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Abstract—This article presents the argument that, while understanding the brain will require a multi-level
approach, there is nevertheless something fundamental about understanding the components of the brain. |
argue here that the standard description of neurons is not merely too simplistic, but also misses the true nature
of how they operate at the computational level. In particular, the humble point neuron, devoid of dendrites with
their powerful computational properties, prevents conceptual progress at higher levels of understanding.
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This article discusses the conceptual usefulness of
dendrites. That is, the extent to which they are
necessary or useful for an abstract description of brain
function and neural networks in general. A commonly
used abstraction in neurobiology and computational
neuroscience is the point neuron that has no dendrites.
The operation of a point neuron is usually described as
“integrate-and-fire”, where linearly summated weighted
synaptic inputs determine, via an activation function, if
the neuron should be ‘on’ or ‘off’. It could be argued that
this conception of a neuron collapses the role of
dendrites in to the strength of synaptic inputs thus
relegating their function to a mere after-thought, and
therefore not conceptually useful. In fact, there is a long
history of disregarding dendrites (De Schutter, 2008)
and the relatively brief renaissance of interest in dendrites
(Antic et al., 2010) has more recently been challenged by
the incredible success of deep neural networks with point
neurons. Indeed, neuroscience now turns to deep neural
networks for insights into brain function (Richards et al.,
2019), suggesting that neural networks might already
use the optimal abstraction of a neuron. The burden of
proof has once again shifted to the biologists to demon-
strate that the point-neuron abstraction is conceptually
lacking.

The artificial neural network comes historically from an
attempt to encapsulate the essential features of brains as
parallel  distributed processors (Rumelhart and
McClelland, 1986). The choice to use a minimal descrip-
tion of a neuron was acknowledged to be an oversimplifi-
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cation from the beginning (Durbin and Rumelhart, 1989).
Since that time, a great deal has been discovered about
dendrites and single-neuron computation (Koch and
Segev, 2000; Poirazi and Papoutsi, 2020), and it not clear
which of the new discoveries are conceptually necessary
in order to capture the essential features of biological neu-
rons in artificial networks. However, it is important to dis-
tinguish  conceptual necessity from  conceptual
usefulness. For instance, it might be possible to show for-
mally that any neural network with dendrites can be
replaced, without loss of function, with some other net-
work using point neurons, and therefore argue that they
are not conceptually necessary. However, this is not the
benchmark | wish to set here. Neural networks (with or
without dendrites) are also not conceptually necessary
for computation, per se. Any standard neural network
can, in fact, run on a digital computer (but see Goldental
et al., 2014). Therefore they can, in principle, be instanti-
ated in 0 s and 1 s on a ticker tape with the appropriate
finite state machine, i.e., a Turing machine (Fig. 1A). It
is now unarguable, however, that the idea of neural net-
works (Hopfield, 1982) introduces extremely useful con-
cepts for solving computationally challenging problems.
On the other hand, as a conceptual tool for designing soft-
ware, a Turing machine is nearly useless. Borrowing from
Marr’'s three levels of understanding (Marr, 1982), the
neural network can be viewed as an implementation-
level conceptual improvement over a Turing machine, that
allows us to focus on higher level concepts such as net-
work architecture, learning rules and cost functions
(Richards et al., 2019) (Fig. 1B). To use the neural net-
work abstraction, we simply imagine that the computer
is actually implemented with a set of connected neurons.
Similarly, with respect to the conceptual usefulness of
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Fig. 1. Capturing the essence of computation. (A) The Turing machine, a ticker tape and a finite state machine. (B) The key components of neural
network design are architectures, learning rules and objective functions according to Richards et al. (2019).

dendrites, the question is really whether any aspect of
dendritic computation aids higher level concepts such as
network architecture, learning rules and cost functions,
or any other as yet undiscovered principles of computa-
tion. If so, this would mean that disregarding the concep-
tual improvement that dendritic computation offers, would
hold back progress in understanding both the biological
and artificial networks.

