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An important task of the brain is to represent the outside world. It is unclear how the brain may do this, however, as it can
only rely on neural responses and has no independent access to external stimuli in order to “decode” what those responses
mean. We investigate what can be learned about a space of stimuli using only the action potentials (spikes) of cells with
stereotyped—but unknown—receptive fields. Using hippocampal place cells as a model system, we show that one can (1)
extract global features of the environment and (2) construct an accurate representation of space, up to an overall scale
factor, that can be used to track the animal’s position. Unlike previous approaches to reconstructing position from place cell
activity, this information is derived without knowing place fields or any other functions relating neural responses to
position. We find that simply knowing which groups of cells fire together reveals a surprising amount of structure in the
underlying stimulus space; this may enable the brain to construct its own internal representations.
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Introduction

Stimulus reconstruction, as implemented by the scientist,
typically involves three steps: (i) characterizing the space of
relevant stimuli; (ii) constructing functions relating stimuli to
neuronal responses; and (iii) using these functions, together with
new neuronal activity, in order to “decode” new stimuli [1-11].
For example, in the case of hippocampal place cells, the ‘space of
stimuli’ may be the animal’s current spatial environment; for every
place cell one computes a place field, i.e., a function that assigns a
firing rate to each position in space. Place fields, together with
place cell activity, can then be used to infer the animal’s position
[2,4,7]. Notably, the scientist relies on a priori assumptions about
the nature of the relevant stimulus space in (i), and uses independent
measurements of previously observed stimuli in order to construct the
functions in (ii). While these functions (or “neural codes”) come in
a variety of forms, such as receptive fields, tuning curves, spike-
triggered averages, adaptive filters and conditional probability
distributions [1-11], they all require using independent observa-
tions of prior stimuli for their construction.

Presumably, the brain also uses neuronal spiking activity to
reconstruct the stimulus. The brain, however, does not have access
to independent stimulus measurements; neuronal activity alone
must represent the external world. How does the brain do it?
While much effort has been devoted to developing biologically
plausible methods to implement the “decoding” of step (i)
[1,3,6,10,11], it is generally assumed that the structure of stimulus
space (step (1)) and the functions (such as receptive fields or tuning
curves) of step (i) are both present and easily available to
downstream structures in the brain. Although it is possible that
receptive fields are imprinted in synaptic weights, tuned
throughout development and learning, this story is complicated
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by the observation that receptive fields in some brain areas—
particularly in hippocampus—undergo rapid context-dependent
remapping [2,12-19]. This leads naturally to the question: can
anything be inferred about a stimulus from spikes alone?

We address this question in the context of hippocampal place
cells. In rodents, spatial information is reflected in the activity of
place cells, i.e., pyramidal cells in areas CAl and CA3 of dorsal
hippocampus that fire in a restricted area of the spatial
environment—the place field—and are mostly silent outside
[20,21]. We will use the term place field to refer both to the
function and to the region in space where the firing rates are
significantly above baseline. Place fields remap, and a place cell
can alternate between multiple stable place fields as an animal is
switched from one familiar environment to another [14,15].
Although much work has gone into trying to understand how
place fields are formed [13,22-25], a different and rather
unexplored question is how the output of hippocampal place cells
(without access to corresponding place fields) might be used by
downstream structures in order to reconstruct position and the
underlying space.

At first glance, it is not obvious that anything at all may be
learned about a particular environment—or the animal’s position
within it—using the spiking activity of place cells alone. Indeed,
previous approaches to reconstructing position from place cell
activity have all required knowing the corresponding place fields
[2,4,7]. Furthermore, the values of instantaneous firing rates [2,4]
and the precise timing of spikes with respect to the theta rhythm
[7] have been used, together with place fields, in order to improve
position-estimation precision beyond the place field diameter. It
has also been suggested that other cell types, such as head direction
cells, play a vital role in deciphering position information [22].
Because place fields exhibit complex dynamics and place cells do
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Author Summary

We construct our understanding of the world solely from
neuronal activity generated in our brains. How do we do
this? Many studies have investigated how neural activity is
related to outside stimuli, and maps of these relationships
(often called receptive fields) are routinely computed from
data collected in neuroscience experiments. Yet how the
brain can understand the meaning of this activity, without
the dictionary provided by these maps, remains a mystery.
We tackle this fundamental question in the context of
hippocampal place cells—i.e., neurons in rodent hippo-
campus whose activity is strongly correlated to the
animal’s position in space. We find that the structure of
stimulus space can be revealed by exploiting relationships
between groups of cofiring neurons in response to
different stimuli. We provide a ‘proof of principle’ by
demonstrating constructively how the topology of space
and the animal’'s position in an environment can be
derived purely from the action potentials fired by
hippocampal place cells. In this way, the brain may be
able to build up structured representations of stimulus
spaces that are then used to represent external stimuli.

more than just coding for place [26-30], it is important to
identify—at least in theory—minimal aspects of neural activity
that yield sufficient information for construction of an accurate
representation of space.

In this work we show that a great deal of information about a
physical environment can be obtained using only very coarse
features of population spiking activity. We define a ‘cell group’ as a
collection of cells that collectively fire significantly above baseline
within a broad (~250 ms) temporal window; we do not call them
‘cell assemblies’ to avoid confusion with different timescales and
degrees of sensory control implied by this term [31-34]. We find
that the simple knowledge of which groups of hippocampal place
cells fire together is enough to (1) extract global topological
features of the environment, and (2) reconstruct an accurate
geometric representation of physical space within which the
animal’s position can be faithfully tracked. This is made possible
by using standard tools from algebraic topology and graph theory;
neither place fields, nor precise spike timing, nor any prior
independent measurements of position are needed.

Results

Cell Groups Reveal Place Field Intersection Information

Although the brain may be unable to establish direct
relationships (such as place fields) between neural responses and
external stimuli, it can in principle compare neural responses to
each other. Moreover, relationships between neural responses
reflect relationships between stimuli, and hence reveal structure of
the outside world.

