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Summary

We consider the combined effects of active dendrites
and structural plasticity on the storage capacity of
neural tissue. We compare capacity for two different
modes of dendritic integration: (1) linear, where synap-
tic inputs are summed across the entire dendritic
arbor, and (2) nonlinear, where each dendritic com-
partment functions as a separately thresholded neu-
ron-like summing unit. We calculate much larger stor-
age capacities for cells with nonlinear subunits and
show that this capacity is accessible to a structural
learning rule that combines random synapse forma-
tion with activity-dependent stabilization/elimination.
In a departure from the common view that memories
are encoded in the overall connection strengths be-
tween neurons, our results suggest that long-term in-
formation storage in neural tissue could reside primar-
ily in the selective addressing of synaptic contacts
onto dendritic subunits.

Introduction

Both physiological evidence and connectionist theory
seem to support the notion that in the brain learning
involves modifying the strengths of connections be-
tween neurons. In the physiological realm, various forms
of long-term synaptic plasticity have been identified,
most notably long-term potentiation (LTP) and depres-
sion (LTD) (Bliss and Collingridge, 1993; Bear and Abra-
ham, 1996; Mainen, 1999; Liischer et al., 2000). In the
theoretical realm, the notion that synaptic weights are
the principal modifiable parameters available for learn-
ing is one of the central tenets of “connectionist” compu-
tation (Hebb, 1949; Rosenblatt, 1962; Rumelhart et al.,
1986), and the mathematical basis for learning in such
systems has been clearly laid out (Bishop, 1995). Finally,
in the practical realm, neural network architectures pow-
ered by biologically inspired synaptic learning rules have
been successfully applied to a variety of difficult learn-
ing-related tasks, including problems in pattern recogni-
tion, associative memory, clustering, and map formation
(Arbib, 1995). Taken together, these physiological, theo-
retical, and practical considerations form a mutually re-
inforcing collection of ideas, founded on the core princi-
ple that in networks of neuron-like units, learned
information is encoded in the patterning of synaptic
weight values.

Upon more careful examination, however, four types
of experimental evidence weaken the link between the
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abstract synaptic weights of connectionist theory and
the physical substrate for long-term learning and mem-
ory in the brain. First, a spate of recent experiments
indicates that the efficacy of synaptic transmission at
cortical synapses can undergo substantial fluctuations
up (facilitation) or down (depression), or both, during
brief trains of synaptic stimulation, and that these dy-
namics are characteristic of a particular synapse type
(Thomson et al., 1993; Markram and Tsodyks, 1996; Va-
rela et al., 1997; Reyes et al., 1998; Hempel et al., 2000).
Short-term synaptic dynamics of this kind are inconsis-
tent with the conventional connectionist assumption of
stable, high-resolution synaptic weight values as the
physical substrate for long-term memory. The conven-
tional notion could perhaps be rescued by assuming
that long-term memories are encoded in synaptic weight
values averaged over longer timescales. Nevertheless,
to the extent that short-term synaptic dynamics are a
pervasive phenomenon in vivo, involving substantial
changes in synaptic efficacy from moment to moment
based on the recent activation history of the synapse,
the straightforward mapping of stable numerical weights
from a connectionist learning system onto synapses in
the brain becomes more strained (Liaw and Berger,
1996; Abbott et al., 1997; Maass and Zador, 1999).

Second, a recent experimental study of long-term po-
tentiation (LTP) in the hippocampus—a region known
to participate in the formation of explicit memories—
suggests that excitatory synapses may exist in only a
small number of long-term stable states, where the con-
tinuous grading of synaptic strength seen in standard
measures of LTP may exist only in the average over a
large population of two-state synapses with randomly
staggered thresholds for learning (Petersen et al., 1998).
According to conventional connectionist notions, the
possibility that individual synapses hold only one or two
bits of long-term state information would seem to have
serious implications for the storage capacity of neural
tissue. The impact of this limitation might be lessened
if multiple synapses could be used to achieve finer grad-
ing of connection strength between neurons. However,
at a minimum, the finding that individual synaptic con-
tacts may on long timescales be scarcely more than
binary-valued connections creates further distance be-
tween abstract synaptic weights—the memory contain-
ers of artificial neural learning systems—and the physi-
cal synapses of the brain.

Third, itis now well established that dendrites of pyra-
midal cells contain a large number and variety of volt-
age-dependent channels that are likely to profoundly
affect their integrative behavior. These include NMDA
channels and voltage-dependent Na* and Ca?* conduc-
tances capable of amplifying synaptic inputs (Thomson
et al., 1988; Fox et al., 1990; Cauller and Connors, 1993;
Schwindt and Crill, 1995; Lipowsky et al., 1996; Seamans
et al.,, 1997; Margulis and Tang, 1998; Schiller et al.,
2000) (though, see Urban et al., 1998; Cash and Yuste,
1999), and of generating locally regenerative responses
including full blown fast and slow dendritic spikes both
in vivo (Pockberger, 1991; Hirsch et al., 1995; Svoboda
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et al., 1997; Kamondi et al., 1998; Zhu and Connors,
1999) and in vitro (Spencer and Kandel, 1961; Wong et
al., 1979; Poolos and Kocsis, 1990; Jaffe et al., 1992;
Wong and Stewart, 1992; Amitai et al., 1993; Kim and
Connors, 1993; Stuart and Sakmann, 1994; Spruston et
al., 1995; Magee and Johnston, 1997; Larkum et al.,
1999)—(see Hausser et al., 2000). Moreover, active non-
linear responses to synaptic inputs can be localized
within the dendritic arbor (Benardo et al., 1982; Schwindt
and Crill, 1997; Schiller et al., 1997; Golding and Sprus-
ton, 1998) or even confined to a single thin dendritic
branch (Schiller et al., 2000; K. Holthoff et al., 2000, Soc.
Neurosci., abstract). In this light, the very notion of a
“connection strength” between two neurons is compli-
cated by the fact that the efficacy of a given synaptic
contact—that is, its weight—is likely to vary significantly
depending on the ongoing activity of other synapses
within the dendritic compartment. For example, when
stimulated alone, a synapse’s effective weight may be
close to zero if it is unable to activate the resident volt-
age-dependent currents. However, combined with de-
polarization arising from other synapses within the den-
dritic compartment, a previously ineffective synapse
could add the “final straw” that drives the compartment
into a fully regenerative state. Given active dendritic
currents, therefore, the usual concept of a synaptic
weight requires elaboration to take account of nonlinear
synaptic interactions.

Fourth, structural plasticity at the axo-dendritic inter-
face, including synaptogenesis and dendritic and axonal
growth and remodeling (Greenough and Bailey, 1988;
Goodman and Shatz, 1993; Cline, 1999; Woolley, 1999;
Harris, 1999; McAllister et al., 1999; Luscher et al., 2000;
Segal et al., 2000), could provide mechanisms for infor-
mation storage that go beyond those associated with a
classical Hebbian learning scheme. Axons, dendrites, and
spines are highly dynamic structures: new dendritic spines
or filopodia can emerge within minutes in vitro (Dailey and
Smith, 1996; Maletic-Savatic et al., 1999; Toni et al., 1999;
Engert and Bonhoeffer, 2000) or in vivo (O’Rourke and
Fraser, 1990; Lendvai et al., 2000), while large-scale
growth and remodeling of axonal and dendritic arbors
and/or proliferation of new spinous synapses can occur
in the adult brain within days (Greenough et al., 1985;
Woolley et al., 1990; Darian-Smith and Gilbert, 1994).
Such lability of structure is consistent with the high con-
centration of actin found in dendrites and spines (Crick,
1982; Matus, 1999).

One conception regarding the role of structural plas-
ticity involves correlation-based sorting of synaptic con-
tacts on their postsynaptic targets (Shatz, 1990; Cline,
1999). According to this idea, (1) synapses are initially
formed between axons and dendrites in a random activ-
ity-independent fashion, (2) newly formed synapses be-
gin their life cycle in a probationary, or “silent,” phase
(i.e., containing only NMDA channels) that leaves them
unable to unilaterally activate their postsynaptic targets
(Isaac et al., 1995; Liao, et al., 1995; Durand et al., 1996),
and (3) silent synapses that are frequently coactivated
with mature (nonsilent) synapses within the same post-
synaptic compartment are structurally stabilized and
thus retained, perhaps via the insertion of AMPA recep-
tors (Lynch and Baudry, 1984), while those that are
poorly correlated with their neighbors may be eliminated

(Cline et al., 1997; Luscher et al., 2000; Segal et al.,
2000). In keeping with standard connectionist notions,
such a scheme might be used to dynamically regulate
the overall connection strength between any two neu-
rons, through a balance of learning-induced synapse
formation and elimination. However, given nonlinear
dendritic physiology, changes in the addressing of syn-
aptic contacts onto existing dendritic subunits, or for-
mation of entirely new dendritric subunits, could consti-
tute forms of plasticity that cannot be expressed in terms
of simple weight changes from one neuron to the next.

