

distinguishable memory fields. This analytical capacityvalues, both the linear and nonlinear models were split
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Figure 2. Two Wiring Configurations that Are
Indistinguishable by a Linear Cell Can Gener-
ate Different Responses in a Nonlinear Cell

A cell with m 5 3 branches each containing
k 5 3 sites has access to d 5 3 distinct affer-
ents (d1, … d3) with firing rates denoted by x1,
… x3. Cell is shown in two different wiring
configurations (schematics at left), and corre-
sponding cell activity levels are shown in two
columns denoting linear (aL) versus nonlinear
(aN) dendritic integration. Nonlinear cell does,
and linear cell does not, distinguish the two
wiring configurations shown. Total number of
distinct input–output functions over all possi-
ble wiring configurations is shown below for
each mode of integration, calculated from
Equations 4 and 5.

measure is then compared to an empirical measure of afferents onto synaptic sites leads to a massive repre-
sentational redundancy, where physically distinct statesmemory capacity. To do this, we trained both linear and

nonlinear cells of different shapes and sizes on yes/no of the cell produce no change in the cell’s memory field
(see Figure 2).memory tasks, and assessed each cell’s capacity by

determining how large the training set could become In the nonlinear model, similar redundancies, but
of much lesser magnitude, arise from rearrangementsfor which recognition error rates just reached some fixed

criterion (e.g., 2%). of synapses within any given branch, or from re-
arrangements of branches at the cell level—such as
the swapping of the entire synaptic contents of twoResults
branches. The expression for BN was derived by applying
the combinatorial expression in BL in two stages: (1)Estimating Capacity by Counting
to calculate the number of distinct branch functions fParameter States
expressible by drawing k synapses from d input linesWe derived combinatorial expressions that count the
with replacement, then (2) to calculate the number ofnumber of distinct input–output functions available to
distinct cells expressible by drawing m branches fromthe linear versus nonlinear neuron models as a function
f possible branch functions. Note that BL 5 BN in theof branch geometry. These expressions provide mea-
special case of one long branch (k 5 s), or when thesures of the overall flexibility of the cell’s memory field
cell has many branches containing only one synapsefor both linear (BL) and nonlinear (BN) cells:
(m 5 s).

The factor of two in the expressions for BL and BNBL 5 2 log2 1s 1 d 2 1
s 2 (4)

reflects inclusion of the two opponent cells in each
model, while the logarithm converts the capacity esti-
mates into bits. Equations 4 and 5 can be interpreted

BN 5 2 log2 11
k 1 d 2 1

k 2 1 m 2 1

m 2 (5) as upper bounds on the mutual information between
the neuron’s acquired memory field and the contents of
the training set (see Appendix 1). A schematic of a small

The expressions in each case provide an upper bound cell in two different wiring configurations is shown in
on the number of distinct memory fields expressible Figure 2, to contrast the responses of the cell assuming
by the cell drawing s 5 m · k synaptic contacts, with linear versus nonlinear integration.
replacement, from d distinct afferent input lines. The
combinatorial term in BL gives the number of ways of
assigning s synaptic sites to the d classes of afferents, Graphs of BL and BN

The expressions for BL and BN are plotted in Figures 3Awhere only the number of contacts formed by each affer-
ent is counted regardless of location on the cell. For the and 3B with d 5 400. The lowest curve shows the capac-

ity for linear cells varying in size from 1 to 20,000 synapticlinear cell, this insensitivity to the spatial mapping of
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Figure 3. Linear versus Nonlinear Cell Capacity as Function of Branch Geometry

(A) Capacity in bits for linear (lower curve) and several nonlinear cells (upper curves) with branches of different length; branch count increases
from left to right as indicated iconically beneath x axis. Capacity of nonlinear model grows approximately linearly with the number of dendritic
subunits, while capacity of linear cell grows logarithmically with increasing number of sites. Thus, capacity boost ratio BN/BL for size-matched
nonlinear versus linear cells grows as O(m/log m), i.e., nearly linearly. Arrowhead indicates cell with 10,000 synaptic contacts, composed of
100 branches containing 100 synapses each.
(B) Capacity increases monotonically as branches are lengthened. Each curve is indexed by branch count m; saturation is evident as branches
become relatively few and relatively long.
(C) Capacity of a nonlinear cell with 10,000 sites for different values of d. Branch count m grows and branch size k correspondingly shrinks
moving along x axis. Cells at both ends of x axis have capacity equivalent to that of linear model. Capacity of the nonlinear model is maximal
for cells with 1250 branches containing eight synapses each. Asterisks indicate half-maximum capacity.

sites. Over this range, the capacity of the linear model 10,000 synaptic sites but with different branch geome-
tries. The three curves shown correspond to differentis nearly flat, consistent with an asymptotic analysis of

BL indicating logarithmic growth (see Appendix 2). Each values of the input dimension d. Interestingly, the opti-
mal cell geometry is scarcely dependent on d, and forof the upper curves represents a nonlinear cell with a

fixed branch size indicated by k, where travel along the a cell with 10,000 inputs with uniform weights, the opti-
mum occurs at 1250 branches containing eight syn-x axis means adding more branches while holding the

branch size constant. In contrast to the very slow growth apses each. The capacity is only moderately sensitive
to the cell geometry in the vicinity of the peak, and thein capacity for the linear cell over this range of cell sizes,

increasing the number of nonlinear subunits available breadth of the high capacity region increases with d.
For d 5 1,000, for example, the capacity of a cell withto the cell leads to a nearly linear growth in capacity.

As such, the boost in capacity provided by the dendritic only 80 branches (containing 125 synapses each) lies
within a factor of two of the optimal configuration withbranch nonlinearity is substantial and increases steadily

as cells grow larger. For a nonlinear cell with 10,000 1250 branches (indicated by asterisk). The linear cell
capacities can be found both at the far left and far rightsites composed of 100 branches of 100 sites each, the

predicted capacity boost relative to the linear model of the plot (m 5 1 or m 5 10,000), since nonlinear models
with only one synapse per branch, or with only oneexceeds a factor of 10 (indicated by arrowheads).

Looking at the capacity from a different viewpoint branch, have a number of trainable states identical to
that of a linear model.in Figure 3B, the upper curves in this case represent

nonlinear cells with a fixed number of branches (indi-
cated by m), where travel along the x axis now means Validating the Analytical Model

Empirical Testing of Memory Capacityadding more sites to each branch while holding the
number of branches constant. The capacity of all models To validate the analytical model, we trained both linear

and nonlinear cells on yes/no recognition memory prob-again increases monotonically as cells grow larger,
though for cells with relatively few long branches, satu- lems, which required cells to discriminate target pat-

terns from very similar distractors while making as fewration is clearly evident. Summarizing the results of
Figures 3A and 3B, we infer that the capacity boost for errors as possible. Target and distractor patterns were

similar in the sense that all patterns were drawn froma nonlinear cell relative to a size-matched linear counter-
part is maximized for cells with a relatively large number the same 40-dimensional spherical Gaussian distribu-

tion and then randomly assigned to target or distractorof relatively small subunits.
The optimal choice of m and k is shown explicitly in categories. To achieve a more sparse, neurally plausible

code, the 40-component training patterns were mappedFigure 3C, where all curves correspond to cells with
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into a high-dimensional space using a set of 400 re- (i.e., network-derived) supervisory signal instructing the
neuron whether or not to respond to a given input pat-ceptive fields (RFs), where ten RFs coded the range of
tern. For the linear model, the value of bj9(y) was replacednonoverlapping successive values along each of the 40
by 1, so that Equation 6 reverts to the standard single-input dimensions (see Appendix 3). As a result, every
layer delta rule. Rules of this form are sometimes calledinput pattern presented to the cell activated 40 of the
“Hebbian” because the change in a weight depends ond 5 400 afferent axons to which the cell had access.
a product of the presynaptic activity with some measureBased on this sparsely active 400-element input pattern,
of the postsynaptic activity. According to Equation 6,the cell had to decide whether or not to “fire.”
the synapse that most merits stabilization is one thatAfter learning, recognition error rates on the training
fires strongly whenever (1) its branch is also stronglyset were assessed, and by trial and error, the size of
activated by other synapses, (2) the cell-wide supervi-the training set was adjusted until the recognition error
sory signal is strongly activated, and (3) the cell as arate equaled 2%. The number of patterns in the training
whole is firing somewhere in the middle of its dynamicset at this performance level was used as the measure
range.of empirical capacity. Though the absolute storage ca-