It is commonly argued that tinkering with the
implementation level by including dendrites in the
description of neurons will not impact the more
fundamental high-level issues that should now be
addressed at the network and behavioral levels
(Krakauer et al., 2017). It has been pointed out, for
instance, that implementation-level approaches used in
neuroscience involving recordings from single neurons
would be inadequate for determining what a neural net-
work does (Hopfield and Brody, 2000). Indeed, the equiv-
alent of single-cell recordings would also likely be
inadequate for determining the program running on a dig-
ital computer (Jonas and Koérding, 2016). We neverthe-
less believe we understand how computers work
because we built them and therefore know how the funda-
mental components operate. We can go about using high-
level concepts and always be sure that there is a through-
line from the higher levels to the component parts. If, on
the other hand, we investigated computing devices from
an alien world, we couldn’t assume that they use binary
components like our digital computers. Recording from
the brain is analogous to this problem. If neurons don’t
actually behave like point neurons, many of the models
in neuroscience are being built on false assumptions.
The correct abstraction for biological neurons is therefore
fundamentally important for neuroscience. At this point in
the history of neuroscience it might appear that, having
‘looked inside the box’, neuroscientists have apparently
reached a consensus. The neurons of nearly all models
of the brain and human-designed neural networks linearly
count inputs and fire in an all-or-none manner. Can this
nearly universal approach really be substantially wrong?
The next sections give examples that suggest this is

exactly where neuroscience as whole currently stands.
The arguments are inevitably more technical and a reader
seeking the upshot might want to skip to “Concluding
remarks — Dendrites and what constitutes
understanding”).

METASTABLE STATES OF ACTIVITY
INVOLVING EXCITATION AND INHIBITION

At first glance, it is not entirely clear whether dendrites are
a bug or a feature (Hausser and Mel, 2003). Neurons typ-
ically receive huge amounts of synaptic inputs, many of
which are so far from the cell body that their impact is dif-
ficult to detect (Williams and Stuart, 2002). It is generally
assumed that this fact explains why neurons must receive
a huge and constant barrage of inputs, rendering single
inputs almost useless (London et al., 2002). However, this
would seem to be a highly inefficient strategy out of place
in the biological world. Other more recent explanations,
involve spatial patterning that combined with active den-
dritic properties, leading to vast improvements in compu-
tational efficiency (Hawkins and Ahmad, 2016; Cui et al.,
2016).

A common phenomenon involving barrages of
synaptic input are so-called up/down-states, which has
been intensely studied (Sanchez-Vives and McCormick,
2000; Hahn et al., 2006; Destexhe, 2009; McCormick,
2015; Tukker and Sachdev, 2020; Torao-Angosto et al.,
2021). These are slow (~1 Hz) oscillations between two
membrane potential values, usually observed under cer-
tain kinds of anesthesia, and similar to slow oscillations
observed during sleep states (Wilson, 2008), that can
also be induced in slice preparations (Sanchez-Vives
and McCormick, 2000) and resemble high conductance
states in vivo (Destexhe et al., 2003). One of the curiosi-
ties of the up-state is that it has a relatively fixed and
stable amplitude all over the dendritic tree (Waters and
Helmchen, 2004). The actual value is mostly likely deter-
mined by the precise balance of excitation and inhibition
(E/l) that establishes an effective reversal potential for
the combined synaptic input across the dendritic tree
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Fig. 2. The effective reversal potential of balanced E/I. (A1) The amplitude of a whisker stimulus in a L2/3 pyramidal neuron in mouse sensory

cortex is a decreasing function of resting membrane potential (

V). (A2) The “effective reversal potential” (V,e,) for whisker-evoked potentials is

~—50 mV. (B1) Reconstructed L2/3 pyramidal neuron in the primary visual cortex of a mouse (insets showing a magnified dendritic branch with
dendritic spines and a fluorescent neuron with patch clamp recording). (B2) Responses of the L2/3 neuron to oriented drifting gratings of different

orientations at resting V,, (red) and hyperpolarized V,

(blue). (B3) Spikes generated at each orientation (top) versus subthreshold depolarization

(bottom). Adapted from: A (Sachidhanandam et al. 2013), B (Jia et al. 2010).