In rat hippocampus, the theta-oscillation (6-10 Hz) provides a
natural timescale for organizing population activity. Cells that fire
within a few theta-cycles of each other are very likely to have
overlapping place fields. We define a cell group as a group of place
cells that collectively fire within a two theta-cycle (250 ms) time
window (Figure 1A). Note that this enables us to ignore finer spike
timing effects modulated by the phase of the theta oscillation, such
as phase precession [7,31,35-37]. Each place cell typically belongs
to multiple cell groups (Figure 1B), and the activation of a given
cell group is induced by the animal passing through the
intersection of corresponding place fields. Cellngroupsnthusyyield
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Figure 1. Collection of cell groups uniquely determines the
topology of the environment. (A) Sample rasters for the population
activity of five place cells in two different environments. Cell groups are
obtained by identifying subsets of cells that co-fire within a coarse time
window (colored rectangles). (B) Two examples of five-cell configura-
tions (simplicial complexes) depicting collections of cell groups
obtained from the sample rasters in (A). An edge represents a cell
group with two cells and a shaded triangle indicates a cell group with
three cells; colors correspond to cell groups in (A). (C) Cells that co-fire
have overlapping place fields. Each cell group in (A), (B) corresponds to
a particular intersection of place fields, denoted with matching color.
The place field intersection pattern fully determines the topology of a
space covered by convex place fields. The first configuration in (B)
forces an arrangement of place fields with a hole in the middle (left); the
second forces a space with no holes (right).
doi:10.1371/journal.pcbi.1000205.g001

place field ntersection information (i.e., they reveal which subsets of
place fields overlap), even when the place fields themselves are
unknown (Figure 1C).

We first show that this intersection information can be patched
together to reveal global topological features of the environment.
The method for extracting global topological features does not
require a metric. On the other hand, by thinking of each cell
group as defining a specific location in space, we can use
intersection information to construct a metric that provides
relative distances between cell groups. This yields a geometric
representation of the external physical space, obtained without
knowing place fields. We find that this internal representation is
quite faithful to the geometry of the environment. In either case,
we need only make some basic assumptions about place fields. We
assume that place fields exist and are stable, have similar sizes, are
omni-directional, and have firing fields that are convex. These
assumptions are generally satisfied for place fields of dorsal
hippocampal place cells recorded from a freely foraging rat in a
familiar open field environment (see Methods). We also explicitly
test the importance of the assumption that place fields have similar
sizes, and find that our results are in fact fairly robust to substantial
variability in place-field sizes. Finally, we test our methods with
multipeaked place fields, and find that our algorithms can tolerate
a realistic percentage of cells having multiple firing fields, so long
as the component fields are sufficiently separated and convex.
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Global Topological Features

What may be thought of as a ‘space of stimuli’ at one level of
processing may constitute an individual stimulus at another: global
features of the ‘space of positions’ become properties of individual
environments that can be used to distinguish between them. Often
times an animal’s physical space has “holes”—i.e., regions in the
interior of the environment where the animal is unable to go. For
example, a rat may be confined to a platform with one or more
holes in the middle; similarly, there may be large objects inside the
environment (such as trees) providing obstructions to the animal’s
path. In either case, we call the region inaccessible to the animal a
hole.

Holes are examples of (non-metric) topological features, because
they are preserved under continuous deformations of the space. Two
environments are said to be topologically equivalent (homeomorphic) if
one can be continuously deformed into the other, and vice versa.
Homology groups [38] (see Text S1) are topological invariants that can
be used to distinguish topologically inequivalent spaces. In particular,
the dimension of the first homology group H; counts the number of
holes. Higher order homology groups (Hy, Hs, ...) count higher-
dimensional “holes,” and thus place constraints on the minimum
dimensionality of the space; they are all expected to vanish for flat,
two-dimensional environments.

Topological Features Can Be Extracted from Cell Groups

From spike trains for a population of place cells, we obtain a
collection of cell groups (Figure 1A; see also Methods). The
corresponding intersection information can be used to compute
homology groups of the underlying environment—even though
the place fields themselves are unknown.

intersectionsy(FigurenlBrandnlC)»Inspired by a deep theorem in
algebraic topology [38] (see Text S1), we have devised a procedure

to compute homology groups from the collection of cell groups
active in a given environment. This theorem has also been used in
the context of sensor networks [39], and the potential utility of
similar methods in the case of hippocampal place cells was
independently observed in [40]. Our algorithm, described in detail
in the Methods, involves constructing a simplicial complex
(Figure 1B) from place field intersection information, an
computing its homology groups. If the cell groups obtained from
spike train data exactly reflect the correct place field intersection
information, the theorem guarantees that the homology of the
simplicial complex is equal to the homology of the underlying
space.

(oW

In order to verify that this procedure yields accurate results within
physiologically realistic parameters, we tested it using simulatedidata
- Random-walk " trajectories were
generated in five different flat, two-dimensional environments, each
of side length L (typically L~1 m), with N=0,1,...,4 holes (Figure
S1). In each of 300 trials, each of the five environments was covered
by 70 single-peaked place fields with varying radii (0.1-0.15 1) and
randomly-chosen centers (Figure 2A). Place cell firing was generated
according to a simple model (see Methods). Differing levels of nioise
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Figure 2. Accuracy of extracted topological features. (A) Sample
trajectories (green) in environments with one and zero holes. Gray
circles depict place fields used to simulate data for one trial. (B) For each
environment, and for each level of added noise, the percentage of
correct trials was computed from 300 trials (each having a different set
of randomly-generated place fields). A trial was considered ‘correct’ if all
five computed homology groups matched the topology of the
environment, and ‘incorrect’ if at least one homology group did not
match.

doi:10.1371/journal.pcbi.1000205.9002
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An Internal Representation of Space Can Be Built from
Cell Groups

A given cell group becomes active when the animal crosses a
specific location in space, given by the intersection of the
corresponding place fields. It is thus natural that, from the brain’s
point of view, a location in space is itself defined by a cell group
(Figure 3A and 3B). The collection of all activated cell groups thus
yields a collection of points, which can be thought of as “building
blocks” for an internal, discretized representation of space. A set of
unrelated points, however, does not constitute a space, one must
know the relationships between points (which pairs are close, and
which are far away). Fortunately, there is a natural way to
determine when two cell groups are “close” to each other, based
on the number of place cells they have in common.

We say that two cell groups are neighbors if they differ by just one
place cell. By joining neighboring points with edges, one obtains a
graph (Figure 3C) that is constructed purely from cell groups,
without any explicit knowledge of place fields. In general,
neighboring cell groups with a very high percentage of overlapping
cells will represent points that are closer in space than neighbors
with small overlap. We define a dissimilarity index ;. on neighboring
cell groups as the average relative distance between the centers of
adjacent regions with overlap degree £, assuming place fields of
equal radius (see Methods). In principle, u; should be derivable
from basic geometry, as it depends only on general and
unchanging properties of physical space. We estimated gy
empirically by computing the average distances between the
centers of adjacent intersection regions for 30 randomly-generated
sets of place fields covering the environment, and normalized the
index by fixing the largest value p; =1 (see Methods). We found
that for k< %, the index is well approximated by the formula
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Figure 3. Construction of a metric on cell groups. (A) Example
spike trains from five place cells. Each time bin (columns) represents
two theta cycles. (B) Place field intersection pattern derived from cell
groups in (A). Shaded regions correspond to cell groups inside
rectangles of the same color in (A). (C) The pattern of intersections
can be represented by a graph, with vertices (black squares) for each
cell group, and edges connecting neighbors (cell groups that differ by
one cell only). A trajectory (green) is inferred from the example data, by
“connecting the dots” to match the sequence of cell groups in (A). (D)
Weights are assigned to edges of the graph using the dissimilarity index
Uy, Where k is the number of common cells between neighbors. The
distance between any two vertices in the graph is obtained by
summing the weights along a shortest path (blue).
doi:10.1371/journal.pcbi.1000205.g003
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wrl—m 5‘;,_11' , where N5 1s the number of place cells active in
clls

the environment (see Figure S2). We assume such an index can be
“hard-wired” in the brain, as it has no information about any
particular arrangement of place fields or any particular environ-
ment. Although we estimated g assuming all place fields have
identical size, we use exactly the same formula for g in every
reconstruction, regardless of the distribution of place field sizes we
consider.