The poorest-performing (minimum φ) synapse in Tpacity clearly depended on the arbitrary choice of the
was tagged for replacement with the best-performingperformance criterion (i.e., 2% versus 1%, etc.), for dif-
(maximum φ) synapse in a randomly chosen replace-ferent small fixed error rates, the relative capacities of
ment set R containing nR of the d input lines. The re-various cells tended to scale together.
placement set was analogous to a set of silent synapsesThe Learning Rule
that resided on the branch in an immature state, unableA stochastic gradient descent learning rule involving
to contribute to the branch activity in the absence ofactivity-dependent structural plasticity was used to train
other synaptic input. In the event that a silent synapseboth linear and nonlinear cells. A variant of the “clus-
proved itself to be strongly correlated with other syn-teron” learning rule described in the article by Mel
apses on the branch, however, it was eligible to be(1992a), the present rule was based on two mechanisms
“upgraded” to mature status with an increased measureknown to contribute to neural development: (1) random
of structural stability.activity-independent synapse formation, and (2) activity-

We found that memory performance varied signifi-dependent synapse stabilization (or elimination). Essen-
cantly for different choices of nT and nR, which controlledtially, a synapse was stabilized on a particular branch
the degree of randomness in the gradient descent pro-(cell) when it was found to be consistently active with
cess. In all experiments shown here, nT 5 nR 5 25. Another inputs to that branch (cell) and when the like-
annealing step was also used to inject randomness intoactivated cohort of synapses on the branch was consis-
the learning process, reducing the probability that thetently active with a global training signal provided to the
learning algorithm would become trapped in a local mini-cell.
mum. A “temperature” variable that controlled the de-Conceptually, the clusteron learning rule is similar to
gree of randomness during learning was gradually low-learning rules used in models of neural development
ered as error rates fell. Learning was terminated whenand map formation (Miller, 1996), except that clusteron
no further improvement in error rates was seen (seelearning leads to correlation-based sorting of connec-
Appendix 4).tions onto the many separate dendrites of a single neu-
Comparison of Analytical versusron, rather onto the many separate neurons of a devel-
Empirical Capacitiesoping neural map. Thus, unlike the “point” neurons of
A comparison of analytical versus empirical capacitiesmost developmental models, the clusteron framework
for both linear and nonlinear cells is shown in Figure 4A.includes consideration of the cable properties of spa-
The analytical and empirical capacity curves are similartially extended dendrites. However the underlying bio-
in shape. Both assign peak capacity to a nonlinear cell

physical mechanisms that drive synaptic plasticity in
having 1250 branches containing eight synapses per

the two cases are very similar.
branch, with similar costs for deviations from this opti-

The mechanics of the learning process were as fol- mal. The optimal nonlinear cell with 10,000 synapses
lows. Training patterns were presented to the neuron, outperformed its size-matched linear counterpart by a
along with a global supervisory signal indicating whether factor of 46, learning 27,400 versus 600 patterns at the
or not the cell should fire. After each pass through the 2% error criterion. In contrast, the boost factor predicted
training set, a random set T of nT synapses was targeted by Equation 5 was only 23; this, and the slight difference
for possible replacement. For each synapse in T, a fit- in form of the analytical and empirical capacity curves
ness score was computed using a standard delta rule are discussed in Appendix 7.
(see Bishop, 1995), which measured the degree to which Figure 4B shows the effect of representational bias
the synapse contributed to the overall performance of on the empirical learning capacity of the two cell models.
the postsynaptic cell. The fitness φij for the ith synapse The nonlinear model shows a preference for nonover-
on the jth branch was given by a product of four terms: lapping binary RFs, while the linear model performs at

87% of its maximum capacity for this representation.φij 5 ,xij b9j (x) g9(y) (t 2 g(y)). (6)
Linear models perform slightly better with overlapping

where the brackets indicate the average value over the Gaussian RFs, for which the capacity of the nonlinear
training set, xij is the presynaptic activity, bj9 is the deriva- cell drops to 73% of its maximum value. The binary RF
tive of the postsynaptic branch response, the sigmoid representation was used in Figure 4A as it resulted in
g(y) 5 1/[1 1 exp (2y/0.05)] is a global output nonlinear- the largest peak capacity found for either model for any

representation tried (including several not shown).ity with g9(y) its derivative, and t 5 {0, 1} is an external
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Figure 4. Comparison of Memory Capacity
Predicted by Analysis with that Found Empiri-
cally in Random Memorization Problems

(A) Dashed lines show analytical curves for
linear and nonlinear cells as in Figure 3C.
Solid curves show capacity measured empiri-
cally at 2% error criterion, using a subunit
nonlinearity g(x) 5 x10 (similar results were ob-
tained using a sigmoidal nonlinearity, though
the parameters of the optimal sigmoid de-
pended on cell geometry). Analytical curves
were scaled down together by a factor of 3.5,
to align peak analytical and empirical capac-
ity values for the nonlinear model. Analytical
and empirical curves were similar in form.
However, predicted capacity boost for opti-
mal nonlinear cell was 23 relative to size-
matched linear counterpart, whereas actual
boost realized in empirical trials was nearly
46, corresponding to 27,400 versus 600 pat-
terns learned at 2% error criterion. Using less
effective variant of learning rule developed

earlier, for which peak empirical capacity boost for nonlinear cell was (fortuitously) 23, empirical and analytical capacity curves were nearly
superimposed (inset).
(B) Comparison of empirical capacity for three different input representations (see Appendix 3), shown at same cell geometry for all three
cases. Best representation for nonlinear cell consisted of ten binary nonoverlapping density-matched RFs; linear model performed at 87% of
its highest observed capacity. Two alternative recodings using ten overlapping one-dimensional Gaussian RFs per input dimension were also
tried: (1) variable-width Gaussian RFs, with centers lined up with density-matched binary bins, with uniform height and standard deviations
set to the half width of corresponding bin, and (2) fixed-width-height Gaussian RFs with centers distributed uniformly on the interval (21, 1)
and s 5 1.