(Shadlen and Newsome, 1998; Okun and Lampl, 2008;
Okun et al., 2010). Balanced E/I is found under many con-
ditions including in the awake state and can, for instance,
be readily observed with stereotypical sensory stimuli. For
instance, single-whisker movements in a mouse have a
reversal potential at ~—50 mV (Fig. 2A), which is fre-
quently still below the threshold for action potentials
(Sachidhanandam et al., 2013). A similar phenomenon
is seen during visual stimuli with orientated driftings that
cause broadly similar depolarization of the neuron for
each stimulus presentation despite the fact that the pre-

ferred orientations robustly cause much greater action
potential firing than others (Fig. 2B) (Jia et al., 2010).

It had been suggested that the up-state might be
dependent on the activation of NMDA receptors (Antic
et al., 2010), i.e. activity intrinsic to the cells, however in
a series of publications from different laboratories, the sit-
uation was shown to be even more surprising. These
experiments were by chance carried out under similar
conditions: in vivo intracellular (patch-clamp) recordings
from layer 2/3 pyramidal neurons in anesthetized rodents
(Chen et al., 2013; Smith et al., 2013; Palmer et al., 2014).
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None of these exciting studies examined phenomena that
were directly related to up-states, per se, which perhaps
explains why the following observations have gone ‘under
the radar’. In the course of experiments in all three stud-
ies, controls were carried out to intracellularly block
NMDA receptors using MK-801 in the patch pipettes used
for the recordings. This detail is important because it
allowed the researchers to observe the post-synaptic con-
tribution of NMDA receptors to the up-state without affect-
ing network activity at large.

The findings were remarkable and consistent across
all the laboratories, yet hard to interpret using an
integrate-and-fire concept of synaptic integration. Firstly,
all the studies observed that the amplitude of the
depolarization caused by the up-state was unchanged
by NMDA receptor channel block (Fig. 3, MK-801). This
implies that AMPA receptors (the other main excitatory
receptor type) are predominantly involved in
subthreshold depolarization of the neuron. But even
more remarkably, action potential generation was very
much affected by NMDA receptor channel block
(Fig. 3C) despite the fact that the amplitude of the up-
states was unchanged. In other words, it is the
receptors that don’t affect the amplitude of up-states
(NMDA) that cause action potentials, not the ones that
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ones that do (AMPA). This fact is hard to reconcile with
a simple integrate-and-fire theory of spike generation,
and argues for a more complex description of the
neuron than the traditional models imply.

A NEW HYPOTHESIS FOR SPIKE GENERATION
IN LAYER 2/3 PYRAMIDAL NEURONS

Two of the studies showed that NMDA-dependent
dendritic spikes were generated during up-states (Smith
et al., 2013; Palmer et al., 2014), which lays the ground-
work for a new conceptual hypothesis for how these,
and possibly other neurons, operate. The consensus view
is that the binary nature of up/down-states, with two fixed
and stable potentials, is best explained by a slow oscilla-
tion between high and low network activity (Sanchez-
Vives and McCormick, 2000). The fixed up-state value,
it is here hypothesized, results from a relatively uniform
balance of excitatory (AMPA) and inhibitory (GABA)
receptors such that the effective reversal potential is
always the same. This would lead to both the stable and
stereotypic amplitude over long durations, and yet be con-
sistent with the fact that intracellular blockade of NMDA
receptors has little or no effect. It would also imply that
regardless of the exact level of network activity, the only
important parameter that needs to
be constant is the balance of exci-
tation versus inhibition as is fre-
quently observed (Okun and
Lampl, 2008).

