
Abstract An important goal in computational neuro-
anatomy is the complete and accurate simulation of neu-
ronal morphology. We are developing computational
tools to model three-dimensional dendritic structures
based on sets of stochastic rules. This paper reports an
extensive, quantitative anatomical characterization of
simulated motoneurons and Purkinje cells. We used sev-
eral local and global algorithms implemented in the 
L-Neuron and ArborVitae programs to generate sets of
virtual neurons. Parameters statistics for all algorithms
were measured from experimental data, thus providing a
compact and consistent description of these morphologi-
cal classes. We compared the emergent anatomical fea-
tures of each group of virtual neurons with those of the
experimental database in order to gain insights on the
plausibility of the model assumptions, potential improve-
ments to the algorithms, and non-trivial relations among
morphological parameters. Algorithms mainly based on
local constraints (e.g., branch diameter) were successful
in reproducing many morphological properties of both
motoneurons and Purkinje cells (e.g. total length, asym-
metry, number of bifurcations). The addition of global
constraints (e.g., trophic factors) improved the angle-de-
pendent emergent characteristics (average Euclidean dis-
tance from the soma to the dendritic terminations, den-
dritic spread). Virtual neurons systematically displayed
greater anatomical variability than real cells, suggesting
the need for additional constraints in the models. For
several emergent anatomical properties, a specific algo-
rithm reproduced the experimental statistics better than

the others did. However, relative performances were of-
ten reversed for different anatomical properties and/or
morphological classes. Thus, combining the strengths of
alternative generative models could lead to comprehen-
sive algorithms for the complete and accurate simulation
of dendritic morphology.
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Introduction

The remarkable progress of computer processing power
in the last decade has enabled the construction of highly
sophisticated models of neuronal function and behavior
(Koch and Segev 1998). These models can simulate sin-
gle-cell electrophysiological features accurately by tak-
ing into account many fundamental biophysical and bio-
chemical details, such as membrane properties, ionic
channel distributions, and chemical concentrations
(Bower and Beeman 1998). Dendritic structure contrib-
utes significantly to neuronal information processing
(Stuart et al. 1997; Mel et al. 1998) and morphological
details may affect the electrophysiological behavior of
single neurons (Mainen and Sejnowski 1996). The im-
portance of dendrites for neuronal activity is further evi-
denced by the influence of dendritic morphology on net-
work connectivity (van Ooyen et al. 2000). Nevertheless,
neuronal anatomy has, traditionally, not been modeled in
computational neuroscience. Compartmental models of
neurophysiology are typically built on a limited set of
experimentally traced neurons, or alternatively the neu-
ronal morphology is grossly simplified or disregarded al-
together (“ball and stick” models).

The recognition of the crucial role that anatomy plays
in supporting and shaping nervous system activity has
recently encouraged neuroscientists to develop and char-
acterize computer algorithms for the simulation of neu-
ronal morphology (Senft 1997; van Pelt et al. 1997; 
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Winslow et al. 1999; Ascoli and Krichmar 2000). Recent
advances in computer graphics have allowed the use of
these algorithms to generate and display three-dimen-
sional models of neuronal structures that are anatomical-
ly realistic and accurate. Virtual neurons can be used in
structure/function relationship studies, as building blocks
for biologically plausible neural networks, as tools to
search for the most efficient description of neuroanatom-
ical data, or to help investigators develop scientific intu-
itions and hypotheses (Ascoli 1999; van Pelt et al. this
issue).

We are modeling the structure of dendritic trees with
a variety of algorithms implemented in two programs,
called L-Neuron and ArborVitae (Ascoli et al. 2001). 
L-Neuron generates dendrites in single cells by local al-
gorithms (Ascoli and Krichmar 2000), in which each
simulated dendrite grows depending on intrinsic influ-
ences, and independent of other dendritic trees or neu-
rons. The first algorithm implemented in L-Neuron is
based on a set of observations and hypotheses originally
formulated by Hillman (1979). Dendrites grow by elon-
gation steps of statistically variable length, tapering rela-
tive to their diameter. At the end of each step, they either
bifurcate or terminate depending on their thickness. If
they bifurcate, the daughter diameters are calculated
from the parent diameter on the basis of theoretical con-
siderations such as conservation of sectional area or opti-
mization of axial flow (Rall 1959). In a second L-Neuron
algorithm, implemented after a model proposed by
Burke et al. (1992), dendrites grow by elongation steps
of fixed length, tapering at a constant rate. At the end of
each step, they can bifurcate, terminate, or elongate
again according to a set of continuous, diameter-depend-
ing probabilities. If they bifurcate, the daughter diame-
ters are calculated from the parent diameter on the basis
of their observed empirical correlations. Both Hillman’s
and Burke’s algorithms, described extensively in the Ma-
terials and methods section, follow a local approach be-
cause dendritic shape is controlled mainly by the branch
diameter, thus disregarding environmental influences
(Hillman 1988).

ArborVitae, in contrast, implements global algo-
rithms, in which populations of neurons grow based on
global or “environmental” constraints, such as a fixed
amount of metabolic resources or the presence of neuro-
trophic gradients. In global algorithms, the growth of
each dendrite is thus influenced by spatial location and
by the growth of other dendrites. ArborVitae generates
trees by “dealing out” dendritic segments to a population
of growing neurons in subsequent phases (Senft 1997;
Senft and Ascoli 1999). (In this paper, the term segment
indicates the minimum cylindrical compartment approxi-
mating a piece of dendrite. A branch, in contrast, is a
portion of dendrites in between two nodes (stems, bifur-
cations, or terminal tips). Generally, a branch will be
formed by several segments.) In the first phase, segments
append to somata (initiating dendrites), and extend to a
statistically variable length. In the following phases, the
tips of all growing dendrites can bifurcate by receiving a

pair of segments in the dealing process. The two attached
daughters then receive extending segments until they ter-
minate or bifurcate again. Each growth phase is charac-
terized by a probability of termination and by a “quota”
of dendritic length to be assigned. When all the dendrites
in a phase quota are dealt out, the next phase is started,
until the last phase is over. In this algorithm, which is
also described extensively in Materials and methods, the
fate of each dendrite depends on that of all other den-
drites. Such a global approach reflects a competition
among neurons and neurites for growth resources, and is
suitable for incorporating extrinsic determinants of den-
dritic shape (Hillman 1988; Senft 1997).

The generation of neuromorphology in L-Neuron and
ArborVitae is a stochastic process. When an algorithm
uses a parameter (e.g., taper rate), it samples a random
number from an appropriate statistical distribution. As a
consequence, multiple runs of the same algorithm with a
given set of parameters (but with different random
seeds), generate different neurons. Such a variability of
simulated neurons reflects a natural variability of real
cells: even within the same morphological class, no two
neurons are identical. Thus, the statistical distributions of
the parameters used by the algorithm characterize a neu-
ronal class rather than single individuals. Changing the
parameter statistical distributions will change the charac-
teristics of the morphological class (it will describe a dif-
ferent class). Since parameter distributions are extracted,
for each morphological class, from experimental data
(e.g., from cell tracing reconstructions), stochastic algo-
rithms provide a very compact description of neuroana-
tomical data (Ascoli et al. 2001).

We call the parameters used by L-Neuron and Arbor-
Vitae to generate neuroanatomical structures basic pa-
rameters; in contrast, all the morphological parameters
not explicitly specified in the algorithms are emergent
parameters (Ascoli 1999). Taper rate and dendritic stem
diameter are examples of basic parameters. Total den-
dritic surface area and branching order (Uylings et al.
1986) are examples of emergent parameters. Emergent
parameters are important to compare virtual cells with
the real cells from which the basic parameters were ex-
tracted. Such comparison constitutes a fundamental step
in the evaluation of morphological algorithms. Analysis
of discrepancies between real and virtual neurons can be
used to improve the algorithm (i.e., to find better ana-
tomical rules). If the distributions of all emergent param-
eters of virtual and real neurons are statistically indistin-
guishable, the algorithm is deemed accurate. In this case,
a large population of virtual neurons can be generated to
assemble large scale, anatomically accurate neural net-
works (Senft and Ascoli 1999), or to study the influence
of dendritic morphology on neuronal electrophysiology
and on axonal navigation (van Ooyen et al. 2000), and
can be made available to the neuroscience community
through electronic databases (Ascoli et al. 2001).

In recent years, we have used L-Neuron and ArborVitae
to generate virtual neurons as diverse as cortical pyrami-
dal cells and thalamic neurons (Senft 1997), hippocam-
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pal pyramidal and granule cells (Senft and Ascoli 1999),
cerebellar Purkinje cells (Ascoli and Krichmar 2000) and
spinal motoneurons (Ascoli et al. 2001). Here, we report
the first extensive, quantitative analysis of two classes of
virtual neurons, Purkinje cells and motoneurons, generat-
ed with various algorithms. Specifically, cells generated
with the L-Neuron Hillman and Burke algorithms and
with ArborVitae are compared with real neurons. The
Purkinje and motoneuron classes were selected for the
high quality of the available traced data. In addition, they
represent sufficiently different morphologies to provide
clues on the generality (or lack thereof) of the conclu-
sions.

Materials and methods

Real neuron data

The morphological data of real neurons used in this study consist-
ed of digitized computer files obtained from 3D reconstructions of
intracellularly stained cells. The motoneuron files corresponded to
six cells from cat spinal cord (Cullheim et al. 1987). The Purkinje
cell files corresponded to three neurons from guinea pig cerebellar
cortex (Rapp et al. 1994). In both studies, depth (Z) values were
corrected for shrinkage and lens medium refraction. The limited
number of real neurons does not imply a lack of source data,
thanks to the remarkable branching complexity of both motoneu-
rons and Purkinje cells. This dataset contains 1970 motoneuron
dendritic branches and 2619 Purkinje cell dendritic branches
(from each branch sample, single values of taper rate, branch
length, etc. can be measured). All details concerning data avail-
ability, formats, and conversions were described elsewhere (Ascoli
et al. 2001).