Capacity for a Population of Cells ceptron (MLP) architecture and trained with a more so-
phisticated learning scheme, we trained an MLP with dBased on the steady growth in capacity with the number

of subunits (Figure 3A), we postulated that the capacity input units and 2z sigmoidal hidden units on the 30,000
element training set using the “back-propagation” (BP)boost available to nonlinear cells could grow extremely

large in a population of neurons. To test this, with the learning rule (see Bishop, 1995). Error rates were signifi-
cantly improved relative to unstructured, independentlyassumption of minimal additional learning-related cir-

cuitry, a population of z cells was independently trained trained populations of linear cells, confirming the obvi-
ous: a learning rule that can assign distinct input–outputon a given learning problem, each cell with a different

random initial condition. The output (classification) re- functions to each hidden unit in a network and properly
combine their responses can extract substantially moresponse for the population was given by a sum of the

individual cell activities followed by the usual thresh- capacity from a population of cells (Figure 5, middle
trace). The cost of this more sophisticated type of learn-old at 0:
ing scheme lies in the complexity of the implementation:
separate error signals must be managed for each cellypop(x) 5 sgn o

z

i51

[a1
i (x) 2 a2

i (x)] (7)
in the population, and synaptic weight changes depend
on information that is no longer localized to individualIn this case, positive and negative training patterns were
pre- and postsynaptic cells. Moreover, in spite of thedrawn from two different non-Gaussian distributions
fact that the BP-trained MLP had unlimited weight reso-to insure that the learning problems contained more
lution, cell for cell it learned far less than an unstructuredhigher-order structure than could be learned by any
population of clusterons trained with a learning rule insingle cell (see Appendix 5). Figure 5 shows error rates
which the fate of any given synapse was determined byproduced by linear versus nonlinear populations with
locally available error signals. This disparity in capacityeither unitary or multivalued synaptic weights (see Ap-
is accounted for by the m-fold larger number of nonlinearpendix 6). In all cases, error rates fall as population
subunits available within the clusteron population, echo-size is increased. However as predicted, populations of
ing once again the message of Figure 3A: memory ca-nonlinear cells learn far more per cell and show a steep
pacity rests heavily on the number of trainable nonlineardecline in error rate as population size is increased. In
basis functions available for learning.addition, nonlinear cells show a significant improvement

in performance when synaptic weight resolution is in-
creased from one level to four levels, whereas virtually Discussion
no improvement is seen for populations of linear cells.

The performance of a population of linear cells was Where Is the Engram?
We have compared the memory capacity of a neuronnot improved by thresholding their individual responses

prior to their combination as given by Equation 7. How- under two different modes of dendritic integration. We
find that when a dendritic tree is compartmentalized andever, since a population of linear cells might be utilized

more effectively when embedded in a multilayered per- supports independent thresholding of synaptic inputs to
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d coefficients, i.e., one weight per afferent (possibly
instantiated using multiple physical connections). This
reservoir is quick to train using learning rules analogous
to Hebbian LTP/LTD and can therefore be used for rapid
acquisition of trial-unique information. On the other
hand, this conventional mode of storage is of very low
capacity, such that information acquired is soon over-
written.

The second reservoir lies in the capacity to learn vir-
tual coefficients on selected groups of afferents, which
when coactivated are particularly informative to the neu-
ron. According to this view, a coefficient is assigned to
a group of afferents by mapping their synaptic contacts
onto the same dendritic subunit. This correlation-based
sorting of afferent connections onto dendritic subunits
is achieved gradually through activity-dependent struc-
tural modification, where afferent axons test many post-
synaptic targets “silently” in parallel, forming mature
connections only when a synapse is found to have
agreeable (i.e., correlated) neighbors. Since accessing
this reservoir of structural capacity involves formation
of new synaptic contacts and elimination of old ones,
the timescale of learning in this mode is necessarily
slower than that associated with simple potentiation or
depression of existing connections. Furthermore, this
mode of structural learning requires repeated presenta-

Figure 5. Comparison of Error Rates for Populations of Linear tion of the information bearing higher-order correlations
versus Nonlinear Cells to be extracted from the neuron’s input stream, which
Cells within a population were trained independently with random could relate to a proposal of McClelland et al. (1995) in
initial conditions. Output of population was computed using a simple which the hippocampus replays input correlations to
voting scheme. Positive and negative training examples were in this the neocortex for purposes of long-term memory con-
case drawn from two non-Gaussian distributions (see Appendix 5).

solidation. Given the very large number of virtual coeffi-A total of 30,000 training examples were drawn, half positive, half
cients that may be extracted and represented in thisnegative. Learning rule used for these runs was as shown in inset
way—owing to the very large number of possible combi-of Figure 4. Error rates are plotted for populations ranging from 1

to 50 cells. All cells were trained with m 5 400, k 5 25. Runs involving nations of afferents taken a few at a time—this slow-
cells with unitary weights are indicated by l 5 1; those trained with loading reservoir of structure-based capacity can en-
four-level weights are indicated by l 5 4. For comparison, an MLP code far more information about the input domain than
was trained with 2z hidden units, to correct for the partitioning of

is accessible to any neuron, or population of neurons,cells into positive and negative channels as was done throughout
whose only option is to ever-more-finely grade thethis work. The thresholded-linear units within the MLP were not
weights placed on individual afferent axons.constrained to represent synapses of only one sign, however, but

were allowed to represent mixtures of high-precision positive and It is essential to note that in the present theory, the
negative weights under the control of the back-propagation learning formation of new synapses and the elimination of old
rule. ones is not simply a means to increase or decrease

the net connection strength between two neurons—a
common interpretation of the significance of new spinedifferent branches, its capacity to learn is substantially
formation. As previously discussed, under the assump-increased relative to a simple summing unit. For exam-
tion of nonlinear summation within a dendritic compart-ple, a neuron with 10,000 synapses that sums its inputs
ment, the connection between two neurons cannot belinearly learned to respond to 600 training patterns at a
captured by a positive or negative coefficient denoting2% error rate. When compartmentalized, the “same”
“strength” per se, since the effectiveness of a synapticneuron learned more than 27,000 patterns—46 times
contact may be modulated by ongoing synaptic activitymore information. On this basis alone, it is tempting to
generated by other inputs to the compartment. Rather,conclude that the cable structure of pyramidal cells,
in the present model, the connection between two cellswhich promotes compartmentalization, and the active
is parameterized in large part by the addressing of pre-channels found in these cells’ dendrites, which promote
synaptic contacts onto postsynaptic dendritic compart-thresholding, are special design features that greatly
ments.enhance the information processing and storage capac-

ities of these cells.
What is the source of the additional memory capacity? The Analysis: An Appropriate Level

of Abstraction?To answer this question, it is useful to identify two dis-
tinct reservoirs of synapse-based storage capacity. The Simple function counts predicted the relative capacities

of cells with different dendritic geometries remarkablyfirst corresponds to the familiar idea that a neuron learns
by modifying synaptic weight values. According to this well (Figure 4A). The close correspondence between the

analytical capacity curves and memory performance onview, a neuron with access to d afferent axons can learn
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actual learning problems suggests that the combinato- T. M. Brannon and B. W. Mel, 1999, Soc. Neurosci.,
rial expressions in Equations 4 and 5 capture the true abstract; Archie and Mel, 2000). In the most direct exam-
sources of memory-related plasticity available to this ination of this issue, we found that the time-averaged
type of neural learning system. Furthermore, the agree- spike rate emanating from a compartmental model of
ment between our analysis and simulation results shows a pyramidal cell containing several types of voltage-
that the excess capacity available to cells with nonlinear dependent channels and requiring numerical integration
subunits is not a purely theoretical construct, but acces- of thousands of coupled nonlinear differential equations
sible to a biologically plausible structural learning rule. for many thousands of time steps, could be closely ap-
In its details, the analysis correctly predicts that (1) cells proximated by a paper and pencil calculation: summing
with nonlinear subunits learn substantially more than the raw firing rates of the synapses active within each
cells without, (2) peak capacity occurs for subunits that branch, squaring (or cubing) each of the branch subto-
are neither too small nor too large—with near-maximum tals, and then summing the results to arrive at the cell’s
capacity over a wide range of subunit sizes, and (3) predicted mean firing rate (T. M. Brannon and B. W. Mel,
when subunits are of optimal size, memory capacity 1999, Soc. Neurosci., abstract; Archie and Mel, 2000).
increases in direct proportion to the number of dendritic In these and the several earlier cited studies, we have
subunits available. found that pyramidal cells are biophysically well suited