The dissimilarity index can be used to assign weights to each
edge in the graph. A path is a sequence of edges connecting two
vertices (cell groups) in the graph; the length of a particular path is
given by summing the weights along its edges. The distance
between any two cell groups in the graph can then be defined as
the length of a shortest path between those points (Figure 3D; see
also Methods). In this manner one obtains a natural metric on cell
groups. We call this graph, with cell groups as its vertices and
edges between neighbors, together with the metric, the wmternal
representation of the external space.

Internal Representation Accurately Reflects External
Geometry

In order to test how well the internal representation conforms to
the geometry of the external space, we used simulated population
spiking activity from a two-dimensional square box environment
(see Methods) with differing numbers of place cells. For each
number of place cells covering the environment, we randomly
generated data sets for 60 trials, each trial having different place
fields of radii chosen uniformly at random from the interval [0.1
L,0.125 L], with randomly-chosen centers. The place field sizes
were chosen to conform to the 20-25 cm range of average
diameters typically observed for place cells in dorsal hippocampus
for a rat exploring an open field environment of scale L~1 m
[41,42]. For each simulated data set, we constructed an internal
representation as outlined above.

To assess the accuracy of the internal representations, we first
computed pairwise distances between points on a fine grid
spanning the LxL environment and compared them with the
corresponding pairwise distances of their images in the internal
representation (Figure S3). We defined the pairwise error for an
individual trial (having a fixed number of place cells) as the mean
error in pairwise distances when computed using the internal
representation (see Methods). We found that the average pairwise
error across trials had a minimum value of 0.036 L for 90 cells
(Figure 4A), or less than 1/3 the average place field radius; this
indicates that relative distances between points in the internal
representation are accurate to within a ball of approximately 1/9
the median place field area. To check robustness of this procedure
in the case of greater place field variability, we repeated this
analysis for a series of gamma-function distributions of place field
radii (Figure 4B). We found that performance decreased slowly for
distributions with increasing standard deviations up to ~0.033,
and rapidly deteriorated for distributions with standard deviations
greater than 0.05 (Figure 4C).

As a further test that the full geometry—and not just pairwise
distances—is accurately reflected in the internal representation, we
used multi-dimensional scaling (MDS) [43] to embed each graph
into a two-dimensional Euclidean space, in a way that best
preserves the relative distances between pairs of points (i.e., to best
preserve the metric on cell groups). Next, we “aligned” the
coordinates of the embedded internal space properly so as to best
match the particular coordinates used to represent the external
space (Figure S4; see also Methods). Points in the external space
could then be mapped into the embedded internal space by
identifying corresponding cell groups (see Methods).
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Figure 4. Error in pairwise distances computed from internal
geometric representation of space. (A) For a fixed number of place
cells, the pairwise error was computed and averaged over 60 trials. Each
data set was generated from a different set of place fields, with
randomly selected centers and radii chosen uniformly at random from
the interval [0.1,0.125] (shaded gray region; this corresponds to place
field diameters ranging from 20-25 cm in a 1 mx1 m environment).
The dashed horizontal line corresponds to the average radius of place
fields. The average pairwise error achieved a minimum of 0.036 (as a
fraction of box side length L) for 90 cells, and then leveled off. This
indicates that relative distances between pairs of points in the internal
representation are accurate to within an error that is less than 1/3 the
average radius of place fields. (B) Various gamma-function distributions
for place field sizes, with fixed mode=0.1125 L and varying standard
deviations. Radii greater than 0.5 L are not considered, as these
correspond to place field diameters that exceed the side length of the
box. Dashed line indicates the uniform distribution used in (A). (C) Mean
pairwise error averaged over 60 trials for N.eis =90 and for each of the
distributions of place field radius displayed in (B). Dashed line denotes
the place field radius corresponding to the peak of each distribution.
Error bars in both (A) and (C) represent standard deviations across trials.
doi:10.1371/journal.pcbi.1000205.9004

Visually, the quality of an internal representation can be judged
by mapping a coarse grid of vertical and horizontal lines from the
external space into the embedded internal space, and seeing how
faithfully the geometric structure is preserved. We found that the
full metric geometry (including angles and relative distances) of the
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internal representation closely mirrored that of the external space
(Figure 5A). In particular, the square shape of the box and the
rectilinear structure of the grid were faithfully reproduced. We
quantified the accuracy of a given internal representation by
computing the mismatch between the two spaces; this measure
computes the average error, as a fraction of box side length Z,
obtained by mapping a fine grid of points from the original space
mto the aligned embedded internal space (see Methods). Quite
similarly to the pairwise error, we found that the average
mismatch decreased with increasing numbers of cells, getting as
low as 3% for 120-140 cells (Figure 5B).

Multipeaked Place Fields

Until now we have assumed that place fields are convex; while
this is usually the case, multipeaked place fields are often observed.
In open field environments of size L~1 m, a small percentage (5—
10%) of place cells have two disconnected firing fields, each of
which looks like a convex, single-peaked place field [21,44]. We
will refer to these neurons as “multipeaked place cells,” and to the
connected components of the place fields simply as “fields.” At
first glance, the presence of multipeaked place cells poses a
potential limitation to our study. The algebraic topology theorem
no longer holds, suggesting that the algorithm we have thus far
used for extracting topological features is likely to fail. In the case
of the geometric reconstruction, on the other hand, we do not
necessarily expect multipeaked place fields to pose a problem, so
long as the component fields are individually convex. In general,
the danger with multipeaked place fields is that distant regions of
space may be identified as being the same. In an “across-cell”
coding scheme where each neuron represents a distinct location in
space, this ambiguity indeed poses serious problems [21]. When
locations are represented by cell groups, however, this difficulty is
easily overcome. Although the same cell may fire in two locations
that are far from each other, cell groups corresponding to these
distant regions will generally be very different, as other cells serve
to disambiguate position. Because two cell groups are considered
neighbors only in the case that they share a majority of cells in
common, pairs of cell groups with only one or a few common
place cells are guaranteed to represent distant positions in the
internal representation.