L-Neuron algorithms

L-Neuron algorithms generate each dendritic tree as an indepen-
dent process. Each tree stems out of the soma with an initial diam-
eter (basic parameter Dstem) and orientation (elevation and azi-
muth, or Tel and Taz, respectively). In the simulation of cells with
multiple trees (such as motoneurons), one of the basic parameters
is the number of trees per cell (Ntree; for a summary of all sym-
bols, see the Glossary at the end of this section). Once a value n is
sampled for this parameter, the algorithm is repeated n times to
generate the appropriate number of trees. Every dendritic segment
subsequent to the tree stem grows in a direction determined by the
growth direction of its parent (the previous segment in the path
from the soma), a relative elevation and azimuth determined at bi-
furcating or extending points, and the influence of tropism, an ini-
tial attempt to simulate the effect of neurotrophic gradients (Ascoli
and Krichmar 2000). Several types of tropism are implemented in
L-Neuron, but only two are used in this study. Somatocentric tro-
pism (TROs) pushes segments away from (or toward, if negative
in value) the soma; axial tropisms (TROx, TROy, TROz) push seg-
ments towards greater (or smaller) absolute values along a specific
Cartesian axis. Tropism only affects growth direction, and no oth-
er property, such as length and diameter. The growth direction
(with unitary vector length) is modified by adding a tropism direc-
tion (with a vector length corresponding to the tropism value, de-
fined between 0 and 1), and the length of the resulting vector is re-
normalized to 1.

The growth processes in the various L-Neuron algorithms dif-
fer in their details. In Burke’s algorithm (Fig. 1) dendritic branch-
es grow by a fixed incremental length (∆L). After growth, the di-
ameter shrinks according to a taper rate (TPRB) proportional to the
segment length (since ∆L is constant, the diameter drop is actually
fixed in value throughout growth). Upon elongation, two bifurca-
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Fig. 1 A Flow chart of the Burke algorithm in L-Neuron. FOW is
the growth orientation vector; see Glossary for all term defini-
tions. B Representation of amplitude (amp) and torque (tor) bifur-
cation angles, and of symmetric and dichotomous bifurcations



tion probabilities are sampled, and the smaller of the two is select-
ed. These two probabilities depend exponentially on diameter (see
Glossary for equations). The first probability is called overlap
probability (Pov) because it is usually selected at small diameters,
when branches could also terminate. The second probability is
called non-overlap probability (Pnov), because it becomes impor-
tant at large diameters, when there is no overlapping probability of
termination (see Burke et al. 1992, for the rationale). The selected
probability (Pov or Pnov) is the probability that a dendritic branch
bifurcates, creating two daughter branches. The two daughter di-
ameters are calculated by independently sampling two values from
the same distribution of a parameter called R by Burke et al.
(1992), and linearly combining them with a value sampled from
another basic parameter distribution, A (see Fig. 1 for complete
equations).

The relative direction coordinates of the two daughters are de-
termined with two parameters (Fig. 1B), a bifurcation torque (Btor)
and a bifurcation amplitude (Bamp). The azimuth of both daughters
is set equal to the torque value. The elevation of one of two
daughters is then sampled randomly between zero and the ampli-
tude value, whereas the elevation of the other daughter is set as the
complement to the amplitude value, with a negative sign. This im-
plementation of bifurcation angles in L-Neuron rests on two as-
sumptions, namely that the parent and two daughters lie on a
plane, and that the “tilt” angle of the bifurcation is randomly dis-
tributed between the “symmetric” and “dichotomous” extreme
cases (Fig. 1B). Both assumptions are currently being tested. Both
daughters of the bifurcation, each with its diameter value and
growth direction, repeat the procedure from the unitary growth
step described above. If the dendritic branch does not bifurcate, it
is assigned a probability to terminate (Ptrm), which also depends
exponentially on the local diameter (see Glossary for the equa-
tion). If the dendritic branch does not terminate either, the growth
direction is updated with elevation and azimuth values sampled
from appropriate distributions (Eel and Eaz, respectively), and the
dendritic branch extends with a new segment. The algorithm con-
tinues recursively until all branches have terminated.

The L-Neuron implementation of Hillman’s algorithm has a
similar iterative structure. However, each dendritic branch is gen-
erated with a variable length determined by a basic parameter
(Ldb). The branch diameter shrinks according to a taper rate
(TPRH) that is relative to the diameter value itself (i.e., it is a pro-
portional fraction, where 0 corresponds to a cylindrical branch and
1 to a conical branch), but it is independent of the branch length.
At this stage, the dendritic branch is broken in a number of seg-
ments (Frg) to reflect the natural meandering of real dendritic
branches. Each segment is attached to the previous one at an angle
appropriate to provide the correct ratio of pathlength over Euclide-
an distance between the branch starting and ending points (“con-
traction”, or Cnt). The details of this procedure are described else-
where (Ascoli and Krichmar 2000). After growth, dendritic
branches either bifurcate or grow for an additional length (Ltrm)
and terminate, depending on whether their ending diameter is larg-
er or smaller than a “threshold” value (Th). The diameters of the
two daughters are calculated from the ending diameter of the par-
ent branch using a value of the ratio (DR) between the larger and
the smaller of the daughter diameters, and the “power law” (Rall
1959). Rall’s law states that the sum of the daughters’ diameters,
elevated to a power (ν) equals the diameter of the parent, elevated
to the same power. Empirical observations have actually suggested
that Rall’s law fits the observed data better if the diameter of the
parent, elevated to ν, is multiplied by a constant (PK), usually
greater than one (e.g. Cullheim et al. 1987). We also implemented
this modification of Rall’s law in L-Neuron, further imposing the
parent diameter as a maximum value for the daughters’ diameter.
The daughters’ growth directions are determined as described for
the Burke algorithm. In addition, we also implemented a variation
of Hillman’s algorithm (Tamori 1993), in which the two daugh-
ters’ elevation angles are calculated, based on theoretical consider-
ations, from the “effective volume”, i.e., a positive quantity whose
upper limit is Rall’s power ν (see Tamori 1993, for the equations,
their rationale, assumptions, and proof). In all cases, the two

daughters stemming out of the bifurcation, each with given diame-
ter and growth direction, undergo the steps described above as
though they were new stems, and the loop is repeated until all
branches terminate.

ArborVitae algorithm

The population-based approach in ArborVitae is a reflection of the
long-term goal of generating and visualizing dense networks of in-
terconnected neurons in an emulation of brain tissue development.
The design of ArborVitae approaches this large task in stages by
providing methods to: (1) generate, eliminate, migrate, and trans-
form cells; (2) emit and remodel neurites; (3) establish and refine
synapses. Here we focus on the aspects of the program that deal
with specification of neurites for emulating neuron geometry. Oth-
er ArborVitae features have been described elsewhere (Senft 1997;
Senft and Ascoli 1999). Dendritic segments in ArborVitae (as in
L-Neuron) are represented using tubule primitives, knitted togeth-
er into trees using a system of parent and child pointers. Each tu-
bule is characterized by its diameter, length, location, and orienta-
tion in space. Basic parameters specify elementary segment length
(∆L), initial segment diameter (Dstem), taper rate (TPRB), branch
angles (see Glossary and Table 3 for angle symbols). Neuronal
structures are created by elementary events (which may be trig-
gered by intrinsic or extrinsic signals) of “appending” a dendritic
stem to a cell body, “extending” (with one child) or “bifurcating”
(with two children) a pre-existing dendritic segment. We hypothe-
size that dendritic outgrowth may be described statistically using
only a finite number of fundamental “phases” (typically up to
five). Each phase is characterized by a set of distinctive statistics
constraining the inter-bifurcation pathlengths and the number of
branches and terminations (Fig. 2).

The initial growth phase assigns the locations, shapes, and ori-
entations to a set of cell somata. These parameters (x, y, z position
in space, elevation and azimuth, diameter and length of the major
soma axis) could be derived from morphometry of confocal data
(Peterson 1999). Each soma then is dealt a statistically constrained
number of initial segments (Ntree) to begin the arborization pro-
cess. Segment diameter (Dstem), length (BrL1) and orientation rela-
tive to the soma (Tel and Taz) are likewise randomly chosen within
the statistical distribution characteristic of the initial growth phase.
Segments are added onto a stack of “actively growing” segments
(for efficiency in selecting those growing segments among a rap-
idly enlarging set of inert ones).

In each subsequent growth phase (generally 2 through 5),
items on the active stack are visited in random order, and a topo-
logical decision is made to extend, bifurcate or terminate a given
segment. Segment identified as extending or bifurcating are linked
to the parent; the orientation of the new tip (relative to the parent
segment) is resampled from group statistics (Eel and Eaz for ex-
tending, Bel and Baz for bifurcating segments). At bifurcations, the
orientation of each arm is set independently as a random deviation
in elevation and azimuth from the parent vector. Dendrites can be
forced to grow in a completely planar way by clamping all bifur-
cation azimuth values of the two sister segments to zero and 180
degrees, respectively. Extending and bifurcating segments inherit
hotspots from their parents. Bifurcating segments also receive an
additional hotspot on the stack, which is immediately dealt the
second segment to complete the bifurcation. The hotspots of ter-
minating segments are removed from the stack. The frequency and
outcome of the topological decision depends both (locally) on
variables such as length and diameter and (globally) on the
group’s current growth phase. The primary local variable is an “in-
ter-bifurcation length” (BrL2 through BrL5), associated with each
hotspot. A BrL value is resampled from its phase-specific distribu-
tion whenever a neurite appends to a soma or forms a bifurcation;
this assigned value decreases by a small amount (∆L) when each
new segment is added. New segments inherit parental diameter,
thinned by a taper rate, which corresponds to Burke’s parameter
TPRB. When the inter-bifurcation length is exhausted by the addi-
tion of ∆L segments, a bifurcate/terminate decision is made de-
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pending on the phase-specific failure probability. Such a probabili-
ty is calculated from the measured number of bifurcations and ter-
minations [BrT/(BrT+0.5*BrB), see Glossary for definitions]. In
addition, segments whose diameter falls below a threshold value
(TD) are prevented from bifurcating, and extend instead.