Given the abstract (nonbiophysical) nature of the neu- to this type of nonlinear integration, which can arise
rons used in the present analysis and simulation experi- under widely varying assumptions regarding the con-
ments, what is the relevance of our conclusions to real centration, spatial distribution, and kinetics of voltage-
neurons? The main biophysical assumption underly- dependent channels, as well as for different branching
ing our capacity calculations is that a neuron’s integ- morphologies (e.g., apical versus basal subtrees), for
rative behavior can be captured by the simple form of different numbers of active synapses, different frequen-
Equation 2, which says that the neuron’s output can be cies of synaptic activation, and so on.
expressed as a sum of independent nonlinear subunit
responses. Surprisingly, however, the particular form of Population and Network Issues
the subunit nonlinearity b, whether a power function, What can be concluded about the storage capacity of
exponential, sigmoid, or other nonlinear relation, has no neural tissue? Extrapolation from the capacity of an indi-
bearing on the function counts for nonlinear cells given vidual neuron to that of a network of neurons rests on
by Equation 5, since the sole role of the branch nonline- assumptions as to the structure of the network and on
arity from the perspective of the combinatorial expres- the form of the learning rule used to train the network,
sion is to break the symmetry among otherwise identical which may differ substantially from that needed to train
branches. This may be most easily seen from the per- a single cell. In the experiments of Figure 5, we began
spective of a single axon in the process of “choosing” with the simplest possible assumptions as to the struc-
which postsynaptic subunit(s) to enervate: the branch ture of the network and the learning rule, in which a
nonlinearity ensures that the axon’s postsynaptic effect population of independently trained cells combines
will depend not just on its own activity, but on the identi-

forces by simply voting, i.e., by summing their outputs.
ties, collectively, of the other axons sharing the same

This scenario was considered simplest since it assumes
postsynaptic subunit. As such, the cell’s memory field

that (1) every cell in the population has access to the
is generally altered when any single axon withdraws a

same set of afferent axons, as would roughly apply tosynaptic connection from one dendritic subunit and
the cells contained within a single cortical mini-column,forms a new connection elsewhere. Thus, it is the sheer
(2) a single global supervisory signal is applied uniformlyexistence of a dendritic subunit nonlinearity, and not its
to the entire column, training every cell to respond toparticular functional form, that opens the door to a large
the same inputs in the same way (i.e., to have the samerepository of structure-based storage capacity. In con-
memory field), and (3) the synaptic learning rule is identi-trast, if cells sum their inputs linearly, the remapping of
cal to that used in the single-cell case, depending onlyan afferent connection from one dendritic subunit to
on information which can be assumed to be availableanother has no impact on the cell’s memory field. In this
locally at the synapse.case, structural plasticity of the kind under consider-

Under these assumptions, we found that large popula-ation here would not readily translate into additional
tions of independently trained thresholded linear neu-memory capacity.
rons performed only marginally better than a single cell,Given that storage capacity according to Equation 5
reflecting the fact that the vast bulk of the informationdoes not depend on the form of the subunit nonlinearity,
available to a linear machine can be learned by a singleour analysis is to some extent shielded from uncertain-
cell having a sufficient number of sites (s .. d). Asties regarding the detailed biophysics of synaptic inte-
such, every cell, trained independently from random ini-gration in actual pyramidal cell dendrites. However, the
tial conditions, learns nearly the identical thing. Thisquestion remains as to whether pyramidal cells are able
leads to a high correlation within the population, andto support multiple independent subunit computations
hence a population vote that is scarcely more reliablewithin their branches, a possibility that has yet to be
than an individual vote. In the case of cells containingtested in the experimental realm. In previous compart-
nonlinear subunits, by contrast, individual cells can tapmental modeling studies, however, we have found that
only a small fraction of the higher-order correlationthe responses of pyramidal cells with active dendrites
structure contained in the input stream, so that indepen-driven by high-frequency synaptic input are consistent
dently and identically trained cells with random initialwith the abstract sum-of-nonlinear-subunits model as-

sumed here (Mel, 1992b, 1992a, 1993; Mel et al., 1998; conditions lock onto largely nonoverlapping sets of in-
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formation-bearing higher-order features in the afferent dently to each cell in an unstructured population. The
stream. In this case, therefore, the population vote sub- critical difference is that, by packing many nonlinear
stantially outperforms an individual cell. subunits within a single cell, the decorrelation of subunit

Both the saturation in performance seen for groups responses needed to maximize capacity can be effected
of linear cells and the sharp improvement in perfor- by an error signal confined within the cell itself.
mance for groups of nonlinear cells are consistent with In any of these scenarios, the storage capacity of the
trends in the analytical capacity curves of Figure 3. Lin- population can be increased by simply adding more
ear cells show only logarithmic growth in capacity as cells, a desirable property from a neural design perspec-
the number of available sites is increased, reflecting the tive. However, increasing the size of a population of
diminishing returns associated with ever finer grading compartmentalized cells leads to the fastest growth in
of the d coefficients implicitly represented within their capacity, since trainable nonlinear basis functions are
branches. Nonlinear cells, on the other hand, show a added to the population at the highest rate per cell.
steady increase in capacity with the number of available These two design features, i.e., a synaptic learning rule
subunits, as long as the input stream is of sufficient based on local signals and a far higher capacity per cell,
dimension and contains a sufficient quantity of “interest- would seem to generate considerable pressure for use
ing” higher-order structure to be learned. In light of these of subunit-containing cells for learning, if and wherever
trends, growing an unstructured population of indepen- in the brain the option exists to do so.
dently trained linear cells is akin to adding more sites
to a single cell and, thus, delivers strongly diminishing Silent Synapses May Facilitate Learning
returns. In contrast, growing an unstructured population In experimenting with variants of the clusteron learning
of independently trained nonlinear cells is akin to adding rule, we found that too little or too much randomness
more nonlinear subunits to a single cell, which delivers in the learning procedure could hamper learning perfor-
steadily increasing returns. mance and reduce the apparent capacity of the cell.

