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Abstract—This article presents the argument that, while understanding the brain will require a multi-level
approach, there is nevertheless something fundamental about understanding the components of the brain. I
argue here that the standard description of neurons is not merely too simplistic, but also misses the true nature
of how they operate at the computational level. In particular, the humble point neuron, devoid of dendrites with
their powerful computational properties, prevents conceptual progress at higher levels of understanding.
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This article discusses the conceptual usefulness of

dendrites. That is, the extent to which they are

necessary or useful for an abstract description of brain

function and neural networks in general. A commonly

used abstraction in neurobiology and computational

neuroscience is the point neuron that has no dendrites.

The operation of a point neuron is usually described as

‘‘integrate-and-fire”, where linearly summated weighted

synaptic inputs determine, via an activation function, if

the neuron should be ‘on’ or ‘off’. It could be argued that

this conception of a neuron collapses the role of

dendrites in to the strength of synaptic inputs thus

relegating their function to a mere after-thought, and

therefore not conceptually useful. In fact, there is a long

history of disregarding dendrites (De Schutter, 2008)

and the relatively brief renaissance of interest in dendrites

(Antic et al., 2010) has more recently been challenged by

the incredible success of deep neural networks with point

neurons. Indeed, neuroscience now turns to deep neural

networks for insights into brain function (Richards et al.,

2019), suggesting that neural networks might already

use the optimal abstraction of a neuron. The burden of

proof has once again shifted to the biologists to demon-

strate that the point-neuron abstraction is conceptually

lacking.

The artificial neural network comes historically from an

attempt to encapsulate the essential features of brains as

parallel distributed processors (Rumelhart and

McClelland, 1986). The choice to use a minimal descrip-

tion of a neuron was acknowledged to be an oversimplifi-
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cation from the beginning (Durbin and Rumelhart, 1989).

Since that time, a great deal has been discovered about

dendrites and single-neuron computation (Koch and

Segev, 2000; Poirazi and Papoutsi, 2020), and it not clear

which of the new discoveries are conceptually necessary

in order to capture the essential features of biological neu-

rons in artificial networks. However, it is important to dis-

tinguish conceptual necessity from conceptual

usefulness. For instance, it might be possible to show for-

mally that any neural network with dendrites can be

replaced, without loss of function, with some other net-

work using point neurons, and therefore argue that they

are not conceptually necessary. However, this is not the

benchmark I wish to set here. Neural networks (with or

without dendrites) are also not conceptually necessary

for computation, per se. Any standard neural network

can, in fact, run on a digital computer (but see Goldental

et al., 2014). Therefore they can, in principle, be instanti-

ated in 0 s and 1 s on a ticker tape with the appropriate

finite state machine, i.e., a Turing machine (Fig. 1A). It

is now unarguable, however, that the idea of neural net-

works (Hopfield, 1982) introduces extremely useful con-

cepts for solving computationally challenging problems.

On the other hand, as a conceptual tool for designing soft-

ware, a Turing machine is nearly useless. Borrowing from

Marr’s three levels of understanding (Marr, 1982), the

neural network can be viewed as an implementation-

level conceptual improvement over a Turing machine, that

allows us to focus on higher level concepts such as net-

work architecture, learning rules and cost functions

(Richards et al., 2019) (Fig. 1B). To use the neural net-

work abstraction, we simply imagine that the computer

is actually implemented with a set of connected neurons.

Similarly, with respect to the conceptual usefulness of
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Fig. 1. Capturing the essence of computation. (A) The Turing machine, a ticker tape and a finite state machine. (B) The key components of neural

network design are architectures, learning rules and objective functions according to Richards et al. (2019).
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dendrites, the question is really whether any aspect of

dendritic computation aids higher level concepts such as

network architecture, learning rules and cost functions,

or any other as yet undiscovered principles of computa-

tion. If so, this would mean that disregarding the concep-

tual improvement that dendritic computation offers, would

hold back progress in understanding both the biological

and artificial networks.

It is commonly argued that tinkering with the

implementation level by including dendrites in the

description of neurons will not impact the more

fundamental high-level issues that should now be

addressed at the network and behavioral levels

(Krakauer et al., 2017). It has been pointed out, for

instance, that implementation-level approaches used in

neuroscience involving recordings from single neurons

would be inadequate for determining what a neural net-

work does (Hopfield and Brody, 2000). Indeed, the equiv-

alent of single-cell recordings would also likely be

inadequate for determining the program running on a dig-

ital computer (Jonas and Körding, 2016). We neverthe-

less believe we understand how computers work

because we built them and therefore know how the funda-

mental components operate. We can go about using high-

level concepts and always be sure that there is a through-

line from the higher levels to the component parts. If, on

the other hand, we investigated computing devices from

an alien world, we couldn’t assume that they use binary

components like our digital computers. Recording from

the brain is analogous to this problem. If neurons don’t

actually behave like point neurons, many of the models

in neuroscience are being built on false assumptions.