In order to test the performance of the geometric reconstruction in
the case of multipeaked place cells, we simulated data as before but
included small percentages (up to 11%) of multipeaked placercells
while keeping the total number of firing fields covering the
environmentrconstant. In these simulations, we also required that
the centers of multiple fields corresponding to the same cell be
sufficiently distant; this was in order to enable disambiguation by
other cells (see Methods). For 140 fields, we found the performance
to be very good (Figure 6). An example reconstructed space from
data containing 10% multipeaked place cells demonstrates that the
algorithm naturally separates the double fields (Figure 6A and 6B;
see also Figure S5). In particular, both the mismatch (Figure 6C) and
pairwise error (Figure S6C) remained approximately constant
ranging from 0% to 11% multipeaked place cells.

For data generated from only 90 fields, however, as in
Figure 5A, performance steadily decreased with increasing
numbers of multipeaked place cells, as measured by both pairwise
error and mismatch (Figure S6A and S6B). This is because there
were not enough place fields to double-cover the environment,
leading some regions within double fields to fail to be
disambiguated by the presence of other place cells, and thus
causing large distortions in the reconstructed space. In fact, this is
precisely the problem that may cause the topology algorithm to
fail. When the environment is double-covered by place fields,
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Figure 5. Accuracy of full geometry for internal representation of space. (A) The original space (left) and a reconstruction from simulated
place cell activity (right). Black dots correspond to cell groups. A coarse grid (red and orange lines) in the original space is mapped into the
reconstructed space, to allow for visual comparison of the geometry. (B) The accuracy of a reconstructed space may be quantified by computing the
‘mismatch’ between points in the original space and their images in the reconstructed space, as a fraction of the box side length L. The mismatch
decreases with increasing number of cells. Error bars correspond to standard deviations for average mismatch across 60 trials. The dashed horizontal
line corresponds to the average radius of place fields, while the shaded gray area corresponds to the range of place field radii.

doi:10.1371/journal.pcbi.1000205.9005

however, place cells with multiple fields can be detected purely
from the graph of neighborhood relationships on cell groups
(constructed as in Figure 3C). For each place cell, there is an
induced subgraph whose vertices are the cell groups containing
that cell. Each connected component of this subgraph corresponds
to a distinct field (Figure S7). Having detected additional fields for
multipeaked place cells, we can then assign auxiliary “place cells”
to substitute the original cell labels such that each connected
component corresponds to a distinct cell. We then build the
simplicial complex and compute homology groups as before.
Regarding the (unknown) place fields as providing an open cover
of the underlying space, the added step of the topology algorithm
can be thought of as making the minimal possible refinement [45] of
the open cover such that the theorem again holds (see Methods).
We found that with this modification, the topology algorithm
maintains very good performance for the experimentally observed
range of 5-10% multipeaked place cells (Figure 6D).

Discussion

We have shown that, in the case of hippocampal place cell
activity, global topological features of a two-dimensional environ-
ment as well as an accurate geometric reconstruction of physical
space—including the animal’s position within it—can be inferred
from spikes alone. In either case, one need only assume that place
fields exist and have a stereotypical form; knowledge of actual place
fields or any other prior independent measurements of position is
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not needed. This provides a general framework for building up
stimulus spaces (or ‘cognitive maps’ [46]) using only neural activity
from a relatively homogeneous population of neurons, such as
dorsal hippocampal place cells.

Even after obtaining a geometric representation of space, global
topological features (if needed) must still be computed. Although
we may be able to “see” topological features of the stimulus space
by looking at a two-dimensional embedding of the internal
representation, this does not mean no further computation is
necessary; it merely reflects the fact that our visual system is able to
do the computation. Moreover, global features of a ‘space of
stimuli’ at one level of processing may become properties of an
individual (composite) stimulus at another. Interestingly, although
the computation of topological features also has cell groups as its
starting point, it does not require constructing a geometric
representation of space, and hence bypasses the need for a metric.

At first glance, our internal representation is perhaps reminis-
cent of the ‘cognitive graph’ in [47,48], as it is also a graph
constructed to represent a physical environment. The ‘cognitive
graph,” however, was envisioned as an actual neural (sub-) network
realized in the hippocampus, with an individual place cell for every
vertex and a synapse for every edge. The metric was encoded in
synaptic weights between place cells, and determined via an LTP
learning rule. This implies that geometric distortion would result
from a biased sampling of the environment by the animal’s
trajectory. Although each vertex in the ‘cognitive graph’ was
mtended to represent the center of the corresponding place field, it
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Figure 6. Accuracy of metric reconstructions and topology computations with multipeaked place cells. (A) The original space, together
with double-peaked place fields for three example simulated place cells (blue, green and magenta). (B) A reconstructed space obtained from a data
set where 10% of the place cells have double-peaked place fields. Black dots correspond to cell groups, as in Figure 5A. Cell groups containing each
of the three place cells with multipeaked fields displayed in (A) are shown with corresponding color. Cell groups containing each of the 13
multipeaked place cells in this data set are shown in Figure S5. (C) For a fixed total number of 140 fields covering the environment, the mismatch
remains nearly constant for increasing percentages of multipeaked place cells. Error bars correspond to standard deviations for average mismatch
across 60 trials. (D) The extraction of topological features also performs well on simulated data including up to 10% multipeaked place cells. The
percentage of correct trials was computed across 50 trials with 0%, 2.5%, 5%, 7.5%, and 10% of cells having double-peaked place fields. As in
Figure 2B, a trial was considered ‘correct’ if and only if all five computed homology groups matched the topology of the environment.

doi:10.1371/journal.pcbi.1000205.g006

1s always the case that many place cells are simultaneously active at
any given location in space, suggesting that this graph is not
suitable to represent specific positions given population place cell
activity. Moreover, the existence of multipeaked place cells
presents a seemingly insurmountable challenge in this and any
paradigm where place cell firing is presumed to signal proximity to
a single place [21].