A well-known method for increasing the representa- Randomness was present in three forms: (1) selection
tional capacity of a population of thresholded linear units of a random subset of existing contacts onto a cell,
is to construct a multilayered perceptron (MLP) that in- among which the worst performing individual was tar-
cludes “hidden units” (Rumelhart et al., 1986). Far more geted for replacement, (2) selection of a random subset
capacity is extracted from this type of network than from of available afferents, among which the best performing
an unstructured population of linear cells, since each individual was targeted to be the replacement, and (3)
hidden unit is trained by a different error signal that application of an annealing step, in which, if the cell
differentiates its receptive field from those of its fellow performed worse after a replacement was effected, the
hidden units. The performance of such a network is new synapse was nonetheless retained with some small
shown in Figure 5 and is significantly improved relative probability. We noted that randomness of category (2),
to same-sized unstructured populations since it takes whose incorporation led to a significant increase in em-
better advantage of the output nonlinearity provided by pirical capacity, was potentially related to the idea that
each cell. That the MLP underperforms a same-sized synapses begin their life cycle in a silent phase,
population of nonlinear cells is accounted for by count- i.e., involving only an NMDA-type, but not an AMPA-
ing nonlinearities rather than neurons, which are m times type conductance (Isaac et al., 1995; Liao et al., 1995;
more numerous in the population of subunit-containing Durand et al., 1996). Thus, the set of immature synapses
nonlinear cells. In addition, the MLP, which was trained existing on a branch could be viewed as a subset of
with the “back-propagation” learning algorithm with mo-

randomly drawn afferents, lined up as candidates to
mentum and adaptive step size, was slower to learn and

replace dissident synapses that are targeted for elimina-
more prone to becoming stuck in local minima than

tion from the branch. Further investigation is needed,the clusteron learning rule. It is likely that with further
however, to establish more rigorously the scope andoptimizations, including noise to help escape from local
utility of this type of synaptic prescreening operation.minima, the performance of the MLP could climb to a

level commensurate with the comparable clusteron.
Optimal Morphology and RelationsThe principal lesson of this exercise, then, is that the
to Real Neuronscapacity of a population of cells is closely tied to the
One of our main findings is that for a cell of realistic size,number of nonlinear “basis functions” that can be ex-
storage capacity is maximized when the cell contains atracted and represented by the population as a whole
large number of small subunits. In particular, accordingto solve the learning problem at hand. When only a single
to both analytical and empirical measures, a cell withoutput nonlinearity is available per neuron, such as that
10,000 synaptic contacts learns the most when it isassociated with a global spike-generating mechanism,
broken into roughly 1000 independent subunits con-then the storage capacity of the tissue is either (1) very
taining ten synapses each. Upon cursory inspection oflow, when only a local Hebb-type rule is available to
published cell morphologies, however, this number oftrain an unstructured population of cells or, at best,
subunits seems too large as an estimate of the number(2) moderately low, when a much more sophisticated
of electrically independent subregions that could existnonlocal learning rule, such as back-propagation, is
within the dendritic tree of a single pyramidal neuron.available to structure a multilayer network of single-

Several points lessen this apparent inconsistency.output-nonlinearity cells. On the other hand, when each
First, in the vicinity of the optimal neuronal geometry,cell by itself contains a large number of trainable nonlin-
the dependence of capacity on subunit size is relativelyear subunits, as we suggest here, far higher capacities

can be tapped by a simple learning rule applied indepen- weak. Reiterating the results of Figure 4, we found that
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for a cell containing 10,000 synaptic contacts, empirical Koch et al. (1983) in a theoretical study of retinal ganglion
capacity was within a factor of 2 of its maximum for cells, there under the assumption of passive membrane
cells ranging from as few as 80 subunits with 125 syn- properties. In a more recent investigation of the com-
apses each, to cells containing 5000 subunits with two partmentalizing effects of dendritic trees, we found in a
synapses each. This relatively broad range of high- modeling study of a neocortical pyramidal cell with ac-
capacity morphologies indicates that cells are to some tive dendrites that full blown synaptically evoked spikes
degree free to respond to other anatomical constraints initiated in a thin basal branch are quashed at the inter-
that could drive them toward morphologies containing face with the cell body, appearing there disguised as
fewer, larger subunits, with only a moderate sacrifice in EPSP-like responses a few millivolts in height (Archie
storage capacity. Examples of such pressures might and Mel, 2000). This attenuation of transient voltage
include the need to maximize the packing density of signals at branch points is a form of “blocking,” a term
neurons, the need to maintain dendritic branching pat- usually referring to the interruption of action potential
terns within biologically “reasonable” ranges, the need propagation at branch points in axonal trees (Manor
to maintain better average electrical isolation between et al., 1991). We obtained similar results in a study of
dendritic branches, and so on. synaptic integration in a morphologically detailed CA1

Second, it is likely that our results underestimate the pyramidal cell model. In this case, oblique branches
optimal subunit size for an individual cell (and thus over- emanating from the main apical trunk in the stratum
estimate the optimal number of subunits), for two rea- radiatum could support large amplitude fast spikes that
sons. First, the results of Figure 4 hold for cells with appeared only in strongly attenuated form in the main
binary weights, that is, with all-or-none values for the trunk and beyond (T. M. Brannon and B. W. Mel, 1999,
strength of a synaptic contact. In cells trained with four- Soc. Neurosci., abstract). This finding suggests that a
level synaptic weights, such as those shown in Figure 5 thick apical trunk may act like an extension of the cell
with l 5 4, the optimal geometry shifted toward cells body, providing a spatially elongated, low input resis-
with fewer, larger subunits (data not shown). Further- tance domain that both isolates thin side branches from
more, the population experiments of Figure 5 reinforce each other and provides an efficient electrical conduit
the point that the true quantity we ought to optimize is connecting distal subunits to the global spike-generat-
the capacity of a population of neurons learning to- ing mechanism near the cell body. One issue that re-
gether, rather than that of an individual neuron. In this mains to be fleshed out is the impact of higher-order
regard, our analytical calculations suggest that as popu- branching in pyramidal cell dendrites. In the case of
lations grow larger, providing a larger effective number basal dendrites, the relative profusion of branching near
of synaptic sites, the optimal subunit size grows larger the cell body where the density of synaptic contacts is
as well. This effect has not yet been adequately studied, at a minimum, leading to relatively long unbranched
however, given the huge computational costs involved terminal sections containing most of the synapses (Els-
in simulation of very large learning problems in large ton and Rosa, 1998; C.J. Pace et al., 2000, Soc. Neu-
populations of nonlinear cells. rosci., abstract), could reflect design pressure to create

Third, pyramidal neurons show signs of having been the largest number of quasi-independent subunits while
“designed” to maximize the number of independent minimizing total branch length.
dendritic subunits, subject to biophysical constraints It is also interesting to note that the basal dendritic
that limit the compartmentalization of voltage that is trees of layer 3 pyramidal cells grow progressively larger,
possible in a continuously connected cable structure. contain many more terminal sections, and ultimately
Thus, a key design constraint entails that dendritic sub- accommodate 13 times more dendritic spines over the
units, if they exist, must be sufficiently independent in sequence of cortical areas in the ventral visual pro-
the electrical sense that they do not interfere with one cessing stream leading from primary visual cortex to
another’s processing. At the same time, these same

area TE in the inferotemporal cortex (Elston et al., 1999).
subunits must ultimately combine forces to influence

One interpretation is that the presence of relatively small
the final common output of the cell.