Each phase is allotted a total length of neurite to deal out to all
active tips in the group of cells. Such quantity is calculated from
the measured number of branches and their average length

(BrB*BrL). Every newly added segment decreases this allotment,
and the cell group, as a whole, shifts to the next phase when this
precalculated quota of neurite has been expended (Fig. 2). Growth
ceases when the quota for the last phase is met, or when no more
active sites remain on the stack. Multiple groups of neurites (e.g.,
primary and secondary), each with its own phases, may grow at
the same time or sequentially.

Basic parameters

The L-Neuron and ArborVitae basic parameters (see Glossary and
Fig. 1, 2) can be generally measured from the digitized files of the
real (traced) neurons. Such measurements result in distributions of
values, which are fitted with a statistical function. Functions used
in this study are: (truncated) Gaussian with mean, standard devia-
tion, and optional minimum and maximum values, uniform distri-
bution within a range, or constant value. The truncation of values
is important to avoid the stochastic sampling of physically impos-
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Fig. 2 ArborVitae algorithm flow chart. The symbol p indicates
the phase number. The total length per phase L(p) is calculated
from the number of branches and their average length
(BrLp*BrBp). The probability of termination F(p) is calculated
from the numbers of terminations and bifurcations [BrTp/
(BrTp+0.5*BrBp)]. Az [A, E, or B] and El [A, E, or B] indicate
azimuth and elevation angles for appending (Taz and Tel), extend-
ing (Eaz and Eel), and bifurcating (Baz and Bel) segments, respec-
tively



sible values (e.g., negative diameter). L-Neuron offers the option
to define basic parameter distributions as weighted mixtures of
two or more statistical functions (see Results for examples). In a
few cases, the parameter measurement from the original data is
non-trivial. For example, bifurcation amplitude angles (Bamp) are
obtained as the arc cosine of the scalar product of the two daugh-
ter growth vectors, divided by the product of the two vector
lengths. In Hillman’s algorithm, these vectors are defined from the
bifurcation point to the following bifurcation (or termination)
point away from the soma; in Burke’s algorithm and in ArborVitae,
they are defined from the bifurcation point to the end of the first
immediate segment (compartment). Bifurcation torque angles
(Btor) are calculated from the scalar product of the two vectors ob-
tained as the cross products of the daughter growth vectors of the
given bifurcation and the daughter growth vectors of the previous
bifurcation towards the soma (Fig. 1B). The torque angle of the
first bifurcation, as well as the elevation and azimuth angles of
dendritic trees (Tel and Tel), are arbitrarily defined with respect to
the orientation of the Cartesian z axis (in L-Neuron, somata are
spherical and centered in the origin of the Cartesian coordinates).
The extraction of Burke’s parameters is described at length in the
literature (Burke et al. 1992), and need not be discussed further.
The growth step length in Burke’s algorithm, ∆L, is not measured,
but rather set to achieve a balance between computational efficien-
cy and length resolution. Within a restricted range of this parame-
ter around the value used to measure bifurcation and termination
probabilities, the exact value of ∆L has no significant effect on the
statistics of the simulated morphology. Other technical details re-
garding the extraction of Hillman’s parameters are reported else-
where (Ascoli 2001).

Basic parameters describing global effects may be difficult to
measure directly from digitized neurons, but can be found by min-
imizing the error of one or more emergent parameters (e.g., van
Pelt et al. 1997). For example, tropism values are added to the 
L-Neuron models to reduce the discrepancies observed between
real and virtual neurons, and a parameter search can be run to opti-
mize their values. Similarly, the division into growth phases in 
ArborVitae are hard to estimate from real neuron data. Assuming
that dendritic branches closer to the soma have developed earlier,
on average, in the growth process of real neurons, ArborVitae
phases can be approximately derived from discontinuities in the
plot of the number of bifurcations or terminations versus distance
from the soma (see Results for an example). The segments con-
tained within each phase are then analyzed to extract the statistics
used by the growth algorithm. Growth phases could also be esti-
mated by simulating the progressive erosion of all traced dendrites
from the tips inward. Assuming an approximately uniform rate of
growth for the group of cells as a whole, one could then build a
map of the time of addition for each region of neurite, and parti-
tion this map into phases. We should finally note that some of the
basic parameters (e.g., initial stem diameter Dstem) are common to
several algorithms, whereas others (e.g., Burke’s termination prob-
ability Ptrm) are specific for a certain algorithm. These latter pa-
rameters can be considered emergent for the algorithms in which
they are not employed.

Emergent parameters

Emergent parameters are all morphological parameters that are not
explicitly specified in a dendritic growth algorithm, but “emerge”
from the growth of virtual neurons. Some of these parameters may
be interdependent; for example, the total number of terminations
and the total number of bifurcations in a neuron are both emergent
parameters, but their difference equals the number of dendritic
trees in that neuron, which is a basic parameter. Classical neuroan-
atomical analyses of dendritic morphology adopt sets of orthogo-
nal (or non-interdependent) parameters (Uylings et al. 1986). We
typically use a large number of emergent parameters to compare
virtual and real neurons. Here, we distinguish two types of emer-
gent parameters, namely scalar parameters and distribution pa-
rameters. Scalar parameters encapsulate a feature of dendritic

morphology in a single number. An example of scalar emergent
parameter is the total number of bifurcations in a neuron. Distribu-
tion parameters characterize a structural aspect of neurons by the
dependency of a morphological quantity on another morphological
variable. An example of distribution emergent parameter is the
peak position of the plot of number of bifurcations versus distance
from the soma (Sholl 1953).

Eleven scalar emergent parameters were used in this study: to-
tal dendritic length, total surface area, topological asymmetry, to-
tal number of bifurcations, maximum branching order, average
path from soma to tips, average distance from soma to tips, maxi-
mum distance from soma to tips, significant height, significant
width, and significant depth. The topological asymmetry (van Pelt
et al. 1992) is the average of the partition values over all the bifur-
cations of the neuron. The partition is defined as the difference of
the numbers of terminations descending from each of the two
daughters of a bifurcation, divided by the total number of termina-
tions descending from that bifurcation minus two. The partition
value is zero for totally symmetric bifurcations (with an identical
number of terminations descending from each daughter) and one
for totally asymmetric bifurcations (with one directly terminating
daughter and the rest of the tree descending from the other daugh-
ter). The branching order at any point in the dendritic tree is the
number of bifurcations encountered in the path to the soma, plus
one. It is important to notice that this is a purely topological defi-
nition, and it does not take into account any “weight” for the
daughter diameters. Thus, the branching order of a thick trunk
with many outgrowing thin branches is affected by each branch,
even if its diameter remains almost unchanged by the bifurcations
(e.g., Uylings et al. 1986). The path measures a length along the
dendrite, whereas distance here means a Euclidean distance be-
tween two points. The significant height (and analogously the
width and depth) of a neuron is the minimum height of a large and
deep box that would contain 95% of the dendritic segments, leav-
ing out only 2.5% of the trees on each side.

The total dendritic length, total surface area, topological asym-
metry, total number of bifurcations, maximum branching order,
and average path from soma to tips only depend on dendritic to-
pology and local size (segment diameter and length), but not at all
on angles and space packing (i.e., they are “isometric” parame-
ters). In contrast, the average distance from soma to tips, maxi-
mum distance from soma to tips, significant height, significant
width, and significant depth are influenced by angles as well as by
topology and lengths. These eleven parameters together provide a
compact and informative “snapshot” of dendritic morphology, and
can be used for a preliminary assessment of the matching between
groups of real and virtual neurons.

Three types of distribution emergent parameters were analyzed
in this study: the dependency of morphological quantities on
branching order, path distance from the soma, and Euclidean dis-
tance from the soma. The morphological quantities examined in-
cluded the average number of bifurcating or terminating segments
(at a given order, or in a bin of distance), the average dendritic
branch diameter, the total dendritic length or area, and the average
bifurcation partition. Occasionally, the cross-distributions were
also examined, e.g., the distribution of the average distance from
the soma of the segments at a given order, versus the order, or vice
versa. The examination of distribution parameter plots provides an
extremely detailed characterization of morphological features. De-
pending on the distribution shape, distribution parameters can also
be described quantitatively in different ways. For example, bell-
shaped distributions are typically characterized with the position
of the distribution peak and with the peak width at half-height,
while linear distributions can be characterized with slope and in-
tercept.

Implementation and availability

The L-Neuron program is coded in C++ (Ascoli and Krichmar
2000) and it can be compiled under both Windows/DOS and 
Unix systems (Irix and Linux). The Window/DOS version is bun-
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dled with Laurens Lapré’s pseudo-3D display software L-Viewer
and is to be freely distributed through the L-Neuron web site
(www.krasnow.gmu.edu/L-Neuron, case sensitive). All the L-Neu-
ron simulations reported in this study were run under DOS on a
433 MHz Pentium III computer with 128 MB of RAM. An aver-
age size neuron was generated in approximately 2 s of clock time
(roughly 2500 segments per s). The ArborVitae program is coded
in C/GL (Senft, 1997), and it runs under the Irix operating system.
The simulations reported here were run on a 75 MHz R8000 Sili-
con Graphics Indigo 2 with 320 MB of RAM. A typical simulation
producing a group of ten neurons took approximately 30 s (rough-
ly 1500 segments per s). The routines to convert motoneuron files
from the original digitized format to SWC, and the Purkinje cell
files from Eutectic format to SWC, were written in the AWK pro-
gramming language and ran under Unix, as previously described
(Ascoli et al. 2001). The programs to extract Hillman, Burke, and
ArborVitae basic parameters from the digitized data in SWC for-
mat were also written in AWK under Unix. The software to extract
emergent parameters from real and virtual neurons in SWC format
was written in C++ and ran under DOS. All conversion routines
and programs to extract basic and emergent morphological param-
eters from digitized data are have been subsequently ported in
C++ in a single object of the L-Neuron code. This software tool is
freely distributed through the L-Neuron web site as a stand-alone
utility called L-Measure (Scorcioni et al. 2001). All the (real and
virtual) neurons used in this study are stored in SWC format in an
electronic database (Ascoli et al. 2001), and publicly available at
www.krasnow.gmu.edu/L-Neuron (case sensitive).