In contrast, our internal representation graph has a vertex for
every group of reliably co-firing neurons, and is closer in spirit to
Hebb’s cell assemblies [34] than to a literal neural network
representation of space. Since distances between cell groups result
from the combinatorics of their overlaps, the fact that multiple
cells co-fire in response to a given stimulus is not a nuisance but a
necessary condition for inferring the structure of the underlying
space. An essential feature is that, unlike in the case of Kohonen
maps [49], geometric relationships between external stimuli are
revealed even when neurons in the network have no a priori
topographic structure (as in hippocampus). Moreover, the
resulting metric on cell groups is insensitive to a biased sampling
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of the environment or to the particular values of synaptic weights
within the hippocampus, and does not depend on nearby stimuli
occurring in temporal proximity to each other, as would be
required to infer stimulus space structure using spike train metrics
[50]. Instead, we have used only a very coarse aspect of population
spiking activity—the set of all cell groups—while fully exploiting
the fact that co-firing cells have overlapping receptive fields.
These results suggest that it may be possible for maps of the
environment to be constructed in downstream brain areas purely
from cell groups. If this is the case, we would expect that geometric
distortions in the animal’s spatial perception would arise as a
consequence of uneven place field coverage of an environment:
the animal should overestimate distances in a region of higher
place field density, and underestimate distances in regions with
significantly lower place field density. This prediction, if confirmed
by experiment, would provide evidence that only cell groups are
used in constructing internal representations of space. If, on the
other hand, such perceptual distortions are not observed, we can
be almost certain that some other aspect of neural spiking activity
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contributes. Interestingly, because in our simulations we chose
place field centers uniformly at random from within the environ-
ment, we consistently had a lower density of place field coverage
near the boundaries. This, in fact, led to greater geometric
distortions near the boundaries of our spatial reconstructions than
in the interior. To compensate for this, one might expect there to
be a greater number of place fields near the boundary of an
Such an effect has, in fact, been reported
experimentally [51,52], and may be regarded as a postdiction.

We have considered environments that are flat and two-
dimensional; however, it is easy to generalize our procedures to
stimulus spaces that are higher-dimensional and/or curved.
Recent experiments suggest that three-dimensional hippocampal
place fields may be observable in flying bats [53]. The topology
algorithm can be used in exactly the same way to detect holes or
obstacles in three-dimensional environments from cell groups. The
geometric reconstruction algorithm could also be used in exactly
the same manner, the only difference being that a different
dissimilarity index fy, computed for three-dimensional space,
would need to be used. Furthermore, we believe our approach
could be generalized to stimulus spaces reflected in other brain
areas. The geometric methods could prove useful in discovering
new structure in stimulus spaces reflected in neocortical areas,
such as primary and higher order sensory cortices. Moreover, the
brain appears to be particularly adept at identifying topological
properties of complex objects. For example, connected compo-
nents and holes in a visual object or scene are often among the
most salient features. A topological approach, such as the one we
have used here, could yield insight into understanding how global
features of a visual object are extracted from the activity of cells
with spatially localized receptive fields.

Our notion of stimulus reconstruction is a significant departure
from traditional “decoding” paradigms, as it does not require
directly relating neuronal activity to external stimuli (as in the
computation of receptive fields), or to activity in any other area of
the nervous system. Moreover, while the computation of receptive
fields begins with a priors assumptions about the nature of the
stimulus space being represented, we recover the structure of the
stimulus space itself from the structure of the induced patterns of
neuronal activity. The identity of a particular stimulus, then,
emerges from a combination of modality (the location and type of
activated neurons) and the relationship of its corresponding cell
group to all others in an internally represented space. Any
necessary assumptions about receptive fields may be regarded as a
kind of “universal grammar” [54] that renders stimulus space
reconstruction possible.

Recently it has been suggested that sequential replay, as
observed in hippocampus and neocortex [55-58], may be a
mechanism for consolidating sequences of cells that under spatial
navigation conditions fire within larger time windows. The
sequences reflect groups of cells that co-fire within the same theta
cycle during behavior, however, and it is unclear to what extent
the precise ordering matters [59,60]. It is therefore plausible that
cell groups may be communicated to cortex during replay
events—on a compressed timescale—enabling identification via
coincidence detection. This may allow for building representations
of space and computing topology in cortex, as these computations
require knowledge of the full collection of cell groups.

In summary, we have shown that a surprising amount of
information about the structure of stimulus space can be obtained
from the combinatorics of cell groups, extracted from noisy
population spiking data with a coarse time window. Although we
were able to demonstrate the presence of this information
constructively, whether and how the brain uses this information

environment.
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remains to be seen. Our results suggest, nevertheless, that
combinatorial relationships between groups of cells that fire
together could reflect stimulus space structure inside the brain, and
may perhaps lead to a general principle of how the brain
constructs representations of the outside world.

Methods

Here we describe how to compute homology groups and
construct an internal representation of space from neural spiking
data. The starting point for each method is the identification of cell
groups. We begin, however, by outlining some basic assumptions
about place fields needed for these procedures to work, and a
description of the simulated data we used to test our approach.

Assumptions about Place Fields

(1) Place fields are omni-directional, as is typical in an open field
environment, but not on a linear track [21,61]. (2) Place fields have
been previously formed and are stable. (3) The collection of place
fields corresponding to observed cells covers the entire traversed
environment. (4) The holes/obstacles are larger than the diameters
of place fields. (5) Each (connected) component field of a single or
multipeaked place field is convex. (6) Background activity is low
compared to the firing inside the place fields. (7) Place fields are
roughly circular and have similar sizes, as is typical in dorsal
hippocampus [41,42].

Although individual electrophysiological recordings can only
simultaneously monitor a limited number of cells, it is almost
certain that the hippocampus possesses enough place cells for any
given environment such that the corresponding place fields cover
the entire explored space many times over [44]. The convexity of
component fields means that a straight line segment connecting
any two points in the field will itself be entirely contained within
the field. This is consistent with the observation that individual
fields tend to have circular or elliptical shape [21]. Although these
are reasonable assumptions about dorsal hippocampal place cells,
they pose significant constraints on the quality and quantity of cells
in the recording. One may assume, however, that downstream
structures in the brain receiving hippocampal output do have
access to this kind of data. We test our approaches for constructing
internal representations and computing homology groups on
simulated data that satisfy these criteria.

Simulated Data

Fach environment is an LxL box, with or without holes in the
interior. All length units are with respect to the side length L of the
box (typically L~1 m). In order for the topology and metric
algorithms to work, we of course need the animal to fully explore
the environment. In particular, the trajectory must be dense
enough to sample the majority of cell groups. For the geometric
reconstructions, this is merely a matter of resolution, as sampling
fewer cell groups will lead to less precise geometric information.
For the topology computations, we need to ensure that the set of
all cell groups reveals the full low-order intersection information in
order for the low-order homology groups to be accurate. For
accurate computation of the nth homology group H,, we need up
to (n+1)-fold intersections to be detectable via cell groups. If we
were only interested in the first homology group H; (this is enough
to detect holes/obstacles and distinguish between environments)
we need only guarantee that pairwise intersections are accurately
reflected—i.e., the trajectory must pass through each pairwise
intersection of place fields at least once. However, because we
compute homology groups up to Hs, in order to check consistency
of the data with the interpretation as a two-dimensional
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environment, we have used denser trajectories in our simulations.
This would not be necessary if we were only interested in Hy and
H,. Note that a high-order cell group of n cells, signifying an n-
fold intersection, implies all lower-order intersections.