In short, the evidence in cortical structures for (1)
highly variable synaptic weight values measured on short
timescales, (2) low-resolution synaptic weight values
measured on longer timescales, (3) active membrane
mechanisms that lead synaptic weight values to depend
on the ongoing activity of other synapses, and (4) a
capacity for learning-induced remodeling of the inter-
face between axons and dendrites, together suggest
that the setting of finely graded connection strengths
between whole neurons may not provide the exclusive,
or even the primary form of parameter flexibility used
by the brain to store learned information. Exploration of
an alternative form of long term information storage is
the main theme of this paper.

Comparing Storage Capacity for Two Different
Modes of Dendritic Integration

In previous biophysical modeling studies, we have found
that nonlinear interactions between synapses coacti-
vated on the same branch of an active dendritic tree
could provide an alternative medium for long-term stor-
age that does not involve graded patterning of synaptic
weight values. This “structural” capacity, which is or-
thogonal to that contained in synaptic weights, resides
in the selective addressing of synaptic contacts onto
dendritic subunits (Mel, 1992a, 1992b, 1993).

In the present work, our goals have been (1) to calcu-
late the excess capacity contained in the selective tar-
geting of synapses onto dendritic subunits, (2) to char-
acterize how this excess capacity depends on dendritic
geometry, and (3) to determine using computer simula-
tions whether the excess capacity predicted on theoreti-
cal grounds is accessible to a biologically plausible
structural learning rule. We extend a previously devel-
oped function-counting approach (Poirazi and Mel,
2000) to compare the capacity of a simplified neuron
with m branches (subunits) and k synapses per branch
under two different assumptions regarding dendritic in-
tegration (Figure 1). Letting x represent the collection
of activity levels x; arriving at the i synapse on the j*
branch, we contrast
e linear integration (Equation 1), where the cell’s activa-

tion level a,(x) prior to output thresholding is given by

a weighted sum of inputs from across the entire cell,

and
e nonlinear integration (Equation 2), where (1) the k in-

puts to each branch are combined in a weighted sum,

(2) a static branch nonlinearity b, such as a sigmoid

or power function, is applied to each of the m branch

subtotals, and (3) the nonlinear branch responses are
summed to produce the cell’s overall activation level
an(x):
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Figure 1. Simplified Abstraction of a Dendritic Tree

Cell is modeled as a set of m identical branches connected to a soma, where each branch contains k excitatory synaptic contacts. Each
synapse is driven by one of d input lines and is given a small integer-valued weight. Depicted cell is a layer 5 pyramidal cell from rat

somatosensory cortex, adapted with permission from Liibke et al. (1996).

i

m k
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ay(x) = %b(; w; ,,) 2

The use of Equation 2 to represent active dendritic
integration is supported by two recent compartmental
modeling studies that found that, under certain condi-
tions, the time-averaged firing rate of a model pyramidal
cell driven by high-frequency synaptic stimulation could
be closely approximated by a sum of independent non-
linear branch responses (T. M. Brannon and B. W. Mel,
1999, Soc. Neurosci., abstract; Archie and Mel, 2000).
These biophysically detailed models contained both
AMPA and NMDA-type synaptic conductances and as-
sumed uniform low concentrations of voltage-depen-
dent Na* and K* channels across the soma dendritic
membrane; earlier studies in a related vein showed that
a similar form of dendritic integration holds under wide
ranging assumptions regarding channel properties and
distributions (Mel, 1992b, 1992a, 1993; Mel et al., 1998).

The expressions for a, and ay were written in similar
form to emphasize that the models have an identical
number of synaptic weights, differing only in the pres-
ence or absence of a fixed nonlinear function b applied
to the branch subtotals. Individual synaptic weights in
both models are constrained to have a small positive
integer value 0 < w < . However, any of the d input
lines may form multiple synaptic connections on the
same or different branches as a means of representing
more finely graded synaptic strengths. Similarly, an in-
put line that forms no connection has an implicit weight
of 0. In light of this restriction to positive synaptic weight
values, both the linear and nonlinear models were split

into an “opponent” pair consisting of one excitatory
neuron a’ and one inhibitory neuron a, giving an overall
response

y(x) = sgn [a*(x) — a~(x)] ()]

where the sgn operator maps the combined activity of
the opponent pair into one of two response categories
(+, —). y(x) is thus a binary-valued “discriminant func-
tion,” which by firing (positively), indicates the input x
is a preferred pattern. Similarly, a lack of firing indicates
that x is a nonpreferred pattern.

Measuring the Capacity to Learn and Remember

In the following, learning denotes the process by which
the neuron comes to recognize and respond correctly
to the patterns in a given “training set” containing both
positive and negative exemplars. To accomplish this,
the learning rule can modify the response preferences
of a neuron in two ways. First, the weight of an existing
synaptic contact can be increased or decreased (weight
change). Second, an existing contact can be eliminated
and replaced with a new contact from a different afferent
input (structural change). In either case, the objective is
to tailor the cell’s “memory field” (by analogy with the
term “receptive field”) so that it responds selectively
and uniformly to the positive training exemplars, with a
uniform lack of response to the negative exemplars.

In the following, memory capacity is assessed in two
ways. First, we derive combinatorial expressions that
count the number of different input-output functions a
cell could produce by exercising all possible settings
of its modifiable parameters, i.e., all possible ways of
connecting synapses to dendritic sites that result in
distinguishable memory fields. This analytical capacity
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Figure 2. Two Wiring Configurations that Are
Linear Cell Nonlinear Cell Indistinguishable by a Linear Cell Can Gener-
ate Different Responses in a Nonlinear Cell
A cell with m = 3 branches each containing
O d1 k = 3 sites has access to d = 3 distinct affer:
od = (x) (x) - _ .
° d2 dfm'k 3 aL X aN X ents (d, ... ds) with firing rates denoted by x;,
3 ... X3. Cell is shown in two different wiring
configurations (schematics at left), and corre-
@ sponding cell activity levels are shown in two
b(le + xz) o columns c.i(.em.)ting Iin.ear (a) vclersus nonlinear
(an) dendritic integration. Nonlinear cell does,
2 4x1 + 3x +2x3 b(2x;+ x,) + and linear cell does not, distinguish the two
.E wiring configurations shown. Total number of
© b(x2 + 2x3) distinct input-output functions over all possi-
g.o ble wiring configurations is shown below for
"-E each mode of integration, calculated from
8 @ Equations 4 and 5.
¥ b(2x; + x3) +
bl
2 4x;1 + 3 +2x3 b(x; + 2x;) +
b(xy + x4+ x3)
Total number
of distincti/o 110 220
functions

measure is then compared to an empirical measure of
memory capacity. To do this, we trained both linear and
nonlinear cells of different shapes and sizes on yes/no
memory tasks, and assessed each cell’s capacity by
determining how large the training set could become
for which recognition error rates just reached some fixed
criterion (e.g., 2%).

Results

Estimating Capacity by Counting

Parameter States

We derived combinatorial expressions that count the
number of distinct input-output functions available to
the linear versus nonlinear neuron models as a function
of branch geometry. These expressions provide mea-
sures of the overall flexibility of the cell’s memory field
for both linear (B,) and nonlinear (By) cells:

a=2mmf+d‘w @
(k+z_1)+m—1
BN:2|092 (5)
m

The expressions in each case provide an upper bound
on the number of distinct memory fields expressible
by the cell drawing s = m - k synaptic contacts, with
replacement, from d distinct afferent input lines. The
combinatorial term in B, gives the number of ways of
assigning s synaptic sites to the d classes of afferents,
where only the number of contacts formed by each affer-
ent is counted regardless of location on the cell. For the
linear cell, this insensitivity to the spatial mapping of

afferents onto synaptic sites leads to a massive repre-
sentational redundancy, where physically distinct states
of the cell produce no change in the cell’s memory field
(see Figure 2).

In the nonlinear model, similar redundancies, but
of much lesser magnitude, arise from rearrangements
of synapses within any given branch, or from re-
arrangements of branches at the cell level—such as
the swapping of the entire synaptic contents of two
branches. The expression for By was derived by applying
the combinatorial expression in B, in two stages: (1)
to calculate the number of distinct branch functions f
expressible by drawing k synapses from d input lines
with replacement, then (2) to calculate the number of
distinct cells expressible by drawing m branches from
f possible branch functions. Note that B, = By in the
special case of one long branch (k = s), or when the
cell has many branches containing only one synapse
(m = s).

The factor of two in the expressions for B, and By
reflects inclusion of the two opponent cells in each
model, while the logarithm converts the capacity esti-
mates into bits. Equations 4 and 5 can be interpreted
as upper bounds on the mutual information between
the neuron’s acquired memory field and the contents of
the training set (see Appendix 1). A schematic of a small
cell in two different wiring configurations is shown in
Figure 2, to contrast the responses of the cell assuming
linear versus nonlinear integration.

Graphs of B, and By

The expressions for B, and By, are plotted in Figures 3A
and 3B with d = 400. The lowest curve shows the capac-
ity for linear cells varying in size from 1 to 20,000 synaptic
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Figure 3. Linear versus Nonlinear Cell Capacity as Function of Branch Geometry

(A) Capacity in bits for linear (lower curve) and several nonlinear cells (upper curves) with branches of different length; branch count increases
from left to right as indicated iconically beneath x axis. Capacity of nonlinear model grows approximately linearly with the number of dendritic
subunits, while capacity of linear cell grows logarithmically with increasing number of sites. Thus, capacity boost ratio B,/B, for size-matched
nonlinear versus linear cells grows as O(m/log m), i.e., nearly linearly. Arrowhead indicates cell with 10,000 synaptic contacts, composed of
100 branches containing 100 synapses each.