The correct abstraction for biological neurons is therefore

fundamentally important for neuroscience. At this point in

the history of neuroscience it might appear that, having

‘looked inside the box’, neuroscientists have apparently

reached a consensus. The neurons of nearly all models

of the brain and human-designed neural networks linearly

count inputs and fire in an all-or-none manner. Can this

nearly universal approach really be substantially wrong?

The next sections give examples that suggest this is
exactly where neuroscience as whole currently stands.

The arguments are inevitably more technical and a reader

seeking the upshot might want to skip to ‘‘Concluding

remarks – Dendrites and what constitutes

understanding”).
METASTABLE STATES OF ACTIVITY
INVOLVING EXCITATION AND INHIBITION

At first glance, it is not entirely clear whether dendrites are

a bug or a feature (Häusser and Mel, 2003). Neurons typ-

ically receive huge amounts of synaptic inputs, many of

which are so far from the cell body that their impact is dif-

ficult to detect (Williams and Stuart, 2002). It is generally

assumed that this fact explains why neurons must receive

a huge and constant barrage of inputs, rendering single

inputs almost useless (London et al., 2002). However, this

would seem to be a highly inefficient strategy out of place

in the biological world. Other more recent explanations,

involve spatial patterning that combined with active den-

dritic properties, leading to vast improvements in compu-

tational efficiency (Hawkins and Ahmad, 2016; Cui et al.,

2016).

A common phenomenon involving barrages of

synaptic input are so-called up/down-states, which has

been intensely studied (Sanchez-Vives and McCormick,

2000; Hahn et al., 2006; Destexhe, 2009; McCormick,

2015; Tukker and Sachdev, 2020; Torao-Angosto et al.,

2021). These are slow (�1 Hz) oscillations between two

membrane potential values, usually observed under cer-

tain kinds of anesthesia, and similar to slow oscillations

observed during sleep states (Wilson, 2008), that can

also be induced in slice preparations (Sanchez-Vives

and McCormick, 2000) and resemble high conductance

states in vivo (Destexhe et al., 2003). One of the curiosi-

ties of the up-state is that it has a relatively fixed and

stable amplitude all over the dendritic tree (Waters and

Helmchen, 2004). The actual value is mostly likely deter-

mined by the precise balance of excitation and inhibition

(E/I) that establishes an effective reversal potential for

the combined synaptic input across the dendritic tree



Fig. 2. The effective reversal potential of balanced E/I. (A1) The amplitude of a whisker stimulus in a L2/3 pyramidal neuron in mouse sensory

cortex is a decreasing function of resting membrane potential (Vm). (A2) The ‘‘effective reversal potential” (Vrev) for whisker-evoked potentials is

��50 mV. (B1) Reconstructed L2/3 pyramidal neuron in the primary visual cortex of a mouse (insets showing a magnified dendritic branch with

dendritic spines and a fluorescent neuron with patch clamp recording). (B2) Responses of the L2/3 neuron to oriented drifting gratings of different

orientations at resting Vm (red) and hyperpolarized Vm (blue). (B3) Spikes generated at each orientation (top) versus subthreshold depolarization

(bottom). Adapted from: A (Sachidhanandam et al. 2013), B (Jia et al. 2010).
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(Shadlen and Newsome, 1998; Okun and Lampl, 2008;

Okun et al., 2010). Balanced E/I is found under many con-

ditions including in the awake state and can, for instance,

be readily observed with stereotypical sensory stimuli. For

instance, single-whisker movements in a mouse have a

reversal potential at ��50 mV (Fig. 2A), which is fre-

quently still below the threshold for action potentials

(Sachidhanandam et al., 2013). A similar phenomenon

is seen during visual stimuli with orientated driftings that

cause broadly similar depolarization of the neuron for

each stimulus presentation despite the fact that the pre-
ferred orientations robustly cause much greater action

potential firing than others (Fig. 2B) (Jia et al., 2010).