Glossary

A Parameter for the linear combination of values to
obtain the daughters’ diameters [Burke]

Bamp Amplitude angle in a bifurcation [Burke, Hillman]
Baz(Bel) Azimuth (elevation) angle for daughter branches,

relative to the parent [ArborVitae]
Btor Torque angle in a bifurcation [Burke, Hillman]
BrL1 Dendritic stem length from the soma to the first bi-

furcation [ArborVitae]
BrLp Pathlength between two consecutive bifurcations (or

between a bifurcation and a termination) in the pth
growth phase (p=2...5) [ArborVitae]

BrTp(BrBp) Number of terminations (daughter branches) in the
pth growth phase [ArborVitae]

Cnt “Contraction” ratio between pathlength and Euclide-
an distance between two bifurcation points [Hill-
man]

Dstem Initial diameter of the dendritic tree [ArborVitae,
Burke, Hillman]

DR Daughter diameter ratio (larger/smaller) [Hillman]
Eaz(Eel) Azimuth (elevation)angle in extending dendritic

segments [ArborVitae, Burke]
Frg Number of fragments in which each dendritic seg-

ment is divided [Hillman]
Ldb Inter-bifurcation pathlength [Hillman]
Ltrm Additional length at terminating branches [Hillman]
Ntree Number of dendritic trees per soma [ArborVitae,

Burke, Hillman]
Pnov “Non-overlap” bifurcation probability, correspond-

ing to k1nov*exp(k2nov) [Burke]
Pov “Overlap” bifurcation probability, corresponding to

k1ov*exp(k2ov) [Burke]
Ptrm Termination probability, corresponding to k1trm*exp-

(k2trm) [Burke]
PK Power constant modifying Rall’s law [Hillman]
R Distribution of values to be linearly combined to ob-

tain the daughters’ diameters [Burke]
Taz(Tel) Azimuth (elevation) angle of the dendritic tree stem

[ArborVitae, Burke, Hillman]
Th Threshold diameter between terminating and bifur-

cating branches [Hillman]

TD Minimum diameter to allow bifurcating events 
[ArborVitae]

TPRB(TPRH) Taper rate [ArborVitae, Burke (Hillman)]
TROs Tropism towards (or away from) the soma [Hillman]
TROx Tropism towards greater (or smaller) absolute val-

ues in the x coordinate [Hillman]
∆L Branch incremental growth length [ArborVitae,

Burke]
ν Power coefficient in Rall’s law [Hillman]

Results

Analysis of basic parameters

All L-Neuron and ArborVitae basic parameters were
measured from digital files of traced neurons. Raw data
for each parameter were extracted in the form of simple
arrays and characterized with histograms representing
frequency distributions. The distribution type (e.g.,
Gaussian, uniform, exponential, etc.) was then visually
determined, and the histograms were fitted with the ap-
propriate functions. The best fitting parameters of these
functions constituted the values of the corresponding sta-
tistical distributions of basic parameters. Four examples
of this procedure are reported here (Fig. 3).

The distribution of the length of dendritic branches
between bifurcations (Ldb in the Hillman algorithm of 
L-Neuron) from the six original motoneurons is shown
in Fig. 3A. The range of experimental values (between
10 and 600 µm) is distributed unevenly in a skewed bell-
shape with a long right-tail. Such a distribution was fit-
ted with a Gaussian function truncated at a minimum
threshold. The best fitting computation yielded values of
50 µm for the mean, 150 µm for the standard deviation,
and 10 µm for the minimum threshold. While the value
for the minimum reflects the experimental observation,
the mean value for the Gaussian distribution does not
correspond to the plain average of the experimental val-
ues, because of the skewness of the data. To control for
accuracy, an amount of random numbers equal to the
number of experimental observations was generated with
a truncated Gaussian function according to the fitted val-
ues, and overlaid on the original data (Fig. 3A). The
range, skewness, and peak position of real and generated
data correspond satisfactorily.

The second example of basic parameter extraction in-
volves the dependency of the bifurcating and terminating
probabilities (per unit of length) on branch diameter in
the L-Neuron Burke algorithm. These probabilities are
calculated by grouping all branches in bins depending on
their diameters, and then dividing the number of bifurca-
tions and terminations in each bin by the total dendritic
length in that bin (Burke et al. 1992). The extraction of
these values from motoneurons yielded results in excel-
lent agreement with those reported by Burke et al.
(1992). In particular, the termination probability could be
fitted with a diameter-dependent exponential decay,
while the bifurcating probability was fitted with two ex-
ponential functions with different steepness: a rapidly in-
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creasing function at diameter values overlapping with
the terminating range, and a slower exponential function
at larger diameters (data not shown). The analogous data
extraction from Purkinje cells (Fig. 3B) resulted in quali-
tatively similar results to those obtained with motoneu-
rons. Specifically, terminating and bifurcating probabili-
ties could be fitted with three exponential functions. In
the “overlapping” region, the slope of the terminating
probability was negative, while that of the bifurcating
probability was positive (note logarithmic scale in Fig.
3B, and compare to Fig. 2B in Burke et al. 1992). In the
“non-overlapping region”, the bifurcating probability
reached a nearly constant value. As an additional indica-
tion of the applicability of Burke’s analysis to Purkinje
cells, we also report the extraction of Burke basic param-

eter “R”, used in the generation of daughter diameters at
bifurcation points. In motoneurons, this distribution was
fitted by a Gaussian function (data not shown, but see
Fig. 6B in Burke et al, 1992), with values identical to
those in the literature (Burke et al. 1992). In Purkinje
cells, the values of R yielded a bell shaped function de-
formed by a narrow peak on the right tail (Fig. 3C).
Once the values corresponding to this peak (24.6% of all
the data points) were set aside, the remaining data could
be described with a regular Gaussian distribution. Thus,
this basic parameter for Purkinje cells consists of a mix-
ture of two distributions.

A last example of basic parameter extraction is the
phase division in ArborVitae (Fig. 3D). The fraction of
terminating branches, number of daughter branches, and
mean and standard deviation of branch length are mea-
sured as a function of path distance from the soma. The
main points of discontinuity in these parameters are tak-
en as the divisions in growth phases. Within each phase,
values for each parameter are then averaged and used
uniformly. For motoneurons, the first phase separated
out in all parameters (see asterisks in Fig. 3D). Second
and third phases had similar number of bifurcations and
branch length, but different termination probability. The
fourth and fifth phases were divided on the basis of
branch number and length.

Following procedures similar to those exemplified
above, all basic parameters were extracted for the three
algorithms (L-Neuron’s Hillman and Burke, and Arbor-
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Fig. 3A–D Examples of data analysis for the extraction of basic
parameters from experimental data. A Fitting of motoneuron
branch length with a truncated Gaussian distribution (Hillman al-
gorithm): experimental (gray area) and generated data (dark col-
umns). B Characterization of diameter-dependent terminating
(gray squares) and bifurcating (black dots) probabilities as expo-
nential functions in Purkinje cells (Burke algorithm). C Descrip-
tion of the observed R distribution in Purkinje cells (columns) as a
mix of a Gaussian function (line; the dots represent stochastically
generated data) and a constant value (striped). D ArborVitae moto-
neuron parameters at varying path distances from the soma. Varia-
tions of the fraction of terminating branches (area), number of
daughter branches (labels), and mean (column) and standard devi-
ation (inner bars) of branch length are used to select the growth
phase divisions (asterisks)
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Table 1 L-Neuron basic parameters (see Glossary and Fig. 1A for
parameter definitions). Distribution types are uniform (U), Gaussi-
an (G), and constant (K). For truncated Gaussian distributions,
generated points are sampled as regular Gaussian with mean (µ)

and standard deviation (σ) values, and then discarded if not within
the range (min-max). Values marked with an * are taken from the
literature (Cullheim et al. 1987)

Table 2 ArborVitae basic parameters (∧ planarity imposed) (see
Glossary and Fig. 2 for parameter definitions). Azimuth angles
(Taz, Eaz, Baz) were left unconstrained for motoneurons, and set to
zero for Purkinje cells (with the additional imposition of planar-

ity). For Purkinje cells, values in parentheses are for secondary
dendrites. Where parentheses are not specified, the same values
apply for both primary and secondary dendrites

Cell Type Motoneurons Purkinje

Param. Dist µ σ Min Max Dist µ σ Min Max

Ntree U 8 16 K 1
Dstem (µm) 58% U 3 12 75% G 6.167 1.069 4.8 7.6

42% U 5 10 25% U 5.5 7.4
Tel (deg) U 0 180 K 0
Taz (deg) U –180 180 K 0
Ldb (µm) G 50 150 10 1200 G 9.5 5.7 0.5 44
TPRH 62% G 0.3 0.3 –1.3 1 79% K 0

38% K 0 14% U 0.05 0.4
7% G –0.17 0.19 –1.8 0

TPRB (×103) K* –125 49% K 0
45% G –10 22
6% U 50 20

Frg G 2 1 1 G 0 1.56 0.39
Cnt 52% K 1 53% K 1

40% G 1 0.1 0.1 1 47% G 1.1 0.1 0.3 0.99
8% U 0.5 0.8

Th (µm) 96% G 1.125 0.8 0.45 9.27 90% G 1.02 0.269 0.3 2.7
4% K 0.875 10% U 1.5 2.2

Ltrm (µm) U 50 500 K 0.1
DR G 1.3 0.8 1 10 G 1.18 0.68 1
PK K* 1.13* 74% G 1.14 0.5 0.25 5

26% K 2
Btor (deg) U 0 180 G 0.0 13.5
Bamp (deg) G 45 20 1 172 G 71 40 1 179

Cell Type Motoneurons Purkinje primary (secondary)