(B) Capacity increases monotonically as branches are lengthened. Each curve is indexed by branch count m; saturation is evident as branches
become relatively few and relatively long.

(C) Capacity of a nonlinear cell with 10,000 sites for different values of d. Branch count m grows and branch size k correspondingly shrinks
moving along x axis. Cells at both ends of x axis have capacity equivalent to that of linear model. Capacity of the nonlinear model is maximal

for cells with 1250 branches containing eight synapses each. Asterisks indicate half-maximum capacity.

sites. Over this range, the capacity of the linear model
is nearly flat, consistent with an asymptotic analysis of
B, indicating logarithmic growth (see Appendix 2). Each
of the upper curves represents a nonlinear cell with a
fixed branch size indicated by k, where travel along the
x axis means adding more branches while holding the
branch size constant. In contrast to the very slow growth
in capacity for the linear cell over this range of cell sizes,
increasing the number of nonlinear subunits available
to the cell leads to a nearly linear growth in capacity.
As such, the boost in capacity provided by the dendritic
branch nonlinearity is substantial and increases steadily
as cells grow larger. For a nonlinear cell with 10,000
sites composed of 100 branches of 100 sites each, the
predicted capacity boost relative to the linear model
exceeds a factor of 10 (indicated by arrowheads).

Looking at the capacity from a different viewpoint
in Figure 3B, the upper curves in this case represent
nonlinear cells with a fixed number of branches (indi-
cated by m), where travel along the x axis now means
adding more sites to each branch while holding the
number of branches constant. The capacity of all models
again increases monotonically as cells grow larger,
though for cells with relatively few long branches, satu-
ration is clearly evident. Summarizing the results of
Figures 3A and 3B, we infer that the capacity boost for
anonlinear cell relative to a size-matched linear counter-
part is maximized for cells with a relatively large number
of relatively small subunits.

The optimal choice of m and k is shown explicitly in
Figure 3C, where all curves correspond to cells with

10,000 synaptic sites but with different branch geome-
tries. The three curves shown correspond to different
values of the input dimension d. Interestingly, the opti-
mal cell geometry is scarcely dependent on d, and for
a cell with 10,000 inputs with uniform weights, the opti-
mum occurs at 1250 branches containing eight syn-
apses each. The capacity is only moderately sensitive
to the cell geometry in the vicinity of the peak, and the
breadth of the high capacity region increases with d.
For d = 1,000, for example, the capacity of a cell with
only 80 branches (containing 125 synapses each) lies
within a factor of two of the optimal configuration with
1250 branches (indicated by asterisk). The linear cell
capacities can be found both at the far left and far right
of the plot (m = 1 orm = 10,000), since nonlinear models
with only one synapse per branch, or with only one
branch, have a number of trainable states identical to
that of a linear model.

Validating the Analytical Model

Empirical Testing of Memory Capacity

To validate the analytical model, we trained both linear
and nonlinear cells on yes/no recognition memory prob-
lems, which required cells to discriminate target pat-
terns from very similar distractors while making as few
errors as possible. Target and distractor patterns were
similar in the sense that all patterns were drawn from
the same 40-dimensional spherical Gaussian distribu-
tion and then randomly assigned to target or distractor
categories. To achieve a more sparse, neurally plausible
code, the 40-component training patterns were mapped
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into a high-dimensional space using a set of 400 re-
ceptive fields (RFs), where ten RFs coded the range of
nonoverlapping successive values along each of the 40
input dimensions (see Appendix 3). As a result, every
input pattern presented to the cell activated 40 of the
d = 400 afferent axons to which the cell had access.
Based on this sparsely active 400-element input pattern,
the cell had to decide whether or not to “fire.”

After learning, recognition error rates on the training
set were assessed, and by trial and error, the size of
the training set was adjusted until the recognition error
rate equaled 2%. The number of patterns in the training
set at this performance level was used as the measure
of empirical capacity. Though the absolute storage ca-
pacity clearly depended on the arbitrary choice of the
performance criterion (i.e., 2% versus 1%, etc.), for dif-
ferent small fixed error rates, the relative capacities of
various cells tended to scale together.

The Learning Rule

A stochastic gradient descent learning rule involving
activity-dependent structural plasticity was used to train
both linear and nonlinear cells. A variant of the “clus-
teron” learning rule described in the article by Mel
(1992a), the present rule was based on two mechanisms
known to contribute to neural development: (1) random
activity-independent synapse formation, and (2) activity-
dependent synapse stabilization (or elimination). Essen-
tially, a synapse was stabilized on a particular branch
(cell) when it was found to be consistently active with
other inputs to that branch (cell) and when the like-
activated cohort of synapses on the branch was consis-
tently active with a global training signal provided to the
cell.

Conceptually, the clusteron learning rule is similar to
learning rules used in models of neural development
and map formation (Miller, 1996), except that clusteron
learning leads to correlation-based sorting of connec-
tions onto the many separate dendrites of a single neu-
ron, rather onto the many separate neurons of a devel-
oping neural map. Thus, unlike the “point” neurons of
most developmental models, the clusteron framework
includes consideration of the cable properties of spa-
tially extended dendrites. However the underlying bio-
physical mechanisms that drive synaptic plasticity in
the two cases are very similar.

The mechanics of the learning process were as fol-
lows. Training patterns were presented to the neuron,
along with a global supervisory signal indicating whether
or not the cell should fire. After each pass through the
training set, arandom set ¥ of ny synapses was targeted
for possible replacement. For each synapse in T, a fit-
ness score was computed using a standard delta rule
(see Bishop, 1995), which measured the degree to which
the synapse contributed to the overall performance of
the postsynaptic cell. The fitness ¢; for the i"" synapse
on the j'" branch was given by a product of four terms:

by = <x;b/(X) g'K) (t — 9V))> ©)

where the brackets indicate the average value over the
training set, x; is the presynaptic activity, b;’ is the deriva-
tive of the postsynaptic branch response, the sigmoid
gly) = 1/[1 + exp (—y/0.05)] is a global output nonlinear-
ity with g’(y) its derivative, and t = {0, 1} is an external

(i.e., network-derived) supervisory signal instructing the
neuron whether or not to respond to a given input pat-
tern. For the linear model, the value of b;'(y) was replaced
by 1, so that Equation 6 reverts to the standard single-
layer delta rule. Rules of this form are sometimes called
“Hebbian” because the change in a weight depends on
a product of the presynaptic activity with some measure
of the postsynaptic activity. According to Equation 6,
the synapse that most merits stabilization is one that
fires strongly whenever (1) its branch is also strongly
activated by other synapses, (2) the cell-wide supervi-
sory signal is strongly activated, and (3) the cell as a
whole is firing somewhere in the middle of its dynamic
range.

The poorest-performing (minimum ¢) synapse in ¥
was tagged for replacement with the best-performing
(maximum ¢) synapse in a randomly chosen replace-
ment set N containing ny of the d input lines. The re-
placement set was analogous to a set of silent synapses
that resided on the branch in an immature state, unable
to contribute to the branch activity in the absence of
other synaptic input. In the event that a silent synapse
proved itself to be strongly correlated with other syn-
apses on the branch, however, it was eligible to be
“upgraded” to mature status with an increased measure
of structural stability.

We found that memory performance varied signifi-
cantly for different choices of ny and ny, which controlled
the degree of randomness in the gradient descent pro-
cess. In all experiments shown here, ny = ny = 25. An
annealing step was also used to inject randomness into
the learning process, reducing the probability that the
learning algorithm would become trapped in a local mini-
mum. A “temperature” variable that controlled the de-
gree of randomness during learning was gradually low-
ered as error rates fell. Learning was terminated when
no further improvement in error rates was seen (see
Appendix 4).

Comparison of Analytical versus

Empirical Capacities

A comparison of analytical versus empirical capacities
for both linear and nonlinear cells is shown in Figure 4A.
The analytical and empirical capacity curves are similar
in shape. Both assign peak capacity to a nonlinear cell
having 1250 branches containing eight synapses per
branch, with similar costs for deviations from this opti-
mal. The optimal nonlinear cell with 10,000 synapses
outperformed its size-matched linear counterpart by a
factor of 46, learning 27,400 versus 600 patterns at the
2% error criterion. In contrast, the boost factor predicted
by Equation 5 was only 23; this, and the slight difference
in form of the analytical and empirical capacity curves
are discussed in Appendix 7.