pyramidal cells in V1, which is devoted to general pur-One cell morphology that represents a compromise
pose, nonmnemonic visual processing, reflects the rela-between the pressure to provide a large number of sub-
tively modest need within a primary sensory processingunits while maintaining strong electrical isolation be-
station for high-capacity experience-dependent plastic-tween them is the stellate morphology that characterizes
ity. In contrast, the inferotemporal cortex, a regiona typical basal dendritic tree. The bulk of a pyramidal
known to be involved in visual memory proper (Li et al.,cell’s excitatory synaptic contacts lie on the basal den-
1993; Miyashita et al., 1993; Sobotka and Ringo, 1993;drites, and most of these occur on long, thin terminal
Nakamura and Kubota, 1995), is constructed from muchsections (Beaulieu and Colonnier, 1985; Elston and
larger and more richly compartmentalized cells (ElstonRosa, 1997; C. J. Pace et al., 2000, Soc. Neurosci., ab-
and Rosa, 1998). The trend to larger cells with ever morestract). According to principles of cable theory (Koch,
dendritic subunits is continued in the prefrontal cortex,1999), the impedance mismatch at the interface between
where the basal dendrites of superficial layer cells havea thin branch and the soma or a main trunk should result
16 times more dendritic spines than cells in the primaryin a pronounced attenuation of voltage signals entering
visual cortex (Elston, 2000). However, it is worth notingthe soma (trunk) from a thin branch, particularly for fast
that even in a primary sensory cortex, it is common tovoltage transients produced by AMPA-type synaptic in-
observe 50–100 thin branch terminal sections acrossputs or sodium spikes. That the cable structure of a
the dendritic arbor as a whole (see layer 5 pyramidalstellate-form neuron could provide a large number of

independent electrical subunits was first pointed out by cell in Figure 1), which may provide a rough estimate of
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the number of independent dendritic subunits provided aptic signals (Shatz, 1990; Cline, 1999). From a develop-
mental perspective, our proposed elaboration of thisby a single neuron.
principle entails simply that the relevant postsynaptic
compartment is the dendritic branch or subtree ratherExperimental Predictions
than the cell as a whole.The two main predictions of this work are straightfor-

The following type of experiment could be used toward. First, our conclusions regarding excess memory
assess whether correlation-based sorting of synapticcapacity apply only to neurons containing multiple inde-
connections onto dendritic compartments is a mecha-pendent nonlinear subunits. Within each subunit, poten-
nism used by neural tissue to incorporate, and to readtially corresponding to a thin oblique branch or a termi-
out, learned information (Figure 6). Ideally, the experi-nal branch of a basal subtree, a steady increment in
mental protocol requires the ability to stimulate and re-the intensity of synaptic stimulation should produce a
cord from five groups of neurons, where the axons instrongly accelerating subunit response, while summa-
each of the four “surround” groups (labeled A, B, C, andtion of responses delivered to different subunits should
D) have equal access to the dendrites of the “center”be roughly linear over the same range of intensities.
group (labeled X). During a period in which synaptogene-From a more holistic perspective, the strongest cell re-
sis is ongoing, groups A, X, D and B, X, C are stimulatedsponses in vivo should occur when high-frequency syn-
in alternating fashion, thereby establishing strong posi-aptic excitation is spatially concentrated within several
tive correlations between groups A and D or B and C,dendritic subunits simultaneously, leading to full activa-
and strong negative correlations between, e.g., groupstion of the local complement of NMDA, Na1, and Ca21

A and B or C and D. Each of the four peripheral groupscurrents at several sites. In contrast, high-frequency
would, however, experience an equally strong positiveactivation of a similar number of synapses scattered
correlation with group X. At the end of the training pe-diffusely about the cell should result in relatively weak
riod, cells in two correlated groups (e.g., A and D) oroverall responses (Mel, 1992b, 1993).
two uncorrelated groups (e.g., A and B) would be filledA handful of experiments have provided evidence for
with dyes of different color, allowing their synaptic con-superlinear synaptic integration (Schwindt and Crill,
tacts onto the cells of group X (also stained) to be visual-1995; Margulis and Tang, 1998; Wessel et al., 1999;
ized and distinguished. Synapses arising from cells inSchiller et al., 2000; K. Holthoff et al., 2000, Soc. Neu-
group A are expected to be more frequently cocompart-rosci., abstract) (though, see Urban and Barrionuevo,
mentalized with those of group D (e.g., lying on the same1998; Cash and Yuste, 1999). For technical reasons,
dendritic branch or within the same minor subtree) andhowever, these in vitro studies of synaptic integration in
to be less frequently cocompartmentalized with syn-pyramidal cells have focused on summation of discrete
apses from group B. Further, costimulation of groups AEPSP (or EPSP-like) waveforms. As a cautionary note
and D should give rise to stronger responses of cells inin weighing the results of such studies, we have found
group X than costimulation of groups A and B, and thisin modeling studies of dendrites containing active chan-
boosting effect should depend on the intact functioningnels with slow kinetics (including NMDA and voltage-
of excitatory voltage-dependent channels within individ-

dependent Ca21 channels), that responses to discrete
ual cells in group X (including NMDA channels and vari-

EPSP-like events produced by a single extracellular
ous types of voltage-dependent Na1 and Ca21 chan-

shock or glutamate pulse are unreliable predictors of nels). As such, any means taken to block such channels
responses to high-frequency stimulation summed over intracellularly, such as strong hyperpolarization or depo-
longer times (e.g., hundreds of milliseconds) (T. M. Bran- larization, or injection of intracellular channel blockers,
non and B. W. Mel, 1999, Soc. Neurosci., abstract). This should lead to a reduction or outright elimination of the
finding is consistent with observations that calcium cell’s integrative nonlinearity.
spikes typically emerge in dendritic recordings in CA1 In the learning phase of the experiment, the five
pyramidal cells only in response to trains of synaptic groups of cells could, for example, consist of nearby
stimuli (Golding et al., 1999), as well as gradual shift patches of auditory cortex, stimulated by playing appro-
from sublinear to superlinear temporal summation seen priate combinations of tones to an intact animal over
in these same cells during stimulus trains (Cash and an extended period of time (e.g., days). The “chords”
Yuste, 1999). would be chosen, based on pilot mapping studies, such

Nonetheless, studies that combine (1) more realistic that the tones composing the chords drive columns of
high-frequency synaptic stimulation protocols, (2) pre- cells whose horizontal connections are symmetrically
cise spatiotemporal control of multiple sites of synaptic distributed and within reach of each other in the tangen-
activation, and (3) simultaneous recordings in the den- tial plane of the cortex. During the test phase, recordings
drites and at the cell body have yet to be carried out. from neurons in group X would be carried out while

Regarding the role of structural plasticity in neural playing chords to the animal through the intact auditory
learning, this work makes a second prediction: groups system. Alternatively, a similar experiment could be car-
of afferent axons that fire together should be more likely ried out in a developing hippocampal culture grown on
to form synaptic contacts—not just onto the same post- a microelectrode array, which makes possible long-term
synaptic cells—but onto the same dendritic compart- stimulation and recording from known subpopulations
ments. This prediction represents only a modest de- of cells.
parture from the widely accepted principle of neural
development that holds that axo-dendritic connections Conclusions
are initially formed at random, and then stabilized or The prevailing model for long-term memory in the brain

continues to be heavily influenced by the now famouseliminated based on the correlation of pre- and postsyn-



Active Dendrites and Structural Plasticity
791

Figure 6. Conceptual Setup of Experiment to
Test for Role of Structural Plasticity in Neural
Learning

Alternating correlated activation of popula-
tions A and D and B and C hypothetically
leads to more frequent stabilization of syn-
apses arising from neurons in groups A and
D on the same dendritic branches (likewise
for synapses from groups B and C). Given
this postlearning mapping of synapses on the
dendrites of cells in group X, summation of
responses to stimulation of groups A and B
should be quasilinear, whereas summation of
responses to stimulation of groups A and D
should exceed the linear prediction.