Param. Dis µ σ min Max Dis µ σ min Max

Ntree G 11.67 0.2 5 15 K 1
BrL1 (µm) G 161.1 118.8 39 512 G 7.3(1.3) 29.6 16.9 74.9
BrL2 (µm) G 317.8 302 9.8 10664 G 14.4(4.4) 10.3 3.8 29
BrB2 K 196 K 6.66(3.66)
BrT2 K 7.5 K 0.1(0.5)
BrL3 (µm) G 326.6 273 4 1241 G 9.69(1.69) 6.67(0.67) 0.87 40.7
BrB3 K 87.33 K 7.33(3.33)
BrT3 K 30 K 2.66(0.66)
BrL4 (µm) G 330.3 246.2 11 1292 G 10.25 7.76 5 63.21
BrB4 K 25 K 8.6666
BrT4 K 39.33 K 0.3333
BrL5 (µm) G 156.5 130.9 15 727.4 G 11.87 9.1 1.11 54
BrB5 K 8.333 K 5.3333
BrT5 K 93.16 K 3
TPRA K 0.45 K 0.025(0.03)
Dstem (µm) U 2 15 U 4(1) 5.75(3)
TD (µm) K 1.75 K 0.75(0.35)
∆L (µm) K 75 G 2(0.65) 0.5(0) 10
Tel (deg) U –360 360 U∧ 0(75) 0(105)
Bel (deg) G 22.5 10 0.5 86 G∧ 34.5(28.5) 9(5) 1 179
Eel (deg) G 0 5 G∧ 0 6(10)
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C. E shows a population of ten Purkinje cells generated
with ArborVitae. Despite their overall resemblance, the
ten exemplars, generated stochastically using a single set
of statistical distributions of basic parameters, are indi-
vidually different. F is an enlargement of one of the den-
drites from E. Different colors mark dendrites grown in
different phases of the algorithm. G displays a Purkinje
cell generated by the Tamori variation of the Hillman al-
gorithm, with the additional influence of tropism. The
neuron is entirely enclosed in a virtual “box” in order to
highlight the relative width, height and depth of the den-
drites.

Analysis of motoneuron emergent parameters

The quantitative analysis of scalar emergent parameters
for motoneurons is reported in Table 3. The “plain” ver-
sion of Hillman’s algorithm (without the PK correction
to Rall’s power law) generated neurons that were signifi-
cantly smaller than the real cells. The means of total
length and of number of bifurcation for Hillman moto-
neurons were less than 70% of those of real motoneurons
(standard deviations only amounted to <10% of the
means). The maximum value of surface area for Hillman
motoneurons was lower than the minimum correspond-
ing value in real cells. Nevertheless, the Hillman algo-
rithm captured some of the emergent properties of real
motoneurons, such as the mean, minimum and maximum
values of asymmetry. The PK correction of Rall’s law
greatly improved the Hillman algorithm. The average of
most parameter mean values of the corrected Hillman al-
gorithm fell within 1 or 1.5 standard deviations from the
experimental data. In particular, the dendritic length,
asymmetry, branching order, average path and distance
from soma to tips, and the height/depth of real motoneu-
ron were all quantitatively reproduced in virtual neurons.
However, the mean surface area and width indicated that
Hillman’s neurons were still smaller than the real ones.
As a general trend, the range (max-min) of many emer-
gent parameters was wider for virtual neurons than for
real cells (Table 3).

Burke’s algorithm yielded results similar to the cor-
rected Hillman algorithm. Most parameter mean values
had averages and deviations compatible with the original
data. With respect to Hillman/PK motoneurons, Burke’s
dendrites were shorter and had fewer bifurcations, but
had a larger surface. However, Burke’s algorithm failed
to reproduce the experimental values related to overall
tree size (e.g., maximum distance to tips and tree depth).
As with Hillman’s algorithm, Burke motoneurons had
wider ranges of values (in most parameters) than the real
cells. ArborVitae motoneurons reproduced several emer-
gent characteristics of traced neurons (e.g. minimum
length and area values, minimum, maximum and mean
asymmetry), but were larger than the real cells, as as-
sessed by the mean of all size-related parameters. Al-
though this trend is opposite to that shown by the L-Neu-
ron algorithms, the variability of ArborVitae neurons,
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Vitae) and the two cell classes (motoneurons and Purkin-
je cells). The complete set of these data, as used in all
subsequent simulations, is summarized in Tables 1 and 2.
Table 1 reports the statistical functions of L-Neuron ba-
sic parameters for motoneurons and Purkinje cells. The
motoneuron values of the additional parameters specific
for Burke’s algorithm coincide with the literature (Burke
et al, 1992). Corresponding values for Purkinje cells can
be derived from Fig. 3B, C. Table 2 contains the basic
ArborVitae parameters. Notice that Purkinje cells were
modeled with two levels of dendrites, primary and sec-
ondary, to account for observed discontinuities in diame-
ter and in bifurcation angles that could not be described
with the simple phase sequence. Primary dendrites ap-
pended to the soma, while secondary dendrites appended
to the primary ones.

Generation of virtual neurons

Since the original datasets consisted of a limited number
of neurons (six motoneurons and three Purkinje cells),
we generated larger sets of virtual neurons to allow a sta-
tistical analysis of their scalar emergent parameters. For
each algorithm (Hillman, Burke, ArborVitae), ten or
more datasets of virtual neurons were produced. Each
simulated motoneuron set contained six exemplars,
while each simulated Purkinje cell set contained three
exemplars. The scalar emergent parameters were mea-
sured from each real and virtual neuron. Every group of
six or three was statistically characterized with mean,
minimum, and maximum values for each of the scalar
parameters. Virtual data were then analyzed in terms of
average and standard deviation of each value, and com-
pared to the corresponding values of the experimental
group (see e.g., Table 4). In general, the three-dimen-
sional display of simulated neurons, as well as a more
advanced visual inspection (including rotation, zooming,
color rendering of individual arbors, etc.) demonstrated
that generated structure attained a remarkable level of
anatomical realism. In several cases, it was difficult to
distinguish between computer rendering of real and vir-
tual neurons. Examples of the simulated structures are
shown in Fig. 4. Panels A–C represent motoneurons
generated with the Hillman, Burke, and ArborVitae algo-
rithms, respectively. Because of the large size of dendrit-
ic arbors in motoneurons, the details of tree stems and
somata are not visible in the entire neurons. D displays a
close-up of the soma with 11 stemming dendrites from

Fig. 4A–G Examples of virtual neurons. A Motoneuron generated
with L-Neuron Hillman/PK algorithm. B Motoneuron generated
with L-Neuron Burke algorithm. C Motoneuron generated with
ArborVitae (growth phases are color-coded). D Enlargement of the
dendritic stems from C. E Ten Purkinje cells generated by Arbor-
Vitae (colors as in C). F Enlargement of a dendritic tree from E. 
G An L-Neuron Purkinje cell generated with the Tamori/Hillman
algorithm. The quasi-planarity is imposed by the additional influ-
ence of tropism

▲
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like that of other virtual groups, was excessive compared
to the experimental group.

The analysis of virtual motoneurons was extended to
distribution emergent parameters (Fig. 5). Sholl-like
plots of the number of bifurcations or terminations ver-
sus branch order or path distance yielded classical bell-
shaped curves for all real and virtual neurons. As an ex-
ample, we report the dependence of the average number
of branches (bifurcating and terminating) versus
branching order (Fig. 5A). The experimental group had
a peak of 66 branches at order 5, with a half-height
width of 4.40. Hillman/PK neurons also had a peak at
5, with a value of 55.5 and a half-height width of 4.41.
The Burke group peaked at order 4, with a value of
57.2 and a half-height width of 3.97. Finally, ArborVi-
tae neurons had a peak value of 62.2 at order 6, and a
half-height width of 4.95. Some of these characteristics
reflect the effect of dendritic size (e.g., Burke neurons
are slightly smaller than the real ones, thus the bell-
shaped distribution is narrower and peaks at a lower or-
der; conversely, ArborVitae neurons are larger, and the

distribution is wider and peaks at a higher order).
Nonetheless, the good match of overall distribution
shape as well as of peak position, value, and width be-
tween virtual neurons (particularly Hillman) and traced
ones is non-trivial. The average branch diameter versus
branch order distributions are reported in Fig. 5B. The
traced cells showed a typical decay function that was
well-matched by that observed for Burke and Hillman
neurons. ArborVitae neurons displayed a similar decay
at low branch orders, but reached a plateau at branch
orders greater than 4.

Distributions of several parameters versus the path
distance from the soma were also analyzed. As an ex-
ample, the branch length sum, also yielding a bell-
shaped distribution, is shown (Fig. 5C). The experimen-
tal group peaked at 900 µm with a value of 22,640 µm,
and a half-height width of 912 µm. The Hillman group
had an identical peak position and half-height width, but
a lower peak value (19,048 µm). Burke neurons had a
lower peak value (14,130 µm) and position (700 µm)
relative to the experimental group, but a near-identical

Table 3 Scalar emergent parameters for motoneurons. Six real
motoneurons and 10 groups of six motoneurons for each algo-
rithms were analyzed. Mean, minimum and maximum values refer

to measurements within a group of six cells. The average and stan-
dard deviation (µ±σ) for virtual neurons refer to measurements of
each value (mean, min, max) within a set of 10 groups

Parameter Value Exp. Hillman Hillman/Poliko Burke ArborVitae 
(n=1×6) (n=10×6) µ±σ (n=10×6) µ±σ (n=10×6) µ±σ (n=10×6) µ±σ

Total length (µm) Mean 102,799 67,255±6002 94,609±10213 87,876±7230 116,972±7971
Minimum 78,849 41,510±9153 58,311±9025.4 66,660±9062 77,878±14,455
Maximum 117,030 91,753±12,102 136,278±21,529 117,902±15,234 162,211±22,373

Total area (µm2) Mean 562,363 287,802±28,245 401,511±46,572 464,713±38,049 721,219±50,655
Minimum 499,675 174,102±39,512 248,227±40,614 354,959±41,453 488,928±76,317
Maximum 676,398 401,798±56,457 573,031±94,975 628,177±84,496 985086±126563

Asymmetry Mean 0.462 0.46±0.02 0.48±0.01 0.42±0.01 0.46±0.01
Minimum 0.420 0.42±0.02 0.45±0.02 0.38±0.01 0.43±0.02
Maximum 0.510 0.51±0.02 0.52±0.01 0.45±0.02 0.49±0.02