Figure 4B shows the effect of representational bias
on the empirical learning capacity of the two cell models.
The nonlinear model shows a preference for nonover-
lapping binary RFs, while the linear model performs at
87% of its maximum capacity for this representation.
Linear models perform slightly better with overlapping
Gaussian RFs, for which the capacity of the nonlinear
cell drops to 73% of its maximum value. The binary RF
representation was used in Figure 4A as it resulted in
the largest peak capacity found for either model for any
representation tried (including several not shown).
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A Numerical vs. Analytical Curves B

Relative Capacity for Different

Figure 4. Comparison of Memory Capacity
Predicted by Analysis with that Found Empiri-
cally in Random Memorization Problems
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(A) Dashed lines show analytical curves for
linear and nonlinear cells as in Figure 3C.
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Solid curves show capacity measured empiri-
cally at 2% error criterion, using a subunit
nonlinearity g(x) = x'° (similar results were ob-
tained using a sigmoidal nonlinearity, though
the parameters of the optimal sigmoid de-
pended on cell geometry). Analytical curves
were scaled down together by a factor of 3.5,
to align peak analytical and empirical capac-
ity values for the nonlinear model. Analytical
and empirical curves were similar in form.
However, predicted capacity boost for opti-
mal nonlinear cell was 23 relative to size-
matched linear counterpart, whereas actual
boost realized in empirical trials was nearly
46, corresponding to 27,400 versus 600 pat-
terns learned at 2% error criterion. Using less
effective variant of learning rule developed

Boost = 12

Equal Size
Gaussians

earlier, for which peak empirical capacity boost for nonlinear cell was (fortuitously) 23, empirical and analytical capacity curves were nearly

superimposed (inset).

(B) Comparison of empirical capacity for three different input representations (see Appendix 3), shown at same cell geometry for all three
cases. Best representation for nonlinear cell consisted of ten binary nonoverlapping density-matched RFs; linear model performed at 87% of
its highest observed capacity. Two alternative recodings using ten overlapping one-dimensional Gaussian RFs per input dimension were also
tried: (1) variable-width Gaussian RFs, with centers lined up with density-matched binary bins, with uniform height and standard deviations
set to the half width of corresponding bin, and (2) fixed-width-height Gaussian RFs with centers distributed uniformly on the interval (-1, 1)

ando =1.

Capacity for a Population of Cells

Based on the steady growth in capacity with the number
of subunits (Figure 3A), we postulated that the capacity
boost available to nonlinear cells could grow extremely
large in a population of neurons. To test this, with the
assumption of minimal additional learning-related cir-
cuitry, a population of z cells was independently trained
on a given learning problem, each cell with a different
random initial condition. The output (classification) re-
sponse for the population was given by a sum of the
individual cell activities followed by the usual thresh-
old at 0:

Yeop(X) = sgn X [a" (x) — ai (x)] @
i=1

In this case, positive and negative training patterns were
drawn from two different non-Gaussian distributions
to insure that the learning problems contained more
higher-order structure than could be learned by any
single cell (see Appendix 5). Figure 5 shows error rates
produced by linear versus nonlinear populations with
either unitary or multivalued synaptic weights (see Ap-
pendix 6). In all cases, error rates fall as population
size is increased. However as predicted, populations of
nonlinear cells learn far more per cell and show a steep
decline in error rate as population size is increased. In
addition, nonlinear cells show a significant improvement
in performance when synaptic weight resolution is in-
creased from one level to four levels, whereas virtually
no improvement is seen for populations of linear cells.
The performance of a population of linear cells was
not improved by thresholding their individual responses
prior to their combination as given by Equation 7. How-
ever, since a population of linear cells might be utilized
more effectively when embedded in a multilayered per-

ceptron (MLP) architecture and trained with a more so-
phisticated learning scheme, we trained an MLP with d
input units and 2z sigmoidal hidden units on the 30,000
element training set using the “back-propagation” (BP)
learning rule (see Bishop, 1995). Error rates were signifi-
cantly improved relative to unstructured, independently
trained populations of linear cells, confirming the obvi-
ous: a learning rule that can assign distinct input-output
functions to each hidden unit in a network and properly
combine their responses can extract substantially more
capacity from a population of cells (Figure 5, middle
trace). The cost of this more sophisticated type of learn-
ing scheme lies in the complexity of the implementation:
separate error signals must be managed for each cell
in the population, and synaptic weight changes depend
on information that is no longer localized to individual
pre- and postsynaptic cells. Moreover, in spite of the
fact that the BP-trained MLP had unlimited weight reso-
lution, cell for cell it learned far less than an unstructured
population of clusterons trained with a learning rule in
which the fate of any given synapse was determined by
locally available error signals. This disparity in capacity
is accounted for by the m-fold larger number of nonlinear
subunits available within the clusteron population, echo-
ing once again the message of Figure 3A: memory ca-
pacity rests heavily on the number of trainable nonlinear
basis functions available for learning.

Discussion

Where Is the Engram?

We have compared the memory capacity of a neuron
under two different modes of dendritic integration. We
find that when a dendritic tree is compartmentalized and
supports independent thresholding of synaptic inputs to
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Population Performance for
Linear vs. Nonlinear Cells
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Figure 5. Comparison of Error Rates for Populations of Linear
versus Nonlinear Cells

Cells within a population were trained independently with random
initial conditions. Output of population was computed using a simple
voting scheme. Positive and negative training examples were in this
case drawn from two non-Gaussian distributions (see Appendix 5).
A total of 30,000 training examples were drawn, half positive, half
negative. Learning rule used for these runs was as shown in inset
of Figure 4. Error rates are plotted for populations ranging from 1
to 50 cells. All cells were trained with m = 400, k = 25. Runs involving
cells with unitary weights are indicated by / = 1; those trained with
four-level weights are indicated by /| = 4. For comparison, an MLP
was trained with 2z hidden units, to correct for the partitioning of
cells into positive and negative channels as was done throughout
this work. The thresholded-linear units within the MLP were not
constrained to represent synapses of only one sign, however, but
were allowed to represent mixtures of high-precision positive and
negative weights under the control of the back-propagation learning
rule.

different branches, its capacity to learn is substantially
increased relative to a simple summing unit. For exam-
ple, a neuron with 10,000 synapses that sums its inputs
linearly learned to respond to 600 training patterns at a
2% error rate. When compartmentalized, the “same”
neuron learned more than 27,000 patterns—46 times
more information. On this basis alone, it is tempting to
conclude that the cable structure of pyramidal cells,
which promotes compartmentalization, and the active
channels found in these cells’ dendrites, which promote
thresholding, are special design features that greatly
enhance the information processing and storage capac-
ities of these cells.

What is the source of the additional memory capacity?
To answer this question, it is useful to identify two dis-
tinct reservoirs of synapse-based storage capacity. The
first corresponds to the familiar idea that a neuron learns
by modifying synaptic weight values. According to this
view, a neuron with access to d afferent axons can learn

d coefficients, i.e., one weight per afferent (possibly
instantiated using multiple physical connections). This
reservoir is quick to train using learning rules analogous
to Hebbian LTP/LTD and can therefore be used for rapid
acquisition of trial-unique information. On the other
hand, this conventional mode of storage is of very low
capacity, such that information acquired is soon over-
written.

The second reservoir lies in the capacity to learn vir-
tual coefficients on selected groups of afferents, which
when coactivated are particularly informative to the neu-
ron. According to this view, a coefficient is assigned to
a group of afferents by mapping their synaptic contacts
onto the same dendritic subunit. This correlation-based
sorting of afferent connections onto dendritic subunits
is achieved gradually through activity-dependent struc-
tural modification, where afferent axons test many post-
synaptic targets “silently” in parallel, forming mature
connections only when a synapse is found to have
agreeable (i.e., correlated) neighbors. Since accessing
this reservoir of structural capacity involves formation
of new synaptic contacts and elimination of old ones,
the timescale of learning in this mode is necessarily
slower than that associated with simple potentiation or
depression of existing connections. Furthermore, this
mode of structural learning requires repeated presenta-
tion of the information bearing higher-order correlations
to be extracted from the neuron’s input stream, which
could relate to a proposal of McClelland et al. (1995) in
which the hippocampus replays input correlations to
the neocortex for purposes of long-term memory con-
solidation. Given the very large number of virtual coeffi-
cients that may be extracted and represented in this
way —owing to the very large number of possible combi-
nations of afferents taken a few at a time—this slow-
loading reservoir of structure-based capacity can en-
code far more information about the input domain than
is accessible to any neuron, or population of neurons,
whose only option is to ever-more-finely grade the
weights placed on individual afferent axons.

It is essential to note that in the present theory, the
formation of new synapses and the elimination of old
ones is not simply a means to increase or decrease
the net connection strength between two neurons—a
common interpretation of the significance of new spine
formation. As previously discussed, under the assump-
tion of nonlinear summation within a dendritic compart-
ment, the connection between two neurons cannot be
captured by a positive or negative coefficient denoting
“strength” per se, since the effectiveness of a synaptic
contact may be modulated by ongoing synaptic activity
generated by other inputs to the compartment. Rather,
in the present model, the connection between two cells
is parameterized in large part by the addressing of pre-
synaptic contacts onto postsynaptic dendritic compart-
ments.

The Analysis: An Appropriate Level

of Abstraction?

Simple function counts predicted the relative capacities
of cells with different dendritic geometries remarkably
well (Figure 4A). The close correspondence between the
analytical capacity curves and memory performance on
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actual learning problems suggests that the combinato-
rial expressions in Equations 4 and 5 capture the true
sources of memory-related plasticity available to this
type of neural learning system. Furthermore, the agree-
ment between our analysis and simulation results shows
that the excess capacity available to cells with nonlinear
subunits is not a purely theoretical construct, but acces-
sible to a biologically plausible structural learning rule.
In its details, the analysis correctly predicts that (1) cells
with nonlinear subunits learn substantially more than
cells without, (2) peak capacity occurs for subunits that
are neither too small nor too large —with near-maximum
capacity over a wide range of subunit sizes, and (3)
when subunits are of optimal size, memory capacity
increases in direct proportion to the number of dendritic
subunits available.