conjecture of Donald Hebb (1949), which holds that the between pairs of neurons as the physical substrate for
memory, one risks overlooking the bulk of the informa-incorporation of learned information in neural tissue,

whether during early development or adult learning, in- tion stored in neural tissue as a consequence of learning.
In addition, the present proposal regarding a struc-volves activity-dependent strengthening and weakening

of synaptic connections between neurons. In an ex- tural basis for long-term memory links a diverse set of
neuroanatomical and neurophysiological findings andtension of this idea, our proposal assigns two distinct

roles to long-term potentiation or depression of synaptic assigns to them specific functional interpretations:
• the finding of several types of voltage-dependent cur-connections: (1) to provide direct access to a fast-load-

ing, low-capacity storage reservoir, expressed by the rent in dendrites that interact to produce regenerative
physiological events—we interpret this as providingfine patterning of synaptic weight values and mediated

by conventional activity-dependent changes in the the thresholding nonlinearity needed to “bind” affer-
ents together within a dendritic subunit;strengths of synaptic connections, and (2) to provide

indirect access to a slow-loading, high-capacity storage • the finding that for the most commonly occurring den-
dritic morphologies, the vast bulk of the excitatoryreservoir, expressed by the selective addressing of syn-

aptic contacts onto dendritic subunits and mediated synaptic input is delivered to thin branches, which
are mostly isolated from each other by main trunksby gradual activity-dependent remodeling of the axo-

dendritic interface. or the cell body—we interpret this as an adaptation
to provide the largest possible number of quasi-inde-The main quantitative finding of this work is that, under

a reasonable set of assumptions regarding the proper- pendent subunits within a connected dendritic tree
structure;ties of individual neurons and of small populations of

neurons, the capacity of the slow-loading, structure- • the finding that random formation of synaptic con-
tacts between axons and dendrites is a commonlybased memory reservoir outstrips that contained in syn-

aptic weight values by orders of magnitude. Put another occurring developmental process—we interpret this
as the randomization engine that drives the massivelyway, if one considers only the strengths of connections
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Figure 7. Possible Account for Discrepancy between Analytical and Empirical Capacity Curves

(A) Ratio of empirical to analytical capacity curves from Figure 4A shows oscillating pattern of mismatch (down-up-down-up-down).
(B) Mismatch can be modeled as product of sinusoidal “capacity” and “trainability” factors in antiphase. Product (lower panel) yields double-
peaked correction factor similar to that shown in (A). Capacity factor shown is 1 1 0.7 sin(x 1 5.1 p/4); trainability is 1.18 2 0.59 sin(x 1 5.3
p/4); parameters were set by inspection.

Proceduresparallel search for groups of correlated afferents en-
coding important higher-order features in the input

Appendix 1: Function Counts, Mutualstream;
Information, and Capacity

• the finding that axonal and dendritic arborizations are A number of authors have considered the problem of storage capac-
profusely interdigitated within the three-dimensional ity, with varying degrees of abstraction from the biological detail

(Cover, 1965; Willshaw et al., 1969; Vapnik and Chervonenkis, 1971;volume of the cortical neuropil—we interpret this as
Poggio, 1975; Barron, 1984; Hopfield, 1984; Baum and Haussler,a physical interface optimized to create many points
1989; Pearlmutter, 1992; Zador and Pearlmutter, 1996; Riegler andof close approach between pairs of potential pre- and
Seung, 1997), though none has directly considered the issue of

postsynaptic partners, which helps with the logistics capacity as a function of dendritic geometry. Our approach is based
involved in providing opportunities for arbitrary sub- on the principle that storage capacity relates to the number of dis-
sets of afferents to gather together within the same tinct input–output functions the neuron can represent through all

possible settings of its parameters.dendritic subunits;
Discrete function counts relate to conventional measures of ca-• the finding of a substantial populations of immature,

pacity, such as VC dimension (see Bishop, 1995), by providing anor “silent,” synapses within the dendrites of cortical
upper bound on the number of distinct labelings (dichotomies) of a

neurons, lying in wait as candidates for structural sta- randomly drawn training set that can be realized by the function
bilization—we interpret this as an adaptation that fa- class (neuron model) in question. Counts of discrete parameter

states generally overestimate the capacity of a learning system,cilitates structural learning and boosts overall mem-
since the function class may contain representational degeneracies,ory capacity;
i.e., sets of highly similar discriminant functions that produce identi-• the finding that populations of interchangeable neu-
cal labelings of the training set. We therefore expected the quality of

rons, i.e., whose dendrites have access to the same our predictions would depend on the uniformity of the degeneracies
inputs and whose axons project to the same targets, present in the various function classes (i.e., cell morphologies).
are a common feature of neural organization (such Given such uniformity, function counts could serve as good pre-

dictors of the relative capacity of any two cells under consideration.as the neurons confined to a layer within a cortical
The expression for BN may be a slight overestimate of the truecolumn)—we interpret this as a means to grow stor-

number of input–output functions for a nonlinear cell, as we wereage capacity by simply growing more neurons;
unable to prove that all redundancies—i.e., multiple synaptic config-

• the finding that the dendritic arborizations of neurons urations that yielded the same input–output function—were fully
in the frontal areas of the brain, which are likely to be discounted, and we in fact found redundant states for very small

cells (e.g., four branches with six synapses each). However, basedmore heavily involved in long-term memory storage,
on the outcome of Monte Carlo experiments, we concluded that BNare far larger and more complex and contain more
rapidly approached the true number of distinct input–output func-spines than in posterior sensory areas—we see this
tions for cells with more than a handful of branches and sites.as reflecting the pressure to make available the largest

possible number of trainable subunits needed to learn Appendix 2: Derivation of Logarithmic Capacity
arbitrary associations between sensory, motor, lan- Asymptote for Linear Model

We compute the growth rate of BL as the number of sites s isguage, and affective variables.
increased, for constant d.As a final comment, it is worth noting that the implica-

tions of the present structure-based view of neural learn-
BL 5 2log2 1s 1 d 2 1

s 2 (8)ing are not be limited to matters of learning and memory
per se. In other work, we have found that the combina-

Expanding Equation 8, we have,
tion of correlation-based structural plasticity and active
dendritic processing could have important implications 2

BL
2 5

(s 1 d 2 1)!
s!(d 2 1)!for the nonlinear classical and extraclassical receptive

field properties of neurons in sensory cortex (see Mel,
5

(s 1 1)
1

·
(s 1 2)

2
···

(s 1 d 2 1)
(d 2 1)

(9)
1999).
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Assuming s is large and s .. d, three phases. A 40-dimensional phase 1 vector was created in which
the first 36 components were drawn from a normal distribution and
the remaining four components were set to 1. Four indices of the2

BL
2 <

s
1

·
s
2

···
s

(d 2 1)
5

s(d21)

(d 2 1)!
(10)

phase 1 vector were then chosen at random (with replacement)
and remembered, where the first component of the 40-dimensionalThe number of bits available to the linear model is thus approxi-
phase 2 vector was computed as the product of the phase 1 compo-mately
nents located at the four selected indices. This procedure was re-
peated 39 more times to create the 40 components of the phase 2BL < 2(d 2 1)log2(s) 2 2 o

d21

i51

log2(i) (11)
vector, each time remembering the four phase 1 indices associated
with each phase 2 component. All positive and negative training

indicating capacity grows logarithmically with s.
examples were drawn from this same non-Gaussian distribution,
but were then processed with a different linear transform. In phase