No. of Bifurcations Mean 158.3 111.1±11.2 159.7±18.28 122.4±9.91 196.6±13.64
Minimum 122.0 69.3±16.8 96.4±16.43 92.0±11.05 121.5±27.94
Maximum 181.0 152.8±23.3 233.7±40.50 165.2±19.37 280±39.94

Maximum order Mean 10.3 9.3±0.3 11.8±0.74 9.2±0.31 12.7±0.50
Minimum 10.0 8.0±0.7 9.8±0.6 7.6±0.49 10.7±0.92
Maximum 12.0 11.1±0.4 13.6±1.2 11.0±1.01 15.2±1.41

Average path to tips (µm) Mean 1137.1 1035.2±32.13 1153.4±31.43 1199.2±27.73 1753.82±48.58
Minimum 1090.4 903.1±59.26 1058.3±38.04 1103.8±33.41 1635.77±101.21
Max 1178.8 1153.8±67.99 1289.8±99.64 1346.1±92.83 1877.791±72.24

Average distance to tips (µm) Mean 932.7 874.36±21.8 953.3±23.7 1055.4±22.3 1560.61±45.17
Minimum 874.7 771.26±45.3 880.3±35.2 971.2±27.1 1451.69±89.37
Maximum 1007.8 958.42±38.1 1052.0±76.4 1169.9±69.4 1662.22±60.45

Maximum distance to tips (µm) Mean 1615.6 1662.39±79.44 1858.0±81.26 2348.1±105.79 2507.81±89.57
Minimum 1531.5 1323.04±133.09 1621.4±130.19 2081.4±115.64 2283.93±90.23
Maximum 1713.4 2018.98±207.73 2161.1±162.10 2683.9±199.33 2812.11±134.3

Height (95%) Mean 1600 1397.25±111.75 1565.4±78.70 1939.8±70.82 2539.74±183.5
Minimum 1423 1103.03±156.53 1217.8±132.56 1556.3±83.76 2069.76±234.44
Maximum 1695 1723.36±261.11 1957.5±142.39 2331.7±168.5 3002.41±256.27

Width (95%) Mean 1882 1359.10±86.52 1493.99±149.77 1956.30±107.48 2656.67±135.87
Minimum 1672 1062.84±102.60 1148.71±285.92 1649.61±161.55 2121.82±302.14
Maximum 2083 1699.89±149.02 1869.21±219.10 2331.79±233.75 3217.92±258.34

Depth (95%) Mean 1728 1612.79±97.15 1790.34±92.60 2256.51±70.22 2746.34±94.79
Minimum 1630 1251.87±87.40 1444.14±133.99 1909.18±111.07 2220.79±208.37
Maximum 1950 1962.62±302.68 2162.50±224.99 2641.69±177.53 3213.27±194.21
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half-height width (916 µm). Finally, as for the Sholl
scatterplot, ArborVitae motoneurons had their center
shifted farther from the soma (1500 µm), and a wider
distribution (1,210 µm), although the peak value (18,442
µm) was the closest to the experimental measurement.
Finally, the average branch order versus the path dis-
tance was examined (Fig. 5D). In real motoneurons the
branch order increased almost linearly with the path dis-
tance (initial slope: 0.0096 µm–1) and then started to pla-
teau at about 1000 µm from the soma (at an approximate
value of 10), eventually decreasing at >1,500 µm. All
virtual groups faithfully reproduced the initial linear be-
havior (initial slopes of 0.0083, 0.0068, and 0.0070
µm–1 for Hillman/PK, Burke, and ArborVitae, respec-
tively) and the subsequent plateau (respectively with
values of 11.2, 8.5, and 11.1 for the three algorithms).
However, only Burke motoneurons also displayed a
slight decrease at greater distances. Overall, the virtual
motoneurons trends appeared more linear than those of
real motoneurons.

Analysis of Purkinje cell emergent parameters

The statistical analysis of the scalar emergent parameters
of Purkinje cells was performed in a analogous manner
to that described for motoneurons. The larger variability
of simulated data with respected to experimental data
seemed to impact Purkinje cells more than motoneurons.
In particular, several virtual neurons terminated with an
excessively small number of bifurcations (~10, com-
pared to an experimental average of >400), and overall
small trees (data not shown). On the contrary, in fewer
circumstances, virtual Purkinje cells grew out of propor-
tion (several thousands of bifurcations). Since these in-
stances are not observed in Nature, we generated a larger
population of virtual neurons, and then excluded the hy-
potrophic (<20 bifurcations/cell) or hypertrophic cells
(>8000 bifurcations/cell) from the analysis. The percent-
ages of excluded neurons were 52% for the Hillman al-
gorithm (all hypotrophic), 19% for the corrected Hillman
algorithm (17% hypotrophic and 2% hypertrophic), 6%
for the Burke algorithm (all hypotrophic) and 10% for
the ArborVitae algorithm (3.33% hypotrophic and 6.67%
hypertrophic). Using the same criteria, none of the virtu-
al motoneurons are excluded from the analysis. The un-
corrected Hillman algorithm generated virtual neurons
that were an order of magnitude smaller than real 
Purkinje cells as measured by several parameters (Table
4). As with motoneurons, the introduction of the correc-
tion factor PK dramatically improved the quality of vir-

Fig. 5A–D Distribution emergent parameters for motoneurons
(empty circles Hillman/PK; full diamonds: Burke; crosses Arbor-
Vitae; line real neurons). A Number of branches versus branch or-
der. B Branch diameter versus branch order. C Average sum of
dendritic length versus path distance from the soma a. D Branch
order versus path distance
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tual Purkinje cells. The mean of all the scalar parameters
of the Hillman/PK Purkinje cells that did not depend on
angles, with the exception of the path to tips, had an av-
erage value close to the experimental measurement, and
in most case largely within 0.5 standard deviations.
However, in many cases the standard deviation had a
value comparable to that of the average itself, implying
large variability in the data. In addition, none of the sca-
lar measurements involving Euclidean distance in the
real cells was accurately reproduced by the Hillman/PK
algorithm (Table 4).

The analysis of Purkinje cells generated with Burke’s
algorithm yielded similar results to those for the correct-
ed Hillman algorithm (Table 4). The average values of
mean length, surface area, and number of bifurcations
nicely reproduced the traced data, while the average dis-
tance and path to tips and the Euclidean sizes were over
a standard deviation shorter than the experimental data.
Purkinje cells generated with ArborVitae were very
small compared to the real cells, an opposite trend from
that observed for motoneurons. The total length, area,
number of bifurcations, height and width, all had values

significantly smaller than the corresponding measure-
ments in the real neurons (in ArborVitae the depth of
Purkinje cells was imposed to zero by a global constraint
of planarity). However, both the mean and extreme val-
ues of branch order were larger for ArborVitae neurons
than for real Purkinje cells. Interestingly, the variability
of ArborVitae Purkinje cells, although larger than in the
original data, is significantly smaller than that of groups
generated with L-Neuron algorithms (Table 4).

Distribution emergent parameters of Purkinje cells
were analyzed as for motoneurons (Fig. 6). Sholl-like
plots of the summed number of bifurcations and termina-
tions versus branch order yielded bell-shaped distribu-
tions for real and L-Neuron cells (Fig. 6A). Real neurons
data displayed an irregular peak front, with maxima at 15
and at 18 (average peak value of 64), and a half-height
width of 13.5. Hillman/PK cells reproduced well the
peak position (14), but the distribution was flattened
(peak of 49.8, half-height width of 16.2). In contrast,
Burke cells had a lower peak position (12), but better
peak value (68.5) and half-height width (12.1). ArborVitae
neurons had also bell-shaped distributions, but with an

Table 4 Scalar emergent parameters for Purkinje cells. Three real neurons and 9–12 groups of three Purkinje cells for each algorithms
were analyzed. See Table 3 for explanation of terms

Parameter Value Exp. Hillman Hillman/Poliko Burke ArborVitae
(n=1×3) (n=10×3) µ±σ (n=12×3) µ±σ (n=10×3) µ±σ (n=9×3) µ±σ

Total length (µm) Mean 9134.6 669.03±107.87 9089.6±7984.36 9658.8±5862.2 3247.08±315.07
Minimum 8128.2 529.99±124.18 2132.3±1541.23 3064.5±1454.4 1623.84±775.18
Maximum 10,880.6 848.28±134.03 16,310±15,860 20,457±14,907 4607.32±811.78

Total area (µm2) Mean 42,278 2999.19±498.31 35,578±31,140 42,882±25,788 11321.8±986.01
Minimum 34,167 2431.35±613.47 8495.0±6113.91 13,472±6435 6011.5±2721.8 
Maximum 50,588 3735.72±613.14 63,591±62,532 90,715±65,594 15,870±2606

Asymmetry Mean 0.50 0.46±0.05 0.51±0.02 0.54±0.01 0.54±0.01
Minimum 0.49 0.41±0.07 0.49±0.02 0.51±0.02 0.53±0.02
Maximum 0.51 0.50±0.05 0.54±0.02 0.57±0.02 0.56±0.02

No. of Bifurcations Mean 436 32.6±5.76 442.19±389.26 446.27±269.81 367.52±33.81
Minimum 417 25.9±5.24 102.75±72.06 142.6±69.97 180.22±84.87
Maximum 472 41.6±7.42 796.08±776.69 945.2±684.12 518.78±85.85 

Maximum order Mean 27 9.7±0.83 23.81±5.12 23.37±4.10 43.78±5.21
Minimum 25 8.7±1.1 17.17±3.98 18.5±3.38 34.56±11.50
Maximum 30 10.9±0.83 29.58±7.26 28.6±8.06 50.78±5.86

Average path to tips (µm) Mean 208.77 75.17±4.8 138.76±23.14 145.01±20.11 85.43±5.44
Minimum 187.34 67.24±6.6 106.97±18.72 121.5±22.31 70.24±13.70
Maximum 231.44 84.01±7.3 164.69±29.93 170.76±23.85 97.97±6.95

Average distane to tips (µm) Mean 149.11 50.09±3.18 72.08±6.98 82.49±8.91 50.41±2.54
Minimum 139.31 41.73±4.44 59.91±7.02 72.54±10.40 39.1±8.82
Maximum 161.66 58.18±6.17 83.88±9.38 93.28±11.30 59.95±5.59