For topological features. For cach of five environments
(Figure S1) we generated a smoothed random-walk trajectory, with
speed =0.1 L/s (this is 10 cm/s for a 1 mx1 m box), which was
constrained to “bounce” off boundaries and stay within the
environment. The total duration of each simulated trajectory was
50 minutes. For each of 300 trials, N=70 place fields were
generated as disks of radii 0.1 L to 0.15 L, with radii and centers
chosen uniformly at random. In order to ensure place fields
covered the environment, centers were chosen initially uniformly
at random from uncovered space. Once all space was covered,
remaining place field centers were chosen at random from the
entire box (Figure S1).

For each place cell in each trial, an average firing rate was
chosen uniformly at random from the interval 2-3 Hz. A spike
train was generated from the trajectory and corresponding place
field as an inhomogeneous Poisson process with constant rate
when the trajectory passed inside the place field, and zero outside,
so that the overall firing rate was preserved. Because we threshold
the number of spikes in each time bin to obtain cell groups, this is
equivalent to having somewhat larger non-constant place fields
where the firing rate drops quickly below threshold outside the
specified radius. Noisy spike trains were created according to the
noise percentage r (0-10%) as follows. r% spikes were deleted
from the spike train, and then added back to the spike train at
random times, irrespective of position along trajectory, so as to
preserve overall firing rate. ‘Shuftled” data sets were constructed by
randomly choosing cells from each of the five environments, and
pooling them together to yield population spiking activity that did
not come from a single environment.

For reconstruction of space. Here we consider a square
box environment with no holes. Place fields were generated with
radii selected uniformly at random from the interval [0.1 L, 0.125
L]. This is consistent with the 20-25 cm average place field
diameters typically observed for dorsal hippocampal place cells in
an environment of scale L~1 m [41,42]. In the simulations for
Figure 4C, place fields sizes were generated from gamma function
distributions (shown in Figure 4B) all having peaks at 0.1125 L and
having minimal place field radius of 0.05 L. The location of the
peak, the minimum place field size and the standard deviation
uniquely determine each gamma distribution. Average firing rates
were chosen uniformly at random from the interval 1-3 Hz. The
trajectory, locations of place fields, and the spike trains for each
place cell were generated as described above. For each total
number of cells (Neens = 40-140, increasing by 5), we had 60 trials,
each with different randomly chosen place fields and
inhomogeneous Poisson spike trains.

Simulations with multipeaked place fields. In simulations
with multipeaked place fields, secondary fields were randomly-
generated for the population of multipeaked place cells with the
condition that the center of the second field was a distance greater
than 0.5 L away from the center of the first randomly-generated
field. This was to guarantee that pairs of fields for double-peaked
cells were sufficiently well-separated to allow detection of separate
fields via cell groups (see Figure S5 and Figure S7). A higher
density of coverage by place fields would allow the distance
between multiple fields of the same cell to be smaller, approaching
the minimal separation required for the fields to be disconnected.
The radii for the component fields in double-peaked place fields
were drawn independently from the same distributions of radii
used for single-peaked place fields. All other aspects of the
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simulations with multipeaked place fields were the same as for
simulations with only single-peaked place fields.

Identification of Cell Groups

We define a cell group as a group of place cells that collectively
fire within a two theta-cycle (250 ms) time window. To determine
the full set of cell groups that become activated as the animal
traverses the environment, we first bin population spike trains into
2-theta-cycle time bins. A certain subset of cells fires in each time
bin, and we use these subsets to determine the cell groups. Because
there is some probability that a given place cell will fire outside its
place field, we impose a threshold on firing rates in order to
determine the group of cells that fired significantly above baseline
for each bin. Each resulting cell group can then be assumed to
correspond to a particular intersection of place fields.

We first divided population activity into a set of population
vectors, ie., vectors in RY™ with firing rates for each cell in a
given time bin. In order not to miss any cell groups due to the
arbitrary choice of where bins start and end, the binning time
windows were then shifted to have a total of five different starting
positions (eight for topology), equally spaced within two theta-
cycles, so that each spike contributed to five population vectors. All
population vectors were pooled and thresholded as follows. For
each cell, the firing rate in a particular population vector was
considered significant if it was at least 6 times the average firing
rate for that cell. Each population vector thus yielded a cell group,
consisting of all cells firing significantly above baseline in a
particular time bin. The thresholding is what renders the topology
and reconstruction of space procedures fairly robust to noise in the
spike trains.

Extraction of Topological Features

Here we describe how to compute the homology groups of a
given environment from the collection of all cell groups that are
active in the environment.

Some mathematical preliminaries. We use a few standard
mathematical objects that are uncommon in the neuroscience
literature. Here we give brief descriptions of these objects; see Text
S1 for rigorous definitions. A simplicial complex is a set of vertices
and simplices (simplices are n-dimensional triangles: points, line
segments, triangles, tetrahedra, etc.). An abstract simplicial complex is
a set with a set of subsets satisfying similar properties as simplices.
We will use it as a combinatorial object that keeps track of
mtersection information revealed by cell groups. Roughly
speaking, homology groups [38,45,62] count the number of “holes”
of various dimensions in a given topological space. The dimensions
B; of the homology groups H; are called Betti numbers. The 0™ Betti
number By counts the number of connected components in a
space, while B; counts the number of holes that can be bordered
by a closed 1-dimensional contour. Higher Betti numbers f;, i>1,
count the number of “holes” in higher dimensions. There are
many definitions of homology groups that can be shown to be
equivalent in most cases of interest [38]. We use simplicial homology
groups. Simplicial homology groups are defined for any topological
space which can be subdivided into a simplicial complex; they are
also defined for abstract simplicial complexes. In other words, the
definition applies to the two-dimensional spatial environments
explored by the animal, as well as to the high-dimensional abstract
simplicial complexes we obtain from population spiking data.

Computation of homology groups from cell groups. The
set of all cell groups for a complete data set naturally yields an
abstract simplicial complex. Each cell is a vertex, and each group
of n cells yields an (z — 1)-dimensional face (Figure 1B). A 1-
dimensional face is an edge, a 2-dimensional face is a triangle, a 3-
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dimensional face is a tetrahedron, and so on. Assuming place fields
are convex, a deep theorem in algebraic topology [38] implies that
the homology groups of this simplicial complex are equal to the
homology groups of the underlying space (see Text S1). We can
thus distinguish between different environments by computing
their homology groups from population spiking data alone. For
our two-dimensional flat environments, f is always 1 and higher
Betti numbers (B; >1) all vanish. (If the animal were exploring the
entire surface of a ball, however, we would expect By =1.) The 1%
Betti number By, on the other hand, is different for each of the five
environments, matching the number of holes in each.