But why does the blockade of
NMDA receptors have such a
¢ dramatic effect on the generation

of  action potentials? The
necessity for high network activity
for up-states entails the
bombardment of the dendritic tree
with synaptic inputs. Because the
amplitude is set by the effective
reversal potential, this means that,
no matter how high the activity,
balanced excitatory and inhibitory
input effectively clamps the
neuron at a fixed depolarization.
Indeed, the higher the activity, the
more the neuron is clamped to
1.6 this potential, counterintuitively
reducing the impact of random
fluctuations that might otherwise
generate action potentials. It has
been shown, for instance, that
sensory stimuli are less likely to
0 cause action potentials during an
up-state in layer 2/3 pyramidal
neurons in vivo (Petersen et al,,
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At the same time, as predicted

Fig. 3. NMDA channels during high activity. (A) Up/down states without NMDA receptors blocked by the work of Mel, Schiller and

with MK-801. (B) The same two peaks (the up-state V,/down-state V,) with and without NMDA
receptors blocked. (C) Spontaneous action potentials (APs) during up-states with (black) and without

others (see Box 1), the increase

(orange) NMDA receptors blocked. (D) Half-width and frequency of up/down states unaffected by N Synaptic bombardment also
block of NMDA receptors. A, B, adapted from (Chen et al., 2013), C, D, adapted (Palmer et al., 2014).  implies an increase in the density
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of glutamate-bound NMDA receptors and the increased
chance of local clusters of synaptic inputs on thin
dendritic branches. As few as ~10 clustered inputs in
thin dendrites can induce NMDA receptors to
cooperatively open, generating local NMDA spikes
(Larkum and Nevian, 2008; Larkum et al., 2009) causing
10 s of mV depolarization at the cell body (Palmer et al.,
2014) that can easily exceed threshold when starting from
the up-state depolarization level. Unlike the up-state that
is made up of balanced excitation and inhibition spread
uniformly over the dendritic tree (Liu, 2004; Waters and
Helmchen, 2004), spatial clustering of small groups of
excitatory inputs on random dendritic branches are to be
expected at high densities of inputs (Mel and Schiller,
2004) without the equal and opposite effect of clustered
inhibitory inputs. These local islands of excitatory input
are therefore expected to be largely unaffected by the
net balance of excitatory and inhibitory inputs over the
dendritic tree as a whole and can therefore operate
according to their specific reversal potential of near
0 mV (Moriyoshi et al., 1991). The emerging picture is
one where thousands of inputs combine to clamp the neu-
ron at a particular subthreshold value, while a handful of
synapses several orders of magnitude less in number
but with explosive impact dictate the firing of the neuron
(Fig. 4A-C).

The situation for the computational properties of layer
2/3 pyramidal neurons of rodent sensory cortex might
seem on the face of it quite bizarre and is certainly quite
unlike the integrate-and-fire picture (Fig. 4A—C). In this
revised picture, real neurons ignore most synaptic
inputs during high synaptic barrages. There may be,
however, a perfectly simple explanation: to be optimally
feature-specific, cortical neurons need to respond to a
given feature in a manner that doesn’t depend on the
stimulus strength or other factors not related to saliency.
Orientation-selective neurons in visual cortex are a case
in point. If stimulus strength dominated the response of
these neurons, non-preferred orientations at high
stimulus strengths would evoke more output than
preferred orientations at low stimulus strengths. To be
optimally feature selective, a neuron should respond
most vigorously to the pattern of inputs that relate to
that particular feature and invariant to stimulus strength.
This could in principle be achieved by having very few
and specific synaptic connections, however cortical
neurons typically have in the order of 10,000 synaptic
inputs (Larkman, 1991), something quite unexpected in
the world of machine learning that seems to demand an
explanation (Hawkins and Ahmad, 2016). Furthermore,
learning should involve becoming sensitive to new con-
texts or conditions. To do this, the cell needs to have
access to information that is not (yet) relevant but never-
theless be able to ignore it until needed. Interestingly, it
has long been observed that despite the huge differences
in action potential firing in response to differently-oriented
drifting gratings the subthreshold activity of neurons in pri-
mary visual cortex is very similar regardless of orientation
(Carandini and Ferster, 2000). This implies that

orientation-selective neurons get a substantial amount
of synaptic inputs conveying information about all orienta-
tions (Jia et al., 2010), while nevertheless maintaining
their orientation selectivity in terms of their output
(Fig. 2B). In this way, neurons can be both feature-
selective while also caring about the activity state of the
network, perhaps indicating the general presence of a
stimulus or brain state.