Given the abstract (nonbiophysical) nature of the neu-
rons used in the present analysis and simulation experi-
ments, what is the relevance of our conclusions to real
neurons? The main biophysical assumption underly-
ing our capacity calculations is that a neuron’s integ-
rative behavior can be captured by the simple form of
Equation 2, which says that the neuron’s output can be
expressed as a sum of independent nonlinear subunit
responses. Surprisingly, however, the particular form of
the subunit nonlinearity b, whether a power function,
exponential, sigmoid, or other nonlinear relation, has no
bearing on the function counts for nonlinear cells given
by Equation 5, since the sole role of the branch nonline-
arity from the perspective of the combinatorial expres-
sion is to break the symmetry among otherwise identical
branches. This may be most easily seen from the per-
spective of a single axon in the process of “choosing”
which postsynaptic subunit(s) to enervate: the branch
nonlinearity ensures that the axon’s postsynaptic effect
will depend not just on its own activity, but on the identi-
ties, collectively, of the other axons sharing the same
postsynaptic subunit. As such, the cell’s memory field
is generally altered when any single axon withdraws a
synaptic connection from one dendritic subunit and
forms a new connection elsewhere. Thus, it is the sheer
existence of a dendritic subunit nonlinearity, and not its
particular functional form, that opens the door to a large
repository of structure-based storage capacity. In con-
trast, if cells sum their inputs linearly, the remapping of
an afferent connection from one dendritic subunit to
another has no impact on the cell’s memory field. In this
case, structural plasticity of the kind under consider-
ation here would not readily translate into additional
memory capacity.

Given that storage capacity according to Equation 5
does not depend on the form of the subunit nonlinearity,
our analysis is to some extent shielded from uncertain-
ties regarding the detailed biophysics of synaptic inte-
gration in actual pyramidal cell dendrites. However, the
question remains as to whether pyramidal cells are able
to support multiple independent subunit computations
within their branches, a possibility that has yet to be
tested in the experimental realm. In previous compart-
mental modeling studies, however, we have found that
the responses of pyramidal cells with active dendrites
driven by high-frequency synaptic input are consistent
with the abstract sum-of-nonlinear-subunits model as-
sumed here (Mel, 1992b, 1992a, 1993; Mel et al., 1998;

T. M. Brannon and B. W. Mel, 1999, Soc. Neurosci.,
abstract; Archie and Mel, 2000). In the most direct exam-
ination of this issue, we found that the time-averaged
spike rate emanating from a compartmental model of
a pyramidal cell containing several types of voltage-
dependent channels and requiring numerical integration
of thousands of coupled nonlinear differential equations
for many thousands of time steps, could be closely ap-
proximated by a paper and pencil calculation: summing
the raw firing rates of the synapses active within each
branch, squaring (or cubing) each of the branch subto-
tals, and then summing the results to arrive at the cell’s
predicted mean firing rate (T. M. Brannon and B. W. Mel,
1999, Soc. Neurosci., abstract; Archie and Mel, 2000).
In these and the several earlier cited studies, we have
found that pyramidal cells are biophysically well suited
to this type of nonlinear integration, which can arise
under widely varying assumptions regarding the con-
centration, spatial distribution, and kinetics of voltage-
dependent channels, as well as for different branching
morphologies (e.g., apical versus basal subtrees), for
different numbers of active synapses, different frequen-
cies of synaptic activation, and so on.

Population and Network Issues

What can be concluded about the storage capacity of
neural tissue? Extrapolation from the capacity of an indi-
vidual neuron to that of a network of neurons rests on
assumptions as to the structure of the network and on
the form of the learning rule used to train the network,
which may differ substantially from that needed to train
a single cell. In the experiments of Figure 5, we began
with the simplest possible assumptions as to the struc-
ture of the network and the learning rule, in which a
population of independently trained cells combines
forces by simply voting, i.e., by summing their outputs.
This scenario was considered simplest since it assumes
that (1) every cell in the population has access to the
same set of afferent axons, as would roughly apply to
the cells contained within a single cortical mini-column,
(2) a single global supervisory signal is applied uniformly
to the entire column, training every cell to respond to
the same inputs in the same way (i.e., to have the same
memory field), and (3) the synaptic learning rule is identi-
cal to that used in the single-cell case, depending only
on information which can be assumed to be available
locally at the synapse.

Under these assumptions, we found that large popula-
tions of independently trained thresholded linear neu-
rons performed only marginally better than a single cell,
reflecting the fact that the vast bulk of the information
available to a linear machine can be learned by a single
cell having a sufficient number of sites (s >> d). As
such, every cell, trained independently from random ini-
tial conditions, learns nearly the identical thing. This
leads to a high correlation within the population, and
hence a population vote that is scarcely more reliable
than an individual vote. In the case of cells containing
nonlinear subunits, by contrast, individual cells can tap
only a small fraction of the higher-order correlation
structure contained in the input stream, so that indepen-
dently and identically trained cells with random initial
conditions lock onto largely nonoverlapping sets of in-
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formation-bearing higher-order features in the afferent
stream. In this case, therefore, the population vote sub-
stantially outperforms an individual cell.

Both the saturation in performance seen for groups
of linear cells and the sharp improvement in perfor-
mance for groups of nonlinear cells are consistent with
trends in the analytical capacity curves of Figure 3. Lin-
ear cells show only logarithmic growth in capacity as
the number of available sites is increased, reflecting the
diminishing returns associated with ever finer grading
of the d coefficients implicitly represented within their
branches. Nonlinear cells, on the other hand, show a
steady increase in capacity with the number of available
subunits, as long as the input stream is of sufficient
dimension and contains a sufficient quantity of “interest-
ing” higher-order structure to be learned. In light of these
trends, growing an unstructured population of indepen-
dently trained linear cells is akin to adding more sites
to a single cell and, thus, delivers strongly diminishing
returns. In contrast, growing an unstructured population
of independently trained nonlinear cells is akin to adding
more nonlinear subunits to a single cell, which delivers
steadily increasing returns.

A well-known method for increasing the representa-
tional capacity of a population of thresholded linear units
is to construct a multilayered perceptron (MLP) that in-
cludes “hidden units” (Rumelhart et al., 1986). Far more
capacity is extracted from this type of network than from
an unstructured population of linear cells, since each
hidden unit is trained by a different error signal that
differentiates its receptive field from those of its fellow
hidden units. The performance of such a network is
shown in Figure 5 and is significantly improved relative
to same-sized unstructured populations since it takes
better advantage of the output nonlinearity provided by
each cell. That the MLP underperforms a same-sized
population of nonlinear cells is accounted for by count-
ing nonlinearities rather than neurons, which are m times
more numerous in the population of subunit-containing
nonlinear cells. In addition, the MLP, which was trained
with the “back-propagation” learning algorithm with mo-
mentum and adaptive step size, was slower to learn and
more prone to becoming stuck in local minima than
the clusteron learning rule. It is likely that with further
optimizations, including noise to help escape from local
minima, the performance of the MLP could climb to a
level commensurate with the comparable clusteron.

The principal lesson of this exercise, then, is that the
capacity of a population of cells is closely tied to the
number of nonlinear “basis functions” that can be ex-
tracted and represented by the population as a whole
to solve the learning problem at hand. When only a single
output nonlinearity is available per neuron, such as that
associated with a global spike-generating mechanism,
then the storage capacity of the tissue is either (1) very
low, when only a local Hebb-type rule is available to
train an unstructured population of cells or, at best,
(2) moderately low, when a much more sophisticated
nonlocal learning rule, such as back-propagation, is
available to structure a multilayer network of single-
output-nonlinearity cells. On the other hand, when each
cell by itself contains a large number of trainable nonlin-
ear subunits, as we suggest here, far higher capacities
can be tapped by a simple learning rule applied indepen-

dently to each cell in an unstructured population. The
critical difference is that, by packing many nonlinear
subunits within a single cell, the decorrelation of subunit
responses needed to maximize capacity can be effected
by an error signal confined within the cell itself.

In any of these scenarios, the storage capacity of the
population can be increased by simply adding more
cells, a desirable property from a neural design perspec-
tive. However, increasing the size of a population of
compartmentalized cells leads to the fastest growth in
capacity, since trainable nonlinear basis functions are
added to the population at the highest rate per cell.
These two design features, i.e., a synaptic learning rule
based on local signals and a far higher capacity per cell,
would seem to generate considerable pressure for use
of subunit-containing cells for learning, if and wherever
in the brain the option exists to do so.

Silent Synapses May Facilitate Learning

In experimenting with variants of the clusteron learning
rule, we found that too little or too much randomness
in the learning procedure could hamper learning perfor-
mance and reduce the apparent capacity of the cell.
Randomness was present in three forms: (1) selection
of a random subset of existing contacts onto a cell,
among which the worst performing individual was tar-
geted for replacement, (2) selection of a random subset
of available afferents, among which the best performing
individual was targeted to be the replacement, and (3)
application of an annealing step, in which, if the cell
performed worse after a replacement was effected, the
new synapse was nonetheless retained with some small
probability. We noted that randomness of category (2),
whose incorporation led to a significant increase in em-
pirical capacity, was potentially related to the idea that
synapses begin their life cycle in a silent phase,
i.e., involving only an NMDA-type, but not an AMPA-
type conductance (Isaac et al., 1995; Liao et al., 1995;
Durand et al., 1996). Thus, the set of immature synapses
existing on a branch could be viewed as a subset of
randomly drawn afferents, lined up as candidates to
replace dissident synapses that are targeted for elimina-
tion from the branch. Further investigation is needed,
however, to establish more rigorously the scope and
utility of this type of synaptic prescreening operation.