To compute homology groups for the very large and high-
dimensional simplicial complexes defined by cell groups, we use an
algorithm from computational algebraic topology implemented for
the GAP software package [63,64]. The algorithm relies
exclusively on standard linear algebra, and is thus in principle
realizable by a simple neural network. We computed the first five
homology groups Hy,...,Hs, and declared a trial to be ‘correct’
when all Betti numbers matched what was expected for the
environment: B =1, B; = number of holes, and ;=0 for :>1. A
trial was deemed to be ‘incorrect’ if at least one of the five
computed Betti numbers did not match.

‘““Refinement’’ step for multipeaked place cells. In the
previous analysis, the convexity of place fields was needed such
that the open cover (see Text S1) associated to the set of all place
fields satisfied the properties necessary for the theorem to hold. If
the data includes place cells having multipeaked place fields, we
need to assign an open set for each connected component of the
place field. Fortunately, multiple fields can easily be detected from
the set of all cell groups, by identifying connected components in
the induced subgraph of neighborhood relationships between cell
groups (see Figure S7). By assigning a distinct open set for each
component of this graph, we can then build the simplicial complex
and compute homology groups exactly as if each field
corresponded to a different cell. The added step to the topology
algorithm can be thought of as making the minimal possible
refinement [45)] of the open cover, defined by the (unknown) place
fields, such that the theorem again holds. A refinement of an open
cover is a new cover such that each set in the new cover is fully
contained in an open set of the old one. In order to detect the
connected components of a graph defined via an adjacency
matrix, we used the standard Dulmage-Mendelsohn matrix
decomposition, implemented in the Matlab routine ‘dmperm’.

Internal Reconstruction of Space

Here we describe the construction of an internal representation
of the environment from the collection of all cell groups that are
active in that environment. This can be summarized in two steps:
(i) construction of a graph, containing a vertex for every cell group
and an edge between neighboring cell groups, and (ii) construction
of a distance matrix (or metric) containing distances between any
two cell groups. In order to verify that the internal representation
is faithful to the geometry of the external space, we computed the
average error on pairwise distances between points in the external
space as estimated using the metric for the internal representation.
To further validate that the full geometry is accurately reflected in
the internal representation, we used multidimensional scaling
(MDS) to embed the graph in two-dimensional Euclidean space in
a way that best preserves the metric on cell groups. This enables
comparison of the full geometries by visual inspection and by
computation of the mismatch (see below).

Regions represented by cell groups. FEach cell group
defines a point, or small region in space contained in the
intersection of the corresponding place fields, but not in any higher
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order intersection (as this would correspond to adding additional
cells to the cell group). Mathematically, if G;C{1,...,M.1s} denotes a
cell group with £ cells, and Ug, is the intersection (as a subset of the
environment) of the corresponding place fields, then the region of
space corresponding to the cell group Cj is given by V¢, =

Ue,— U Ucg,,.Forexample, the colored regions in Figure 1C

Cret12C
and Figure 3B all correspond to subsets of the form V¢, . Similarly,
the black dots in Figure 3C and 3D, each corresponding to a cell
group (j, represent regions of space of the form Vc,, not pure
intersections Ug, .

Dissimilarity index. The distances between any two cell
groups are computed via a dissimilarity index g on neighbors (cell
groups that differ by just one cell). For each total number N,y of
place cells, we estimated i, empirically by computing the average
distances between the centers of adjacent intersection regions V¢,
and V¢, ,, for 30 randomly-generated sets of place fields having
uniform radii (r=0.1) covering the environment. We normalized
the index by fixing the largest value u; =1. Note that for each
value of Neps, Hx depends only on the order £ of the smaller cell
group. Empirically computed values of y; for differing numbers of
cells are shown in Figure S2A. In principle, g should be derivable
from basic geometry; we find that it is well approximated by the

k—1 Ncells
formula py ~1—my/——, for k<
k Neells 2

this formula was obtained assuming all place fields have exactly the
same size, we have used the same formula for place fields of
varying radii, regardless of the particular distribution (uniform or
gamma) being considered.

Distance matrix (metric on cell groups). Given a
collection of cell groups, we obtain a distance matrix (or metric)
containing distances between any two cell groups as follows. We
first construct a graph whose vertices are cell groups, and whose
edges are given by neighboring pairs of cell groups (Figure 3C). To
each edge between neighbors of degrees £ and A+1 we assign the
weight g (Figure 3D). A path is a sequence of edges connecting two
vertices in the graph; the length of a particular path is given by
summing the weights along its edges. The distance between any
two cell groups (vertices in the graph) can then be defined as the
length of a shortest path between those points (Figure 3D). We use
Johnson’s ‘all shortest paths’ algorithm [65], implemented for
Matlab in [66], to construct a distance matrix with distances
between each pair of cell groups. Note that this yields a metric in the
strict mathematical sense, as it is positive definite, reflexive, and
satisfies the triangle inequality. Finally, we add a 0-1% random
noise jitter to the entries of the distance matrix, to ensure that the
MDS method we later use (below) does not encounter any
degeneracies due to multiple entries of the matrix being exactly
equal.

Mapping between spaces. Points in the original space are
mapped into the internal representation as follows. Assuming place
fields cover the environment, any point in the original space lies in
a particular intersection region V¢, , and is expected to activate the
cell group (j, where £ is the number of cells (equivalently, the
order of intersection). We can thus identify points in the original
space with the corresponding cell groups (vertices) in the internal
representation. In cases where the number of cells was not
sufficient to completely cover the environment, uncovered points
are mapped to the internal space using the nearest cell group. For
a given point p in the environment, we denote the corresponding
cell group as ([p), regardless of the number of cells it contains.

Pairwise error. In order to quantitatively assess the quality
of the internal representation, we compared distances between
pairs of points (p,g) in the original environment to the distances

(Figure S2B). Although
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between their corresponding cell groups C(p) and ([g) in the
internal representation. For a given trial, we computed the pairwise
error as the average value of |[p—q| —d(C(p),C(g)|, where d is the
(renormalized) constructed metric on cell groups, and the average
is taken over all pairs of points (p,g) coming from the grids shown
in Figure S3. Because the scale for the metric on cell groups was
set by the convention p; = 1, we multiplied the constructed metric
for the internal representation by an overall constant such that the
mean pairwise distance computed using ¢ matched the mean
pairwise distance in the external environment; this ensured that
differences in overall scale would not contribute to the pairwise
error. The average pairwise error for 60 trials, as a function of the
total number of place cells, is shown in Figure 4.