The sensitivity of the neuron to clustered input giving
rise to local dendritic spikes that cause action potentials
not only best explains the data but also makes
computational sense. Using this approach, the neuron
can be hyper-sensitive to a small number of inputs that
represent precisely defined collections of synchronously
firing presynaptic neurons, i.e. specific and preferred
input patterns. The hundreds to thousands of inputs that
contribute to the up-state serve the dual purpose of
setting the neuron in the active state and increasing the
overall density of synaptic inputs, thereby increasing the
probability of spatial clusters of inputs in the first place.
This interpretation would imply that, in terms of defining
the precise conditions for firing action potentials moment
to moment, the thousands of AMPA-dependent inputs
are largely ignored. For the purposes of the current
essay, it shows, at least in principle, that a radically
different way of describing the function of a neuron that
takes into account the active spatio-temporal properties
of the dendritic tree, might lead to a more parsimonious
and conceptually useful description of a bistable network.

ACTIVATION FUNCTIONS — CHALLENGING
THE LINEAR SUMMATION MODEL

If a neuron could be compared to a logic gate, the
integrate-and-fire model would be a kind of ‘OR’ gate,
an inclusive-OR gate (Shepherd and Brayton, 1987).
The binary version of this has two inputs either or both
of which being ‘ON’ results in the output being ‘ON’ (or
‘TRUFE’). It is very natural and easy to implement with a
counting device and a threshold function (an integrate-
and-fire unit), and it also extrapolates conveniently to an
N-gate with N inputs. However, inclusive-OR gates are
not that useful computationally, partly because they don’t
do much actual work - they simply decide if there is or isn’t
enough input. Many real-world and computational issues
involve decisions which are better characterized as
either/or (i.e. exclusive-OR), e.g. should | choose vanilla
or chocolate? It was recently shown that human layer
2/3 pyramidal neurons have a very interesting ion channel
in their dendrites that allow them to compute the equiva-
lent of an exclusive-OR, ‘XOR’, function (Fig. 4D, E)
(Gidon et al., 2020). More broadly, this allows dendritic
compartments to calculate the anti-coincidence of classes
of inputs which adds to the range of functions that single
biological neurons can compute (Segev, 1992; Herz et al.,
2006). This aspect of dendritic computation is likely just
the tip of the iceberg for what can be achieved with local
dendritic spike mechanisms and interesting activation
functions.
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Fig. 4. Re-examining how neurons compute. (A) A L2/3 neuron receiving asynchronous distributed
inputs that activate AMPA receptors at >500 (Chen et al. 2013) synapses (black dots) during an up-
state and a few (<50) clustered synaptic inputs (red dots) that activate NMDA channels causing
NMDA spikes. (B) Dendritic NMDA spikes (red, left) summate and cause up to 15 mV depolarization
at the cell body (Palmer et al., 2014). This depolarization in addition to the up-state is likely to cause a
Na™ spike at the cell body which repolarizes due to the opening of K™ channels aborting the longer
NMDA spike. (C) It is hypothesized that, at the preferred orientation (here 0°), >500 AMPA broadly
distributed EPSPs with balanced inhibition cause a steady up-state that with the addition of the
combined NMDA spike current due to a handful (<50) clustered inputs, leads to robust AP spiking
(red), whereas no spiking occurs without the <50 clustered inputs (black). This data is taken from (Jia
et al. 2010). (D) A L2/3 human pyramidal neuron (left) with dendritic calcium action potentials
(dCaAPs) that inactivate at currents above threshold (left, blue traces), can perform the XOR
operation on two different excitatory pre-synaptic pathways that nevertheless distribute synapses over
a similar region of the dendritic tree (red and blue dots). (E) A model of the human L2/3 pyramidal
neuron with two distinct activation functions for spatially segregated compartments. D, E from (Gidon
et al., 2020).