Optimal Morphology and Relations
to Real Neurons
One of our main findings is that for a cell of realistic size,
storage capacity is maximized when the cell contains a
large number of small subunits. In particular, according
to both analytical and empirical measures, a cell with
10,000 synaptic contacts learns the most when it is
broken into roughly 1000 independent subunits con-
taining ten synapses each. Upon cursory inspection of
published cell morphologies, however, this number of
subunits seems too large as an estimate of the number
of electrically independent subregions that could exist
within the dendritic tree of a single pyramidal neuron.
Several points lessen this apparent inconsistency.
First, in the vicinity of the optimal neuronal geometry,
the dependence of capacity on subunit size is relatively
weak. Reiterating the results of Figure 4, we found that
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for a cell containing 10,000 synaptic contacts, empirical
capacity was within a factor of 2 of its maximum for
cells ranging from as few as 80 subunits with 125 syn-
apses each, to cells containing 5000 subunits with two
synapses each. This relatively broad range of high-
capacity morphologies indicates that cells are to some
degree free to respond to other anatomical constraints
that could drive them toward morphologies containing
fewer, larger subunits, with only a moderate sacrifice in
storage capacity. Examples of such pressures might
include the need to maximize the packing density of
neurons, the need to maintain dendritic branching pat-
terns within biologically “reasonable” ranges, the need
to maintain better average electrical isolation between
dendritic branches, and so on.

Second, it is likely that our results underestimate the
optimal subunit size for an individual cell (and thus over-
estimate the optimal number of subunits), for two rea-
sons. First, the results of Figure 4 hold for cells with
binary weights, that is, with all-or-none values for the
strength of a synaptic contact. In cells trained with four-
level synaptic weights, such as those shown in Figure 5
with | = 4, the optimal geometry shifted toward cells
with fewer, larger subunits (data not shown). Further-
more, the population experiments of Figure 5 reinforce
the point that the true quantity we ought to optimize is
the capacity of a population of neurons learning to-
gether, rather than that of an individual neuron. In this
regard, our analytical calculations suggest that as popu-
lations grow larger, providing a larger effective number
of synaptic sites, the optimal subunit size grows larger
as well. This effect has not yet been adequately studied,
however, given the huge computational costs involved
in simulation of very large learning problems in large
populations of nonlinear cells.

Third, pyramidal neurons show signs of having been
“designed” to maximize the number of independent
dendritic subunits, subject to biophysical constraints
that limit the compartmentalization of voltage that is
possible in a continuously connected cable structure.
Thus, a key design constraint entails that dendritic sub-
units, if they exist, must be sufficiently independent in
the electrical sense that they do not interfere with one
another’s processing. At the same time, these same
subunits must ultimately combine forces to influence
the final common output of the cell.

One cell morphology that represents a compromise
between the pressure to provide a large number of sub-
units while maintaining strong electrical isolation be-
tween them s the stellate morphology that characterizes
a typical basal dendritic tree. The bulk of a pyramidal
cell’s excitatory synaptic contacts lie on the basal den-
drites, and most of these occur on long, thin terminal
sections (Beaulieu and Colonnier, 1985; Elston and
Rosa, 1997; C. J. Pace et al., 2000, Soc. Neurosci., ab-
stract). According to principles of cable theory (Koch,
1999), the impedance mismatch at the interface between
a thin branch and the soma or a main trunk should result
in a pronounced attenuation of voltage signals entering
the soma (trunk) from a thin branch, particularly for fast
voltage transients produced by AMPA-type synaptic in-
puts or sodium spikes. That the cable structure of a
stellate-form neuron could provide a large number of
independent electrical subunits was first pointed out by

Koch et al. (1983) in a theoretical study of retinal ganglion
cells, there under the assumption of passive membrane
properties. In a more recent investigation of the com-
partmentalizing effects of dendritic trees, we found in a
modeling study of a neocortical pyramidal cell with ac-
tive dendrites that full blown synaptically evoked spikes
initiated in a thin basal branch are quashed at the inter-
face with the cell body, appearing there disguised as
EPSP-like responses a few millivolts in height (Archie
and Mel, 2000). This attenuation of transient voltage
signals at branch points is a form of “blocking,” a term
usually referring to the interruption of action potential
propagation at branch points in axonal trees (Manor
et al., 1991). We obtained similar results in a study of
synaptic integration in a morphologically detailed CA1
pyramidal cell model. In this case, oblique branches
emanating from the main apical trunk in the stratum
radiatum could support large amplitude fast spikes that
appeared only in strongly attenuated form in the main
trunk and beyond (T. M. Brannon and B. W. Mel, 1999,
Soc. Neurosci., abstract). This finding suggests that a
thick apical trunk may act like an extension of the cell
body, providing a spatially elongated, low input resis-
tance domain that both isolates thin side branches from
each other and provides an efficient electrical conduit
connecting distal subunits to the global spike-generat-
ing mechanism near the cell body. One issue that re-
mains to be fleshed out is the impact of higher-order
branching in pyramidal cell dendrites. In the case of
basal dendrites, the relative profusion of branching near
the cell body where the density of synaptic contacts is
at a minimum, leading to relatively long unbranched
terminal sections containing most of the synapses (Els-
ton and Rosa, 1998; C.J. Pace et al., 2000, Soc. Neu-
rosci., abstract), could reflect design pressure to create
the largest number of quasi-independent subunits while
minimizing total branch length.

It is also interesting to note that the basal dendritic
trees of layer 3 pyramidal cells grow progressively larger,
contain many more terminal sections, and ultimately
accommodate 13 times more dendritic spines over the
sequence of cortical areas in the ventral visual pro-
cessing stream leading from primary visual cortex to
area TE in the inferotemporal cortex (Elston et al., 1999).
One interpretation is that the presence of relatively small
pyramidal cells in V1, which is devoted to general pur-
pose, nonmnemonic visual processing, reflects the rela-
tively modest need within a primary sensory processing
station for high-capacity experience-dependent plastic-
ity. In contrast, the inferotemporal cortex, a region
known to be involved in visual memory proper (Li et al.,
1993; Miyashita et al., 1993; Sobotka and Ringo, 1993;
Nakamura and Kubota, 1995), is constructed from much
larger and more richly compartmentalized cells (Elston
and Rosa, 1998). The trend to larger cells with ever more
dendritic subunits is continued in the prefrontal cortex,
where the basal dendrites of superficial layer cells have
16 times more dendritic spines than cells in the primary
visual cortex (Elston, 2000). However, it is worth noting
that even in a primary sensory cortex, it is common to
observe 50-100 thin branch terminal sections across
the dendritic arbor as a whole (see layer 5 pyramidal
cell in Figure 1), which may provide a rough estimate of
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the number of independent dendritic subunits provided
by a single neuron.

Experimental Predictions

The two main predictions of this work are straightfor-
ward. First, our conclusions regarding excess memory
capacity apply only to neurons containing multiple inde-
pendent nonlinear subunits. Within each subunit, poten-
tially corresponding to a thin oblique branch or a termi-
nal branch of a basal subtree, a steady increment in
the intensity of synaptic stimulation should produce a
strongly accelerating subunit response, while summa-
tion of responses delivered to different subunits should
be roughly linear over the same range of intensities.
From a more holistic perspective, the strongest cell re-
sponses in vivo should occur when high-frequency syn-
aptic excitation is spatially concentrated within several
dendritic subunits simultaneously, leading to full activa-
tion of the local complement of NMDA, Na*, and Ca?"
currents at several sites. In contrast, high-frequency
activation of a similar number of synapses scattered
diffusely about the cell should result in relatively weak
overall responses (Mel, 1992b, 1993).

A handful of experiments have provided evidence for
superlinear synaptic integration (Schwindt and Cirill,
1995; Margulis and Tang, 1998; Wessel et al., 1999;
Schiller et al., 2000; K. Holthoff et al., 2000, Soc. Neu-
rosci., abstract) (though, see Urban and Barrionuevo,
1998; Cash and Yuste, 1999). For technical reasons,
however, these in vitro studies of synaptic integration in
pyramidal cells have focused on summation of discrete
EPSP (or EPSP-like) waveforms. As a cautionary note
in weighing the results of such studies, we have found
in modeling studies of dendrites containing active chan-
nels with slow kinetics (including NMDA and voltage-
dependent Ca?" channels), that responses to discrete
EPSP-like events produced by a single extracellular
shock or glutamate pulse are unreliable predictors of
responses to high-frequency stimulation summed over
longer times (e.g., hundreds of milliseconds) (T. M. Bran-
non and B. W. Mel, 1999, Soc. Neurosci., abstract). This
finding is consistent with observations that calcium
spikes typically emerge in dendritic recordings in CA1
pyramidal cells only in response to trains of synaptic
stimuli (Golding et al., 1999), as well as gradual shift
from sublinear to superlinear temporal summation seen
in these same cells during stimulus trains (Cash and
Yuste, 1999).