Maximum distance to tips (µm) Mean 277.56 84.42±8.18 158.83±29.27 194.97±28.41 95.21±5.49
Minimum 252.85 70.90±8.54 120.22±20.12 154.38±28.64 74.53±18.50
Maximum 307.94 99.08±13.0 198.85±45.83 234.64±36.17 112.4±7.95

Height (95%) Mean 218.50 80.67±7.33 142.72±27.69 168.82±35.73 77.19±9.45
Minimum 210.50 63.77±9.55 108.30±31 120.59±39.69 54.59±11.10
Maximum 229.50 100.60±12.6 180.08±43.95 222.41±53.34 103.9±15.30

Width (95%) Mean 222.33 72.56±11.0 136.45±21.9 170.19±18.53 68.7±4.52
Minimum 207.50 60.16±7.71 92.63±18.37 147.42±25.44 52.45±9.81
Maximum 240.00 87.63±18.7 176.45±33.85 192.3±23.43 86.09±12.30

Depth (95%) Mean 20.17 34.73±7.1 86.56±25.79 117.48±33.31 0±0
Minimum 17.50 23.94±5.5 55.55±18.47 88.79±26.62 0±0
Maximum 23.50 44.39±10.7 114.98±40.74 152.93±48.71 0±0
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exceedingly high value for peak position and width. The
dependency of average branch diameters on branch order
followed a classical decay trend for all cell groups (Fig.
6B). For this distribution, the Hillman and Burke algo-
rithms yielded the best simulation of diameter values
near the soma; Hillman and ArborVitae produced best
values between order 4 and 8; and ArborVitae and Burke
reproduced most accurately the plateau behavior at the
highest order values.

The analysis of emergent parameter versus path dis-
tance followed similar trends. The bell-shaped distribu-
tion plots of dendritic length sum (Fig. 6C) had experi-
mental values of 165 µm for peak position, 1,472 µm for
peak height, and 184.5 µm for peak width. Hillman Pur-
kinje cells displayed accurate values of peak position
(135 µm) and height (1390 µm), but an excessive width
(270 µm). Burke neurons had accurate peak position
(155 µm) and width (176.5 µm), but excessive peak
height (1848 µm). ArborVitae distribution data yielded
correct values of peak height (1441 µm), but smaller than
normal values for peak position (105 µm) and width (72
µm). Finally, the distribution of average branch order
versus path distance (Fig. 6D) displayed regular linear

trends for all groups of neurons. The slope of the traced
data (0.081 µm–1, R2=0.96) was well matched with that
of the L-Neuron algorithms (Hillman: 0.087 µm–1, R2=
0.99; Burke: 0.074 µm–1, R2=0.97), but not with Arbor-
Vitae (0.336 µm–1, R2=0.97).

The highly planar structure of the Purkinje dendritic
trees, which is not captured by local constraints, may
contribute to some of the discrepancies between real and
virtual neurons observed in the case of Purkinje cells
(e.g. last five parameters in Table 4). Thus, we compared
traced cells as well as Hillman virtual cells with groups
of neurons generated with modifications of Hillman’s al-
gorithm that affected angles. In the Tamori modification,
bifurcation amplitude angles are not measured empirical-
ly, but calculated based on Rall’s power coefficient 
(Tamori 1993). Additional modifications were investi-
gated by the analysis of different tropism influences.
First, depth tropism (with a weight of 0.1 relative to the
endogenous growth direction) was added to push den-
drites towards the plane of the soma and first stem. Next,
a second tropism influence (with a weight of 0.01) was
imposed to push dendrites away from the soma. Sets of
Purkinje cells grouped by three were generated with
these modified algorithms and statistically analyzed. As
expected, the emergent parameters not dependent on an-
gles were unaffected by the algorithm modifications (not
shown). The angle-dependent scalar emergent parame-
ters for the experimental, original Hillman/PK-generat-
ed, and modified Hillman/PK Purkinje cells are summa-

Fig. 6A–D Purkinje cell distribution emergent parameters (sym-
bols as in Fig. 5). A Number of branches versus branch order. 
B Branch diameter versus branch order. C Average sum of den-
dritic length versus path distance from the soma. D Branch order
versus path distance
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rized in Table 5. The Tamori modification of Hillman’s
algorithm improved the simulation of experimental
structures as assessed by all parameters (mean and
range), with the exception of dendritic width, which re-
mained unaltered. The addition of depth tropism to the
Tamori-modified Hillman algorithm only affected tree
size, by reducing the depth (as expected) and conse-
quently enlarging height and width (“ironing” effect).
These changes further improved the modeling of experi-
mental data. Finally, because depth tropism pushed den-
drites, on average, towards the soma, the additional soma
tropism correction aimed at compensating this effect. All
emergent parameters (last column of Table 5) demon-
strated a further enhancement of the resulting virtual
morphologies. Thus, the best fit to experimental data was
achieved by adding the Tamori and tropism modifica-
tions to the Hillman algorithm.

The above algorithm modifications improved the sca-
lar Euclidean measurements of dendritic structure, with-
out affecting angle-independent parameters. Thus, we
used distributions emergent parameters based on Euclid-
ean distance (as opposed to path) to investigate other po-
tential effects of these algorithm variations (Fig. 7).
Since most distribution parameters based on Euclidean
distance had similar trends, we report here only two ex-
amples. The dependence of the average sum of surface
area within a distance bin (spherical shell) on the dis-
tance itself resulted in an irregular bell-shaped distribu-
tion for all algorithms (Fig. 7A). The experimental group
had a peak at 130 µm (with a value of 5,042 µm2) and a
half-height peak width of 173 µm. The unmodified Hill-
man/PK Purkinje cells and the Tamori modification
yielded almost identical results with a good match of the
traced data (peak position, value, and width of 110 µm,
5,402 µm2, and 168 µm, respectively). Unexpectedly,
depth tropism decreased the accuracy of the simulation

Table 5 Variations of the Hillman algorithm: angle-dependent
scalar emergent parameters for Purkinje cells. The first two col-
umns are data from experimental neurons and Hillman/PK neu-
rons. The third column represents neurons generated with the Ta-

mori modification of the Hillman/PK algorithm. Data in the fourth
column involves the addition of depth tropism to the Tamori algo-
rithm. In the last data column, a second form of tropism (somato-
centric) was added to the Tamori plus depth tropism algorithm

Parameter Value Exp. Hillman/Poliko Hillman/Tamori Depth Tropism Soma Tropism
(n=1×3) (n=12×3) µ±σ (n=12×3) µ±σ (n=13×3) µ±σ (n=13×3) µ±σ

Average distance to tips (µm) Mean 149.11 72.08±6.98 101.09±17.86 103.73±16.23 116.89±12.21
Minimum 139.31 59.91±7.02 79.762±19.49 58.12±11.10 81.434±13.54
Maximum 161.66 83.88±9.38 123.42±25.66 180.53±25.23 161.62±18.77

Maximum distance to tips (µm) Mean 277.56 158.83±29.27 187.32±41.09 196.78±42.72 223.03±37.60
Minimum 252.85 120.22±20.12 128.01±40.34 95.74±36.98 147.49±39.87
Maximum 307.94 198.85±45.83 249.88±65.28 352.56±65.03 350.76±49.10

Height (95%) Mean 218.50 142.72±27.69 166.66±36.35 195.92±51.03 202.99±49.44
Minimum 210.50 108.30±31 116.78±36.36 61.19±30.55 95.33±32.12
Maximum 229.50 180.08±43.95 222.60±60.57 337.56±64.86 340.87±54.68

Width (95%) Mean 222.33 136.45±21.9 133.40±39.29 158.12±33.90 170.25±46.77
Minimum 207.50 92.63±18.37 94.71±33.93 69.71±29.74 88.36±29.98
Maximum 240.00 176.45±33.85 169.40±46.18 360.67±68.07 356.18±53.05

Depth (95%) Mean 20.17 86.56±25.79 80.31±27.96 6.64±2.51 16.72±5.90
Minimum 17.50 55.55±18.47 40.38±32.23 1.57±0.68 7.02±2.36
Maximum 23.50 114.98±40.74 127.30±53.32 18.40±3.35 46.96±8.72

Fig. 7A, B Angle-dependent distribution emergent parameters for
Purkinje cells (empty triangles Tamori modification, full squares
addition of depth tropism, asterisks further addition of somatocen-
tric tropism, line real neurons). The unmodified Hillman/PK algo-
rithm produced results overlapping with those from the Tamori
modification. A Average surface area versus Euclidean distance. 
B Average bifurcation partition versus Euclidean distance



(peak position, value, and width of 90 µm, 6,763 µm2,
and 125 µm, respectively). The further addition of so-
matocentric tropism did not correct this effect (peak po-
sition, value, and width of 90 µm, 6,781 µm2, and 111
µm, respectively). The analysis of the average bifurca-
tion partition versus Euclidean distance yielded qualita-
tively similar results (Fig. 7B). The distribution for the
real neurons had a skewed square shape with a rapid rise,
a slow decay, and a rapid fall. The virtual neuron data re-
produced this trend, without any relevant difference due
to the influence of algorithm modifications. The noise in
the data is due to the usual higher variability observed in
simulated dendrites. Thus, although the Tamori variation
and the addition of tropism improve several angle-de-
pendent morphological properties of virtual neurons,
they have little or negative effect on more subtle aspects
of dendritic geometry.

Discussion

This paper describes the first extensive morphological
analysis that compares complete, algorithmically gener-
ated neurons with a limited set of experimentally traced
neurons. To the extent that the algorithms actually suc-
ceed in statistically simulating the original anatomical
structures, the computer generation of virtual neurons
achieves two important goals. First, it provides a great
deal of data compression, because a set of basic parame-
ters employed by the algorithms describes an entire mor-
phological class more compactly than the description of
a single traced neuron in standard digitized format 
(Ascoli 1999; Ascoli and Krichmar 2000). Second, it
naturally amplifies the data, since an arbitrarily large
number of virtual neurons can be generated from a finite
data set (Senft and Ascoli 1999; Ascoli 1999). These fea-
tures may have great impact on the development of neu-
romorphological databases (Ascoli et al. 2001).