In a larger context, active dendrites serve not only to
boost signals arriving at the dendrite (Stuart and

Sakmann, 1994) travel actively
from the axonal initiation zone
(Kole et al., 2008) allowing the out-
put of the neuron to reverberate
with inputs significantly complicat-
ing the inputfoutput relationship
(Waters et al., 2005). This aspect
of biological neurons with dendritic
trees is particularly hard to capture
by using small networks of point
neurons to represent dendrites
(Poirazi et al., 2003) because neu-
rons have privileged access in both
directions to their dendrites com-
pared to synaptic connections
which only allow one-way interac-
tion. The ability of neurons to signal
freely throughout the dendritic tree
means that the activation of the
neuron can be a complex function
over time and space which can
only be captured with differential
equations. It also means that some
synaptic inputs or neuromodulation
can serve to alter the coupling
between dendritic compartments
(Larkum et al., 2001; Schaefer
et al.,, 2003; Suzuki and Larkum,
2020). All of these features speak
to the conceptual efficiency of units
with multiple compartments and
non-linear properties.

DENDRITES FOR
SEGREGATING INPUTS

The suggestion that dendrites
might provide conceptual insights
is not new and was championed
by Wilfrid Rall as far back as the
1950s (reviewed in Jack et al,,
1988; Segev, 1992). The core con-
ceptual advantage of using den-
drites is that they allow for the
segregation of synaptic inputs,
which in turn enables multiple par-
allel operations to be performed
on the inputs, e.g. in retinal gan-
glion neurons (Koch et al., 1983).
Point neurons cannot process dif-
ferent synaptic inputs separately.

Sakmann, 1995; Branco and Hausser, 2011), but also
allow for multiple sites of spike initiation (Llinas et al.,
1968; Calabrese and Kennedy, 1974; Mel, 1993;
Larkum et al., 2009). Further complicating this situation
is the fact that signals can travel actively in all directions
throughout the dendritic tree. For instance, back-
propagating sodium action potentials (Stuart and

However, information can sometimes be categorically
separated into different classes of information, such as
in binaural processing (Agmon-Snir et al., 1998). Perhaps
the most important partition for an information system is
the dichotomy between external versus internal informa-
tion which translates roughly to feed-forward and feed-
back information. In the cerebral cortex, these
information streams follow broadly separable architectural
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principles (Felleman and Van Essen, 1991; Harris et al.,
2019). The class of neurons that is most abundant and
ubiquitous in the cortex, the pyramidal neuron, is built
and positioned to optimally separate and then integrate
these two information streams allowing for the cortex to
perform operations that have large-scale, network-wide
consequences (Larkum, 2013; Larkum et al., 2018; Aru
et al., 2020).

It would make sense that the elements of the cortex
are built to be able to parse these information streams
separately and could also significantly improve learning
rules (Koérding and Konig, 2000; Nielsen, 2003;
Urbanczik and Senn, 2014; Kastellakis et al., 2015;
Brea et al., 2016; Hawkins and Ahmad, 2016; Schiess
et al.,, 2016; Sardi et al., 2018; Richards et al., 2019)
and has been suggested as a way to solve the credit
assignment problem in biological networks (Guerguiev
et al., 2017). There is also growing empirical evidence
for dendrite-specific learning (Letzkus et al., 2006;
Sjostrom and Hausser, 2006; Losonczy et al., 2008;
Makara et al., 2009; Gambino et al., 2014; Cichon and
Gan, 2015; Brandalise et al., 2016; Bittner et al., 2017;
Sheffield et al., 2017; Abs et al., 2018; Roelfsema and
Holtmaat, 2018; Doron et al., 2020; Shin et al., 2021).
These data and models demonstrate that dendrites can
function to segregate synaptic inputs so that particular
rules can be applied to subsets of dendritic inputs. Vari-
ous categories of information may be useful conceptually
to segregate at the input stage. For example, information
related to learning, like error signals, rewards, as well as
states of arousal related to environmental conditions or
cognitive states. The cerebellum is a prime example of
the use of spatio-temporal principles efficiently imple-
mented with parallel fibers coursing through rows of com-
plex Purkinje cell dendritic trees. With point neurons, the
segregation and re-integration of information would need
to be performed by separate neurons making their inte-
gration more difficult both conceptually and practically.
In summary, there is ample evidence that neurons of
the brain do not behave like simple point neurons and that
including dendrites in their description might be useful to
efficiently capture their true function.