Nonetheless, studies that combine (1) more realistic
high-frequency synaptic stimulation protocols, (2) pre-
cise spatiotemporal control of multiple sites of synaptic
activation, and (3) simultaneous recordings in the den-
drites and at the cell body have yet to be carried out.

Regarding the role of structural plasticity in neural
learning, this work makes a second prediction: groups
of afferent axons that fire together should be more likely
to form synaptic contacts —not just onto the same post-
synaptic cells—but onto the same dendritic compart-
ments. This prediction represents only a modest de-
parture from the widely accepted principle of neural
development that holds that axo-dendritic connections
are initially formed at random, and then stabilized or
eliminated based on the correlation of pre- and postsyn-

aptic signals (Shatz, 1990; Cline, 1999). From a develop-
mental perspective, our proposed elaboration of this
principle entails simply that the relevant postsynaptic
compartment is the dendritic branch or subtree rather
than the cell as a whole.

The following type of experiment could be used to
assess whether correlation-based sorting of synaptic
connections onto dendritic compartments is a mecha-
nism used by neural tissue to incorporate, and to read
out, learned information (Figure 6). Ideally, the experi-
mental protocol requires the ability to stimulate and re-
cord from five groups of neurons, where the axons in
each of the four “surround” groups (labeled A, B, C, and
D) have equal access to the dendrites of the “center”
group (labeled X). During a period in which synaptogene-
sis is ongoing, groups A, X, D and B, X, C are stimulated
in alternating fashion, thereby establishing strong posi-
tive correlations between groups A and D or B and C,
and strong negative correlations between, e.g., groups
A and B or C and D. Each of the four peripheral groups
would, however, experience an equally strong positive
correlation with group X. At the end of the training pe-
riod, cells in two correlated groups (e.g., A and D) or
two uncorrelated groups (e.g., A and B) would be filled
with dyes of different color, allowing their synaptic con-
tacts onto the cells of group X (also stained) to be visual-
ized and distinguished. Synapses arising from cells in
group A are expected to be more frequently cocompart-
mentalized with those of group D (e.g., lying on the same
dendritic branch or within the same minor subtree) and
to be less frequently cocompartmentalized with syn-
apses from group B. Further, costimulation of groups A
and D should give rise to stronger responses of cells in
group X than costimulation of groups A and B, and this
boosting effect should depend on the intact functioning
of excitatory voltage-dependent channels within individ-
ual cells in group X (including NMDA channels and vari-
ous types of voltage-dependent Na*® and Ca?" chan-
nels). As such, any means taken to block such channels
intracellularly, such as strong hyperpolarization or depo-
larization, or injection of intracellular channel blockers,
should lead to a reduction or outright elimination of the
cell’s integrative nonlinearity.

In the learning phase of the experiment, the five
groups of cells could, for example, consist of nearby
patches of auditory cortex, stimulated by playing appro-
priate combinations of tones to an intact animal over
an extended period of time (e.g., days). The “chords”
would be chosen, based on pilot mapping studies, such
that the tones composing the chords drive columns of
cells whose horizontal connections are symmetrically
distributed and within reach of each other in the tangen-
tial plane of the cortex. During the test phase, recordings
from neurons in group X would be carried out while
playing chords to the animal through the intact auditory
system. Alternatively, a similar experiment could be car-
ried out in a developing hippocampal culture grown on
amicroelectrode array, which makes possible long-term
stimulation and recording from known subpopulations
of cells.

Conclusions
The prevailing model for long-term memory in the brain
continues to be heavily influenced by the now famous
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Figure 6. Conceptual Setup of Experiment to
Test for Role of Structural Plasticity in Neural
Learning

Alternating correlated activation of popula-
tions A and D and B and C hypothetically
leads to more frequent stabilization of syn-
apses arising from neurons in groups A and
D on the same dendritic branches (likewise
for synapses from groups B and C). Given
this postlearning mapping of synapses on the
dendrites of cells in group X, summation of
responses to stimulation of groups A and B
should be quasilinear, whereas summation of
responses to stimulation of groups A and D
should exceed the linear prediction.

1| record

A
B
C N
D
X - // 1

1 1

training,..

conjecture of Donald Hebb (1949), which holds that the
incorporation of learned information in neural tissue,
whether during early development or adult learning, in-
volves activity-dependent strengthening and weakening
of synaptic connections between neurons. In an ex-
tension of this idea, our proposal assigns two distinct
roles to long-term potentiation or depression of synaptic
connections: (1) to provide direct access to a fast-load-
ing, low-capacity storage reservoir, expressed by the
fine patterning of synaptic weight values and mediated
by conventional activity-dependent changes in the
strengths of synaptic connections, and (2) to provide
indirect access to a slow-loading, high-capacity storage
reservoir, expressed by the selective addressing of syn-
aptic contacts onto dendritic subunits and mediated
by gradual activity-dependent remodeling of the axo-
dendritic interface.

The main quantitative finding of this work is that, under
a reasonable set of assumptions regarding the proper-
ties of individual neurons and of small populations of
neurons, the capacity of the slow-loading, structure-
based memory reservoir outstrips that contained in syn-
aptic weight values by orders of magnitude. Put another
way, if one considers only the strengths of connections

I

testing,..

between pairs of neurons as the physical substrate for

memory, one risks overlooking the bulk of the informa-

tion stored in neural tissue as a consequence of learning.
In addition, the present proposal regarding a struc-

tural basis for long-term memory links a diverse set of

neuroanatomical and neurophysiological findings and

assigns to them specific functional interpretations:

¢ the finding of several types of voltage-dependent cur-
rent in dendrites that interact to produce regenerative
physiological events—we interpret this as providing
the thresholding nonlinearity needed to “bind” affer-
ents together within a dendritic subunit;

¢ the finding that for the most commonly occurring den-
dritic morphologies, the vast bulk of the excitatory
synaptic input is delivered to thin branches, which
are mostly isolated from each other by main trunks
or the cell body—we interpret this as an adaptation
to provide the largest possible number of quasi-inde-
pendent subunits within a connected dendritic tree
structure;

¢ the finding that random formation of synaptic con-
tacts between axons and dendrites is a commonly
occurring developmental process—we interpret this
as the randomization engine that drives the massively
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Figure 7. Possible Account for Discrepancy between Analytical and Empirical Capacity Curves

(A) Ratio of empirical to analytical capacity curves from Figure 4A shows oscillating pattern of mismatch (down-up-down-up-down).

(B) Mismatch can be modeled as product of sinusoidal “capacity” and “trainability” factors in antiphase. Product (lower panel) yields double-
peaked correction factor similar to that shown in (A). Capacity factor shown is 1 + 0.7 sin(x + 5.1 w/4); trainability is 1.18 — 0.59 sin(x + 5.3

/4); parameters were set by inspection.

parallel search for groups of correlated afferents en-

coding important higher-order features in the input

stream;

¢ the finding that axonal and dendritic arborizations are
profusely interdigitated within the three-dimensional
volume of the cortical neuropil—we interpret this as

a physical interface optimized to create many points

of close approach between pairs of potential pre- and

postsynaptic partners, which helps with the logistics
involved in providing opportunities for arbitrary sub-
sets of afferents to gather together within the same
dendritic subunits;

¢ the finding of a substantial populations of immature,
or “silent,” synapses within the dendrites of cortical
neurons, lying in wait as candidates for structural sta-
bilization—we interpret this as an adaptation that fa-
cilitates structural learning and boosts overall mem-
ory capacity;

¢ the finding that populations of interchangeable neu-
rons, i.e., whose dendrites have access to the same
inputs and whose axons project to the same targets,
are a common feature of neural organization (such
as the neurons confined to a layer within a cortical
column)—we interpret this as a means to grow stor-
age capacity by simply growing more neurons;

¢ the finding that the dendritic arborizations of neurons
in the frontal areas of the brain, which are likely to be
more heavily involved in long-term memory storage,
are far larger and more complex and contain more
spines than in posterior sensory areas—we see this
as reflecting the pressure to make available the largest
possible number of trainable subunits needed to learn
arbitrary associations between sensory, motor, lan-
guage, and affective variables.

As a final comment, it is worth noting that the implica-
tions of the present structure-based view of neural learn-
ing are not be limited to matters of learning and memory
per se. In other work, we have found that the combina-
tion of correlation-based structural plasticity and active
dendritic processing could have important implications
for the nonlinear classical and extraclassical receptive
field properties of neurons in sensory cortex (see Mel,
1999).

Procedures

Appendix 1: Function Counts, Mutual

Information, and Capacity

A number of authors have considered the problem of storage capac-
ity, with varying degrees of abstraction from the biological detail
(Cover, 1965; Willshaw et al., 1969; Vapnik and Chervonenkis, 1971;
Poggio, 1975; Barron, 1984; Hopfield, 1984; Baum and Haussler,
1989; Pearlmutter, 1992; Zador and Pearlmutter, 1996; Riegler and
Seung, 1997), though none has directly considered the issue of
capacity as a function of dendritic geometry. Our approach is based
on the principle that storage capacity relates to the number of dis-
tinct input-output functions the neuron can represent through all
possible settings of its parameters.