The exercise in data extraction to measure basic pa-
rameter distributions from digital files demonstrated that
the neuroanatomical descriptions on which L-Neuron
and ArborVitae are based are consistently and complete-
ly defined. Thus, two morphological classes as different
as motoneurons and Purkinje cells could be represented
in each algorithm with different statistical distributions
of the same set of parameters. The extraction of basic pa-
rameters also indicated the usefulness of the mixture of
distributions allowed for by L-Neuron. In contrast, the
extensive use of truncated Gaussian functions to fit
skewed distributions was neither efficient nor accurate.
The implementation of more refined statistical functions,
such as gamma distributions, may constitute an impor-
tant future addition to all algorithms. As an important
side result, we extended Burke’s analytical approach,
originally designed for motoneurons, to Purkinje cells.
All Burke parameters could be described and fitted with
simple statistical distributions for Purkinje cells as well
as for motoneurons, thus suggesting that Burke’s algo-
rithm (and likewise Hillman’s and ArborVitae) reflect

anatomical rules and mechanisms that apply to different
morphological classes.

For both motoneurons and Purkinje cells, the simple
description proposed by Hillman (1979) failed to gener-
ate neurons of adequate size and structure. However, a
single correction factor in Rall’s power law dramatically
improved the algorithm. The modified Hillman algo-
rithm generated motoneurons and Purkinje cells with ac-
curate emergent values of dendritic length, asymmetry,
and number of bifurcations. Hillman-generated motoneu-
rons also displayed correct values for maximum order
and average terminal path and distance from the soma. In
addition, Hillman motoneurons and Purkinje cells dis-
played distribution emergent parameters that behaved in
qualitatively (and in most cases, quantitatively) similar
manners as the corresponding real neurons with respect
to both branch order and path distance. With minor mod-
ifications to Hillman’s algorithm (e.g., Tamori’s varia-
tion and tropism influence), the fitting of angle-depen-
dent scalar parameters to the experimental data also im-
proved significantly. Taken as a whole, these observa-
tions indicate that the modified Hillman algorithms accu-
rately capture a remarkable amount of morphological
properties of both motoneurons and Purkinje cells.

The Burke algorithm yielded results comparable to
the corrected Hillman algorithm, as expected from the
similarities between the algorithms, especially in their
crucial local dependence on branch diameters. However,
a few differences were also noted. For both motoneurons
and Purkinje cells, Burke’s algorithm was superior to
Hillman’s in describing dendritic area, but inferior in de-
scribing tree asymmetry. For other emergent parameters
a clear pattern did not emerge across cell classes, possi-
bly suggesting more subtle influences on specific mor-
phological aspects and warranting further investigations.
It is likely that the addition of tropism to the Burke algo-
rithm would improve the quality of generated Purkinje
cells in an analogous fashion to that observed for the
Hillman algorithm. A complete understanding of the
strength and weakness of each algorithm could lead to
the design of a hybrid, best performing L-Neuron algo-
rithm. ArborVitae also showed potential in describing
dendritic morphology. It would be tempting to speculate
on the relative qualities and biases of the L-Neuron pre-
dominantly local / single-cell approach and the ArborVitae
mainly global/population-based approach. However, the
contrasting indications provided by the two different cell
classes in this case prevent firm conclusions. For exam-
ple, ArborVitae motoneurons had larger values for
length, surface area, and number of bifurcations than
both L-Neuron and real motoneurons; however, Arbor-
Vitae Purkinje cells had smaller values in all size-related
parameters (but higher maximum order) than both L-
Neuron and real Purkinje cells. One possible explanation
is that ArborVitae basic parameters are more difficult to
measure precisely from the original data because of their
global definitions, as discussed in previous sections. On
the other hand, once the basic parameters are fine-tuned,
the ArborVitae generation of neuronal populations can
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lead to the simulation of spatial assembly and network
formation (Fig. 4E and Senft and Ascoli 1999).

Although a great deal of morphological complexity
was encapsulated in L-Neuron and ArborVitae, it is im-
portant to discuss the neuroanatomical features that these
algorithms have thus far failed to reproduce. The most
important aspect is the excessive variability of the simu-
lated data. To a certain extent, the greater data variability
observed in the modeled structures as compared to the
real neurons is a consequence of the enacted data ampli-
fication (for one group of three or six real neurons, 10 or
more groups of virtual neurons were generated). Still,
the observed morphological variability in virtual neurons
is much too great. For example, the difference in number
of bifurcations between the largest and the smallest of
the six real motoneurons was 59, and the same number
for the three real Purkinje cells was 55. On average, this
difference for an equivalent group of (six or three) virtu-
al neurons was 612 for motoneurons and 123 for Purkin-
je cells (see Tables 3, 4). Natural neurons might have a
more limited variability because they obey both local
and global constraints whereas the algorithms we tested
mainly focus on one class of constraints. If this is the
case, a future implementation of a hybrid L-Neuron/Ar-
borVitae algorithm could provide a solution to this dis-
crepancy. Interestingly, the morphological variability is
larger in virtual Purkinje cells than in virtual motoneu-
rons. This may be due to the fact that rat Purkinje cells
have a single dendritic tree, while motoneurons have on
average more than ten. Thus, simulated Purkinje cells are
particularly susceptible, within the first few bifurcations,
to the stochastic sampling of data. An unfortunate set of
sampled values can cause, in Purkinje cells, the sudden
termination of an entire neuron, whereas in motoneurons
it would only cause the termination of one in many trees.
The simulation logs confirmed this inference. Due to the
small number of available experimental data of com-
pletely traced Purkinje cells, it is hard to hypothesize the
real extent of their size range. However, in a living tis-
sue, a Purkinje cell that randomly stopped growing at a
very early stage of maturation would be likely pruned
back and reabsorbed to recycle the metabolic material
(and therefore never be traced). Hence, our decision to
conform to the available data, thus excluding from the
analysis all virtual neurons smaller than 5% (or greater
than 2,000%) of the experimental average.

Other specific aspects of dendritic morphology
showed significant discrepancies between real and gen-
erated neurons. For example, in Purkinje cells, but not in
motoneurons, L-Neuron algorithms consistently pro-
duced neurons with a maximum order that was lower
than that of real cells by approximately 3.5 units (23.8 in
Hillman and 23.4 in Burke as opposed to 27.0 in real
Purkinje cells, see Table 4). However, the number of bi-
furcations did not follow this trend. In fact, when the rel-
evant basic parameters (PK and Rall’s power in Hillman,
Pov and Pnov in Burke) were artifactually changed to ob-
tain an accurate correspondence of the maximum order
between virtual and real neurons, the resulting number of

bifurcation of virtual neurons almost tripled (data not
shown). These observations led us to hypothesize a non-
trivial difference between real motoneurons and Purkinje
cells. It is known that the relationship between total
number of bifurcations and maximum branching order in
a tree is linked to the tree asymmetry (van Pelt et al.
1992). Locally, tree asymmetry is reflected in the bifur-
cation partition, which is in turn directly bound to the
daughter diameter ratio (basic parameter DR): a higher
value of DR corresponds to a higher partition, and thus a
higher maximum branching order given a fixed number
of bifurcations. Thus, we hypothesized that in Purkinje
cells, but not in motoneurons, the daughter diameter ra-
tio in the first four orders of branching is significantly
higher than in the rest of the tree. Such a characteristic
would not be captured by the average distributions used
in L-Neuron, and would cause a higher number of bifur-
cations and/or lower maximum branch order in virtual
neurons. This hypothesis was directly tested by analyz-
ing the experimental dependence of DR on branch order
in both Purkinje cells and motoneurons (Fig. 8).

The experimental data confirmed this hypothesis: the
daughter diameter ratio in Purkinje cells starts at values
over 2 at orders 1–2, and then drops rapidly, reaching a
steady level of ~1.28 after order 4. Because the grand av-
erage is weighted by the number of bifurcations, and
such a number is largest at orders 10–20 (Fig. 6A), the
initial values of DR is completely invisible in the overall
DR distribution (gray area in Figure 8). In contrast, in
motoneurons, the dependency of DR on the order has the
opposite trend. In addition, the larger number of dendrit-
ic trees stemming out of the soma provides DR values at
lower branching order with a more significant weight.
As a result, the overall distribution of DR reflects the lo-
cal values in all regions of the dendritic tree more accu-
rately. This observation explains several other measured
discrepancies between some groups of virtual Purkinje
cells and the real neurons, such as in the average path
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Fig. 8 Distribution of daughter diameter ratio (DR) versus branch
order (full circles, continuous line motoneurons, empty square,
broken line Purkinje cells). Horizontal lines and gray areas repres-
ent the mean DR value (plus/minus standard error) measured
across all orders



and distance to tips. The same trends are not observed in
ArborVitae, where the dependency on both local con-
straints and branch diameter is almost entirely lacking.
The peculiar distribution of DR versus branching order
in the experimental data corresponds to the structure of a
main, thick dendrite and several smaller branches; this
feature is only present in the first 3–4 branching orders
of Purkinje cells (Rapp et al. 1994), and not at all in
motoneurons. This rationalization is an example of the
usefulness of model-driven research strategies. From the
point of view of algorithmic design, it suggests that the
Hillman algorithm can be improved by inserting a de-
pendency of DR on branching order.

A final source of discrepancies between real and vir-
tual Purkinje cells consists of the reduced Euclidean size
of virtual trees compared to real ones, even after the im-
provements by the Tamori variation and the tropism in-
fluence. One interesting possibility is that this residual
discrepancy may be due to a space-filling phenomenon.
In nature, no two dendritic branches can occupy the
same physical position. In addition, during growth, real
neurons may actively seek to avoid growing too close to
each others by chemical mechanisms of mutual detection
and contact inhibition (Sestan et al. 1999). This could be
important to pack dense networks in a limited tissue, but
might also influence single dendritic trees, pushing them
to occupy wider space. In the generation of virtual neu-
rons, these space-packing issues are not currently ad-
dressed. The future addition of this type of constraint is
also expected to improve the results.
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