CONCLUDING REMARKS - DENDRITES AND
WHAT CONSTITUTES UNDERSTANDING

Consider a scenario in which aliens correctly ascertain
that the digital computers of the humans are binary
devices. Could they immediately understand how
Donkey Kong is programmed by reverse engineering?
Probably not — at the very least, simply recording the
transistors as they turn on and off would probably be
unenlightening (Jonas and Koérding, 2016). Whereas the
original programmer could claim they, “don’t understand
how the computer works”, for instance, and nevertheless
write functional programs, we (humans) collectively do
understand how digital computers work in the sense that
we can describe how high-level descriptions are imple-
mented. On the other hand, if the aliens incorrectly iden-
tified the binary nature of a digital computer, there would

no way to implement high-level ideas and no conceptual
through-line that could be described as understanding
digital computers.

The key insight in terms of understanding is that the
problem is not symmetric; it is necessary that the
implementation level is understood (by someone at
least) in order for anything to operate, but there is no
highest limit that would constitute final understanding.
The lower limit is defined by the level at which the
components capture the principles of implementation.
Here, replacing semiconductors with tubes would not
change the important concepts at any level of
understanding. And so it seems that the often cited
claim of Richard Feynman that, “What | cannot create, |
do not understand” (Way, 2017), is not invertible. That
is, it is not necessarily true that “what | can create, |
understand completely”. Understanding can be reached
on many levels, and it is not necessarily true that under-
standing on one level entails understanding on another.
For instance, do we understand artificial neural networks
(Lillicrap and Kording, 2019)? Much effort is currently
being invested in trying to understand how deep neural
networks actually recognize faces or play ‘Go’ even
though they can already perform better than humans.

What has this all to do with dendrites? Neurons with
dendrites are clearly not linear counting devices. This is
a category error that, it is argued here, will have
consequences similar to that of aliens misinterpreting
the function of transistors. What we are learning from
looking closely at neurons is that real neurons are not
only quite unlike point neurons, but under closer
inspection they don’t even seem to operate according to
the same principles. In other words, we are quite
possibly trying to derive high-level theories of the brain
while completely misunderstanding the substrate upon
which they need to operate. But the problem may go
deeper than this; there may well be aspects of the
implementation that suggest higher-level principles. In
my own work, for instance, | have argued that a useful
description of a cortical pyramidal neuron is as a three-
compartment neuron (Larkum et al., 2001) that compares
external, feature-specific information with internally-
generated predictions arriving at separate compartments
(Larkum et al., 1999; Larkum, 2013) and that their privi-
leged access and coupling under certain circumstances
may be useful, for instance, for understanding of how
anesthetics lead to loss of consciousness (Aru et al.,
2020; Suzuki and Larkum, 2020) and what transpires at
the moment of perception (Takahashi et al., 2016). | claim
this should be described as implementation-level informa-
tion that nevertheless suggests new ways to understand
the brain at high levels of description. Furthermore, this
understanding is fundamentally rooted in the conceptual
importance of the dendrites.

ABANDONING THE SOMATO-CENTRIC
PERSPECTIVE

This dendritically-enriched perspective of neurons offers a
radical update of the integrate-and-fire model, which
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simply counts inputs regardless of their dendritic location.
This approach implies that the vast majority of current
neural models, whether ‘biologically-inspired’ or not, are
operating under misguided assumptions that may in
effect render the models biologically inaccurate. How
could this situation have gone on so long? | would
argue this comes from the somato-centric perspective
the neuroscience community has inherited (Larkum
et al., 2018). Almost all recordings are either made from,
or influenced by, the cell bodies of neurons. Extracellular
methods that detect spikes in the electric field are much
more sensitive to a big ball of excitable membrane (the
soma) than to dendrites. Intracellular and imaging meth-
ods are also orders-of-magnitude easier and more com-
mon from cell bodies than intra-dendritic recordings.
Furthermore, the point-neuron dogma is seemingly trivial
to demonstrate: a student on their first day in an electro-
physiology laboratory can easily show that the firing fre-
quency of a neuron has a simple threshold/linear
relationship to current injection at the cell body over most
of its firing range. But this is really because the axon hap-
pens to be near the cell body, which means that the inter-
esting aspects of single-cell computation are bypassed
with recordings at the soma. lIronically, even the work
done by the dendritic spikes is likely to be obscured at
the cell body by the axo-somatic APs that repolarize the
membrane (Fig. 4B). The experiments that need to be
done to understand the input—output relationship of a neu-
ron are much harder, however, and would require control
of the ~10,000 synaptic inputs to the neuron. Better con-
ceptual descriptions of neurons are not lacking. Perhaps,
the simplest version of a pattern-dependent neuron is the
‘clusteron’ (Mel, 1994), however there are small network
conceptual descriptions (Poirazi et al., 2003) and even
full-scale, neural-network-in-a-neuron solutions being
offered (Beniaguev et al., 2019; Jones and Kording,
2021). At the moment, empirical data is still lacking from
neuroscience.