Discrete function counts relate to conventional measures of ca-
pacity, such as VC dimension (see Bishop, 1995), by providing an
upper bound on the number of distinct labelings (dichotomies) of a
randomly drawn training set that can be realized by the function
class (neuron model) in question. Counts of discrete parameter
states generally overestimate the capacity of a learning system,
since the function class may contain representational degeneracies,
i.e., sets of highly similar discriminant functions that produce identi-
cal labelings of the training set. We therefore expected the quality of
our predictions would depend on the uniformity of the degeneracies
present in the various function classes (i.e., cell morphologies).
Given such uniformity, function counts could serve as good pre-
dictors of the relative capacity of any two cells under consideration.

The expression for By may be a slight overestimate of the true
number of input-output functions for a nonlinear cell, as we were
unable to prove that all redundancies —i.e., multiple synaptic config-
urations that yielded the same input-output function—were fully
discounted, and we in fact found redundant states for very small
cells (e.g., four branches with six synapses each). However, based
on the outcome of Monte Carlo experiments, we concluded that By
rapidly approached the true number of distinct input-output func-
tions for cells with more than a handful of branches and sites.

Appendix 2: Derivation of Logarithmic Capacity

Asymptote for Linear Model

We compute the growth rate of B, as the number of sites s is
increased, for constant d.

B, = 2log,

(s+zf1) ®)

Expanding Equation 8, we have,

B (s+d-—1)

2z = sid — 1)!
_+t1) (s+2 (s+d—-1)
1 2 d—1) ®



Active Dendrites and Structural Plasticity
793

Assuming s is large and s >> d,

s s s sk
1 27d=-1) @d-1)

2%~ (10)
The number of bits available to the linear model is thus approxi-
mately

B~ 2(d — iogds) ~ 2 logil) (1)

i=1

indicating capacity grows logarithmically with s.

Appendix 3: Generating the Training Set

Training samples were drawn from a d,-dimensional spherical
gaussian distribution with zero mean and unit variance and were
randomly assigned positive or negative labels. In some runs, training
patterns were evenly divided between positive and negative labels,
with similar results. Prior to learning, input patterns were sparsely
recoded and mapped into high-dimensional space. Each of the d,
input components was individually recoded using a set of r one-
dimensional receptive fields (RFs) with centers distributed symmet-
rically along the positive and negative axes of the component. Three
different RF schemes were tried, to assess the dependence of our
empirical capacity measurements on the choice of input representa-
tion; relative performances of the three schemes are shown in
Figure 4B. The RF scheme that generated optimal performance for
nonlinear cells employed nonoverlapping binary-valued RFs with
centers and bin widths chosen so that all RFs were activated equally
often, leading to narrow bins near the origin and wide bins on the
gaussian tails. This recoding procedure mapped the original
do-dimensional learning problem into an embedding space of d =
r - d, dimensions, thereby increasing the intrinsic discriminability of
the training samples. In all runs shown here, d, = 40 and r = 10
giving d = 400, for comparison with analytical curves in Figures 1
and 3.

Appendix 4: Annealing Details

With each iteration of the learning process, the substitution of the
best replacement candidate « for the poorest performing synapse
« in the target set was carried out with probability 1 if the replace-
ment led to a reduced mean squared error (MSE). If the MSE in-
creased as a result of the substitution, it was nonetheless carried
out with a probability given by a Boltzmann equation,

p=—"""g (12)
1+eT

based on the difference in the measured MSE before (¢,) and after
(€) replacement.

We began with temperature T = 0.9, and trained for a maximum
of 800 passes through the training set (condition a), or until the error
rate dropped 180 times to a new minimum (condition b), or until a
given minimum error rate was encountered 100 times (condition c),
whichever came first. In conditions a and b, the learning process
was assumed to be proceeding successfully; in both cases, we set
T — a7 T, with ar = 0.9, and began a new batch of 800 runs at lower
temperature. In condition c, or if the temperature ever fell below 0.1,
the learning process was assumed to be stuck in alocal minimum; in
such cases, we set T = T/(a;)* for | = 1 or T = T/(x7)? for I > 1 and
began again. Learning proceeded until the algorithm converged
(more frequent outcome), or up to a maximum of 120 temperature
steps (less frequent outcome). Convergence meant no further reduc-
tion in error rate after 40 local minima (i.e., temperature increases)
were encountered.

Appendix 5: Generating Correlated Training

Sets for Population Experiments

To test memory performance for populations of neurons, training
sets were contrived so that more information was available to learn
than could be learned by any single neuron. Positive and negative
training samples were drawn from two different 40-dimensional non-
Gaussian distributions, so that positive patterns could be distin-
guished from negative patterns based on a large number of signifi-
cant higher-order correlations. Training patterns were generated in

three phases. A 40-dimensional phase 1 vector was created in which
the first 36 components were drawn from a normal distribution and
the remaining four components were set to 1. Four indices of the
phase 1 vector were then chosen at random (with replacement)
and remembered, where the first component of the 40-dimensional
phase 2 vector was computed as the product of the phase 1 compo-
nents located at the four selected indices. This procedure was re-
peated 39 more times to create the 40 components of the phase 2
vector, each time remembering the four phase 1 indices associated
with each phase 2 component. All positive and negative training
examples were drawn from this same non-Gaussian distribution,
but were then processed with a different linear transform. In phase
3, positive examples were premultiplied by a square matrix A con-
taining coefficients uniformly distributed between —1 and 1. Nega-
tive examples were premultiplied by A + B, where B contained
coefficients normally distributed with zero mean and unit variance.
The resulting 40-dimensional vectors were then mapped through
the 400 basis functions (10 per input dimension) as previously de-
scribed.

Appendix 6: Learning with Multivalued Weights

In the case of multivalued weights, the rule for synapse replacement
was more complex than for unitary weights, since an input connec-
tion could be either changed in strength (up or down), or outright
replaced. In this case, both the worst synapse « and the best syn-
apse B in N were identified based on their fitness values ¢, and
;. If « was already a weak synapse, i.e., w, = 1, it was tagged for
replacement with the best synapse k in i as before, with w, = 1.
For w, > 1, rather than eliminate the connection entirely, its weight
was tagged to be decremented by one level. Similarly, w, was tagged
to be incremented by one level, up to a maximum level of /. As in
the case of unitary weights, the changes to both « and B were
carried out with a nonzero probability when they led to an increased
error rate.

Appendix 7: Discrepancies between Analytical

and Empirical Capacity Curves

We considered the source of the slight difference in shape between
analytical and empirical capacity curves, which reflected a failure
of the counting expressions in Equations 4 and 5 to predict the
empirical capacities achieved on particular training set distributions.
The relationship between empirical capacity and subunit number/
size includes several factors: (1) the combinatorics that determine
the number of distinct input-output functions available to the cell
(Equation 5), which favor subunits of intermediate size, (2) a capacity
factor that measures the degeneracy (i.e., self-similarity) within the
cell’s function class, which also favors subunits of intermediate size,
(3) the trainability of the cell using stochastic gradient descent,
which disfavors these high-capacity cell configurations, (4) parame-
ters of the learning rule which control the level of randomness, (5) the
choice of input representation, which introduces representational
biases that help or hinder learning for particular training set distribu-
tions (see Figure 4B), and (6) the choice of branch nonlinearity b(),
which likewise introduces a (poorly understood) representational
bias.

In spite of the large number of factors influencing empirical learn-
ing performance, we noted that the fit between the analytical and
empirical capacity curves was nearly perfect for an earlier version of
our learning rule (see inset in Figure 4A), which fortuitously extracted
excess capacity from nonlinear subunit-containing cells in just that
proportion predicted by the analysis—i.e., a boost of 23 for the
optimal cell morphology. However, as we improved the learning rule,
leading to ever-larger empirical capacities for nonlinear cells —while
linear cells remained pinned at their asymptote —the empirical ca-
pacity curve was gradually deformed in shape.

To examine the source of the discrepancy, we plotted the ratio
of empirical to analytical capacity curves from Figure 4Ain Figure 7A.
The basic oscillatory pattern of the mismatch could be explained
by the product of two hypothetical factors that modulate the raw
function counts given by Equation 5. The first factor reflects a viola-
tion of the main assumption underlying the use of function counting
expressions as in Equation 5: even when two discrete function
classes contain exactly the same number of input-output functions,
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the relative self-similarity, or degeneracy, of the functions contained
within the respective classes determines their true representational
capacity. We therefore hypothesized the existence of a unimodal
“capacity” factor, denoting the true capacity per function counted.
We conjectured this factor would peak at or near the optimal cell
geometry, since these cells (by definition) contain the most variable
representations of higher-order synaptic interaction terms (Fig-
ure 7B, upper panel). A second factor relating to “trainability” de-
notes the relative difficulty involved in finding a global minimum
during training. Given that high-capacity cells were confronted with
the most challenging (i.e., largest) training sets, we conjectured that
the trainability factor would be in antiphase to the capacity factor
(Figure 7B, upper panel). The product of these two factors could
then give rise to a frequency-doubled (i.e., double-peaked) correc-
tion factor similar to that seen in our experiments (compare
Figure 7B, lower panel, to 7A).
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