Embedded internal representation. Given a distance

matrix for a collection of points, and a specified dimension, a
non-metric MDS algorithm [43] arranges the points in Euclidean
space so as to best preserve the ordering of the distances in the
distance matrix. (In other words, nearby points will be mapped
close together and far away points will be kept far away, though
actual distances may be distorted.) We wuse the Matlab
implementation ‘mdscale.” This enables us to visually assess how
accurately the internal representation reflects the full external
geometry, beyond just pairwise distances between points. Lines
and trajectories in the original space can be mapped into the
embedded internal representation by “connecting the dots”
between the images of their points (see Figure 5A).
Comparison to original space, alignment, and
mismatch. The output of MDS 1is only unique up to a
Euclidean transformation (rotation and translation). Moreover,
the overall scale in our distance matrix is arbitrary, as we
normalized our dissimilarity index on neighbors such that only
relative distances mattered. In order to compare the raw MDS
output to the original space we must therefore “align” the internal
representation properly. We do this by finding the optimal affine
transformation (rotation, translation and scaling) that minimizes
the distances between points in the original space and their images
in the internal representation space.

An affine transformation is a transformation of the form

X1

reer() (o ) () ()

X a1 an/\x2 by
parameterized by six numbers (a;,a19,a91,d29,01,09). This amounts
to translating (2 parameters), rotating (1 parameter) and scaling in
two independent directions (3 parameters, the third is the angle
between directions). We find an optimal affine transformation 7°

relating the raw MDS output to the external space by minimizing
a function of six variables

Sflai,aiz,a21,a2,b1,b2) = J[ |T(m(X)) —_>Hd2?,

where X is a point in the external space and m(?) is its image
after mapping to the internal space. The double integral is taken
over the entire square area of the external environment, and was
computed by summing over a grid of 150x150 points. The
optimization was performed using ‘fminsearch’ in Matlab. The
resulting optimal transform was then used to align the raw MDS
output to better match the coordinates on the original space.
Figure S4 shows raw MDS outputs (left column) and correspond-
ing aligned versions (middle column).

After alignment, we can evaluate the quality of the represen-
tation by computing its “mismatch” with the original space. A fine

@ PLoS Computational Biology | www.ploscompbiol.org

1

Cell Groups Reveal Structure of Stimulus Space

grid of points (150x150) in the original space is mapped to the

aligned internal space, and the distances H T(m (?)) —_>H
between grid points and their images are computed, as a fraction
of the box side length L. The average of all of these distances is
called the mismatch.

Note that the alignment procedure, which does require the use of
place fields and independent position information, is only
necessary for computing the mismatch—i.e., to quantify how well
the embedded internal representation directly compares to the
external space. This is because the particular coordinate systems
we choose to parameterize the internal and external spaces are
completely arbitrary, and must be shifted, scaled and rotated to
match. The brain does not need to perform either MDS or
“alignment”; it need only track position with respect to its own,
internally constructed representation of space.

Supporting Information

Figure S1 Five different environments used in simulations. The
trajectories (green) were generated using a smooth random walk.
Sample place fields for one trial per environment are depicted as
gray circles. The holes/obstructions can be seen as white
rectangles not covered by the trajectory.

Found at: doi:10.1371/journal.pcbi.1000205.s001 (7.10 MB EPS)

Figure 82 An approximate formula for the index gy (A) The
dissimilarity index p; on neighboring cell groups, for different
numbers of cells, computed empirically (see Methods). (B) Compar-
ison between empirically computed g, (black traces) and the formula

k—1

l—=n
N, cells

(red traces) for various values of N The value of p for the very
highest occurring £ in each case is not displayed, as very few such
intersections occurred, rendering the empirical estimate unreliable.
Found at: doi:10.1371/journal.pcbi.1000205.s002 (1.06 MB EPS)

Figure 83 'Two grids used for computing pairwise distances. We
considered pairwise distances between all possible pairs of points
(p,q), where p is a point on a fine 100x100 grid (gray dots) and ¢ is
a point on a coarse 4 x4 grid (red dots) in the square environment.
(¢ is taken from a coarse grid to reduce the total number of pairs
from 10% to a more computable 1.6¥10°.) For ecach trial, the
pairwise error was computed as the average value of
llp—q| —d(C(p),Cg)]|, where C(p) and Clg) denote cell groups
corresponding to points p and ¢, respectively, and d was the
constructed metric on cell groups. This provides a measure for the
quality of an internal representation constructed from cell groups.
Found at: doi:10.1371/journal.pcbi.1000205.s003 (3.69 MB EPS)

Figure 84 Internal space reconstructions for increasing numbers
of place cells. The original environment (bottom right) with three
sample place fields. A coarse grid (red and orange lines) is used for
visual comparison with the reconstructed spaces, as in Figures 5
and 6. Black and colored dots correspond to cell groups, as in
Figure 3C and 3D, with colors representing cell groups containing
the three sample place cells. Raw MDS outputs (left column) for
the internal reconstructions of space have arbitrary scaling and
orientation; aligned versions (middle column) can be used to
compute the mismatch (see Methods). Mismatch improves with
increasing numbers of place cells.

Found at: doi:10.1371/journal.pcbi.1000205.s004 (4.97 MB EPS)

Figure S5 Cell groups containing place cells with multipeaked
place fields. Black dots correspond to cell groups for the
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reconstructed space shown in Figure 6B. The reconstruction was
obtained from the simulated activity of 127 cells, 13 of which had
multipeaked place fields. For each of the 13 place cells with
multipeaked place fields, all cell groups containing that place cell
are plotted in red (plots 1-13). Cell groups for a pair of single-
peaked place fields are also shown (plots 14, 15).

Found at: doi:10.1371/journal.pchi.1000205.s005 (11.61 MB EPS)

Figure S6 Multipeak pairwise error and mismatch for coverage
by 90 and 140 fields. The presence of place cells with multipeaked
place fields does not affect the performance of the metric
reconstructions so long as the double fields are themselves fully
covered by other place fields, in which case the corresponding cell
groups are fully disambiguated by other cells. (A,B) For a total
coverage by only 90 fields (including double fields for multipeaked
cells), both the pairwise error and mismatch have increasing mean
and variance for increasing percentages of multipeaked cells. This
is because 90 randomly-located fields for the given range of radii
(shaded region, dashed line indicates mean place field radius) are
not enough to double-cover the environment. (C,D) The
environment is fully double-covered with 140 fields. Accordingly,
there is no significant decrease in performance for increasing
percentages (up to 11%) of multipeaked place fields. (D) is the
same as Figure 6C.)

Found at: doi:10.1371/journal.pcbi.1000205.s006 (0.92 MB EPS)

Figure S7 Place cells with multipeaked place fields can be
detected from cell groups. Overlapping circles (middle) illustrate
an example place field configuration for an environment with no
holes. Cell 8 has a double-peaked place field, consisting of two
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