Since the brain arose from evolutionary processes,
there is no one we can ask what the crucial base unit of
computation in the brain is, nor how complex should be
its description. At stake, is not only the amount of
processing power that can be invested at the single-
neuron level, but what conceptual efficiencies can be
gained at higher levels of description, with better
component-level descriptions. At a minimum,
interactions between synapses and post-synaptic
intrinsic excitability that are a function of space and time
are almost certainly crucial for determining the input/
output function of neurons and these facts appear to be
lost in modern-day descriptions of neuronal function
without dendrites. In any case, the best evidence we
have from real neurons suggests that neuroscientists
may have completely mischaracterized the conceptual
operation of single neurons (Koch and Segev, 2000).
There is every reason to suspect that better descriptions
of sophisticated single-cell computation will lead to better
descriptions at the network level blurring the distinction
between Marr’s algorithmic and implementation levels.

Box 1

Input clustering, NMDA spikes and local dendritic com-
putation Another advantage of dendritic trees is
that they allow for subsets of synaptic inputs to
operate cooperatively. This was elegantly pointed out
in the visionary work of Bartlett Mel and colleagues in
the early 1990s (Mel, 1992, 1994; Poirazi and Mel,
2001), in which he speculated that NMDA receptors
can in principle operate like other voltage-dependent
ion channels making the neuron sensitive to clustered
input. This led to the ground-breaking discovery of the
so-called ‘NMDA spike’ by Jackie Schiller and col-
leagues (Schiller et al., 2000). Input clustering is
quintessentially a spatial feature (Mel and Schiller,
2004), with possible computational advantages like
sequence learning (Hawkins and Ahmad, 2016) and
binocular rivalry (Archie and Mel, 2000). There is by
now a lot of evidence for synaptic clustering in the brain
(Larkum and Nevian, 2008; Kleindienst et al., 2011;
Takahashi et al., 2012; Winnubst and Lohmann, 2012;
Kastellakis et al., 2015; Weber et al., 2016; Wilson
et al.,, 2016; Kerlin et al., 2019) but the impact of this
on biological and artificial network models has so far
been minimal (Kastellakis and Poirazi, 2019).

The location dependence of NMDA spikes is due not
only to the necessity for clustered synaptic input but
also to the fact that the NMDA spikes can only actively
propagate along stretches of dendrites where NMDA
receptors are activated, i.e. with bound glutamate
(Major et al., 2013). That is, this form of spiking is intrin-
sically location-dependent with the properties aecting
their spatial extent constantly fluctuating. A model
incorporating the NMDA spike (Rao et al., 2021) is there-
fore the conceptual antithesis of the dendrite-less point
neuron used ubiquitously in computational and
machine learning models. The influence of the NMDA
spike can also be orders of magnitude larger than the
depolarization caused by EPSPs such that the underly-
ing synapses can be transformed into having a mas-
sively disproportionate influence on the generation of
somatic action potentials (Polsky et al., 2009). The con-
cept of local cluster-driven NMDA spikes and other
kinds of dendritic spikes stands to revolutionize our
understanding of the way neurons compute and thus
our understanding of the brain and the way we build
artificial networks.
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