Appendix 3: Generating the Training Set 3, positive examples were premultiplied by a square matrix A con-
Training samples were drawn from a d0-dimensional spherical taining coefficients uniformly distributed between 21 and 1. Nega-
gaussian distribution with zero mean and unit variance and were tive examples were premultiplied by A 1 B, where B contained
randomly assigned positive or negative labels. In some runs, training coefficients normally distributed with zero mean and unit variance.
patterns were evenly divided between positive and negative labels, The resulting 40-dimensional vectors were then mapped through
with similar results. Prior to learning, input patterns were sparsely the 400 basis functions (10 per input dimension) as previously de-
recoded and mapped into high-dimensional space. Each of the d0 scribed.
input components was individually recoded using a set of r one-
dimensional receptive fields (RFs) with centers distributed symmet-

Appendix 6: Learning with Multivalued Weightsrically along the positive and negative axes of the component. Three
In the case of multivalued weights, the rule for synapse replacementdifferent RF schemes were tried, to assess the dependence of our
was more complex than for unitary weights, since an input connec-empirical capacity measurements on the choice of input representa-
tion could be either changed in strength (up or down), or outrighttion; relative performances of the three schemes are shown in
replaced. In this case, both the worst synapse a and the best syn-Figure 4B. The RF scheme that generated optimal performance for
apse b in R were identified based on their fitness values φa andnonlinear cells employed nonoverlapping binary-valued RFs with
φb. If a was already a weak synapse, i.e., wa 5 1, it was tagged forcenters and bin widths chosen so that all RFs were activated equally
replacement with the best synapse k in R as before, with wk 5 1.often, leading to narrow bins near the origin and wide bins on the
For wa . 1, rather than eliminate the connection entirely, its weightgaussian tails. This recoding procedure mapped the original
was tagged to be decremented by one level. Similarly, wb was taggedd0-dimensional learning problem into an embedding space of d 5
to be incremented by one level, up to a maximum level of l. As inr · d0 dimensions, thereby increasing the intrinsic discriminability of
the case of unitary weights, the changes to both a and b werethe training samples. In all runs shown here, d0 5 40 and r 5 10
carried out with a nonzero probability when they led to an increasedgiving d 5 400, for comparison with analytical curves in Figures 1
error rate.and 3.

Appendix 7: Discrepancies between AnalyticalAppendix 4: Annealing Details
and Empirical Capacity CurvesWith each iteration of the learning process, the substitution of the
We considered the source of the slight difference in shape betweenbest replacement candidate k for the poorest performing synapse
analytical and empirical capacity curves, which reflected a failurea in the target set was carried out with probability 1 if the replace-
of the counting expressions in Equations 4 and 5 to predict thement led to a reduced mean squared error (MSE). If the MSE in-
empirical capacities achieved on particular training set distributions.creased as a result of the substitution, it was nonetheless carried
The relationship between empirical capacity and subunit number/out with a probability given by a Boltzmann equation,
size includes several factors: (1) the combinatorics that determine
the number of distinct input–output functions available to the cellp 5

1

1 1 e
e2e0

T

(12)
(Equation 5), which favor subunits of intermediate size, (2) a capacity
factor that measures the degeneracy (i.e., self-similarity) within the

based on the difference in the measured MSE before (eo) and after cell’s function class, which also favors subunits of intermediate size,
(e) replacement. (3) the trainability of the cell using stochastic gradient descent,

We began with temperature T 5 0.9, and trained for a maximum which disfavors these high-capacity cell configurations, (4) parame-
of 800 passes through the training set (condition a), or until the error ters of the learning rule which control the level of randomness, (5) the
rate dropped 180 times to a new minimum (condition b), or until a choice of input representation, which introduces representational
given minimum error rate was encountered 100 times (condition c), biases that help or hinder learning for particular training set distribu-
whichever came first. In conditions a and b, the learning process tions (see Figure 4B), and (6) the choice of branch nonlinearity b(),
was assumed to be proceeding successfully; in both cases, we set which likewise introduces a (poorly understood) representational
T → aT T, with aT 5 0.9, and began a new batch of 800 runs at lower bias.
temperature. In condition c, or if the temperature ever fell below 0.1, In spite of the large number of factors influencing empirical learn-
the learning process was assumed to be stuck in a local minimum; in ing performance, we noted that the fit between the analytical and
such cases, we set T 5 T/(aT)3 for l 5 1 or T 5 T/(aT)2 for l . 1 and empirical capacity curves was nearly perfect for an earlier version of
began again. Learning proceeded until the algorithm converged our learning rule (see inset in Figure 4A), which fortuitously extracted
(more frequent outcome), or up to a maximum of 120 temperature excess capacity from nonlinear subunit-containing cells in just that
steps (less frequent outcome). Convergence meant no further reduc- proportion predicted by the analysis—i.e., a boost of 23 for the
tion in error rate after 40 local minima (i.e., temperature increases) optimal cell morphology. However, as we improved the learning rule,
were encountered. leading to ever-larger empirical capacities for nonlinear cells—while

linear cells remained pinned at their asymptote—the empirical ca-
pacity curve was gradually deformed in shape.Appendix 5: Generating Correlated Training

Sets for Population Experiments To examine the source of the discrepancy, we plotted the ratio
of empirical to analytical capacity curves from Figure 4A in Figure 7A.To test memory performance for populations of neurons, training

sets were contrived so that more information was available to learn The basic oscillatory pattern of the mismatch could be explained
by the product of two hypothetical factors that modulate the rawthan could be learned by any single neuron. Positive and negative

training samples were drawn from two different 40-dimensional non- function counts given by Equation 5. The first factor reflects a viola-
tion of the main assumption underlying the use of function countingGaussian distributions, so that positive patterns could be distin-

guished from negative patterns based on a large number of signifi- expressions as in Equation 5: even when two discrete function
classes contain exactly the same number of input–output functions,cant higher-order correlations. Training patterns were generated in
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the relative self-similarity, or degeneracy, of the functions contained Crick, F. (1982). Do dendritic spines twitch? Trends Neurosci. 5,
44–46.within the respective classes determines their true representational

capacity. We therefore hypothesized the existence of a unimodal Dailey, M., and Smith, S. (1996). The dynamics of dendritic structure
“capacity” factor, denoting the true capacity per function counted. in developing hippocampal slices. J. Neurosci. 16, 2983–2994.
We conjectured this factor would peak at or near the optimal cell

Darian-Smith, C., and Gilbert, C. (1994). Axonal sprouting accompa-
geometry, since these cells (by definition) contain the most variable

nies functional reorganization in adult cat striate cortex. Nature 368,
representations of higher-order synaptic interaction terms (Fig-

737–740.
ure 7B, upper panel). A second factor relating to “trainability” de-

Durand, G.M., Kovalchuk, Y., and Konnerth, A. (1996). Long-termnotes the relative difficulty involved in finding a global minimum
potentiation and functional synapse induction in developing hippo-during training. Given that high-capacity cells were confronted with
campus. Nature 381, 71–75.the most challenging (i.e., largest) training sets, we conjectured that

the trainability factor would be in antiphase to the capacity factor Elston, G.N. (2000). Pyramidal cells of the frontal lobe: all the more
(Figure 7B, upper panel). The product of these two factors could spinous to think with. J. Neurosci. 20, RC95.
then give rise to a frequency-doubled (i.e., double-peaked) correc- Elston, G.N., and Rosa, M.G. (1997). The occipitoparietal pathway
tion factor similar to that seen in our experiments (compare of the macaque monkey: comparison of pyramidal cell morphology
Figure 7B, lower panel, to 7A). in layer III of functionally related cortical visual areas. Cereb. Cortex

7, 432–452.
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