It had been suggested that the up-state might be

dependent on the activation of NMDA receptors (Antic

et al., 2010), i.e. activity intrinsic to the cells, however in

a series of publications from different laboratories, the sit-

uation was shown to be even more surprising. These

experiments were by chance carried out under similar

conditions: in vivo intracellular (patch-clamp) recordings

from layer 2/3 pyramidal neurons in anesthetized rodents

(Chen et al., 2013; Smith et al., 2013; Palmer et al., 2014).
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None of these exciting studies examined phenomena that

were directly related to up-states, per se, which perhaps

explains why the following observations have gone ‘under

the radar’. In the course of experiments in all three stud-

ies, controls were carried out to intracellularly block

NMDA receptors using MK-801 in the patch pipettes used

for the recordings. This detail is important because it

allowed the researchers to observe the post-synaptic con-

tribution of NMDA receptors to the up-state without affect-

ing network activity at large.

The findings were remarkable and consistent across

all the laboratories, yet hard to interpret using an

integrate-and-fire concept of synaptic integration. Firstly,

all the studies observed that the amplitude of the

depolarization caused by the up-state was unchanged

by NMDA receptor channel block (Fig. 3, MK-801). This

implies that AMPA receptors (the other main excitatory

receptor type) are predominantly involved in

subthreshold depolarization of the neuron. But even

more remarkably, action potential generation was very

much affected by NMDA receptor channel block

(Fig. 3C) despite the fact that the amplitude of the up-

states was unchanged. In other words, it is the

receptors that don’t affect the amplitude of up-states

(NMDA) that cause action potentials, not the ones that
Fig. 3. NMDA channels during high activity. (A) Up/down states without N

with MK-801. (B) The same two peaks (the up-state Vm/down-state Vm) w

receptors blocked. (C) Spontaneous action potentials (APs) during up-states

(orange) NMDA receptors blocked. (D) Half-width and frequency of up/dow

block of NMDA receptors. A, B, adapted from (Chen et al., 2013), C, D, adapt
ones that do (AMPA). This fact is hard to reconcile with

a simple integrate-and-fire theory of spike generation,

and argues for a more complex description of the

neuron than the traditional models imply.
A NEW HYPOTHESIS FOR SPIKE GENERATION
IN LAYER 2/3 PYRAMIDAL NEURONS

Two of the studies showed that NMDA-dependent

dendritic spikes were generated during up-states (Smith

et al., 2013; Palmer et al., 2014), which lays the ground-

work for a new conceptual hypothesis for how these,

and possibly other neurons, operate. The consensus view

is that the binary nature of up/down-states, with two fixed

and stable potentials, is best explained by a slow oscilla-

tion between high and low network activity (Sanchez-

Vives and McCormick, 2000). The fixed up-state value,

it is here hypothesized, results from a relatively uniform

balance of excitatory (AMPA) and inhibitory (GABA)

receptors such that the effective reversal potential is

always the same. This would lead to both the stable and

stereotypic amplitude over long durations, and yet be con-

sistent with the fact that intracellular blockade of NMDA

receptors has little or no effect. It would also imply that

regardless of the exact level of network activity, the only
MDA receptors blocked

ith and without NMDA

with (black) and without

n states unaffected by

ed (Palmer et al., 2014).
important parameter that needs to

be constant is the balance of exci-

tation versus inhibition as is fre-

quently observed (Okun and

Lampl, 2008).

But why does the blockade of

NMDA receptors have such a

dramatic effect on the generation

of action potentials? The

necessity for high network activity

for up-states entails the

bombardment of the dendritic tree

with synaptic inputs. Because the

amplitude is set by the effective

reversal potential, this means that,

no matter how high the activity,

balanced excitatory and inhibitory

input effectively clamps the

neuron at a fixed depolarization.

Indeed, the higher the activity, the

more the neuron is clamped to

this potential, counterintuitively

reducing the impact of random

fluctuations that might otherwise

generate action potentials. It has

been shown, for instance, that

sensory stimuli are less likely to

cause action potentials during an

up-state in layer 2/3 pyramidal

neurons in vivo (Petersen et al.,

2003).

At the same time, as predicted

by the work of Mel, Schiller and

others (see Box 1), the increase

in synaptic bombardment also

implies an increase in the density
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of glutamate-bound NMDA receptors and the increased

chance of local clusters of synaptic inputs on thin

dendritic branches. As few as �10 clustered inputs in

thin dendrites can induce NMDA receptors to

cooperatively open, generating local NMDA spikes

(Larkum and Nevian, 2008; Larkum et al., 2009) causing

10 s of mV depolarization at the cell body (Palmer et al.,

2014) that can easily exceed threshold when starting from

the up-state depolarization level. Unlike the up-state that

is made up of balanced excitation and inhibition spread

uniformly over the dendritic tree (Liu, 2004; Waters and

Helmchen, 2004), spatial clustering of small groups of

excitatory inputs on random dendritic branches are to be

expected at high densities of inputs (Mel and Schiller,

2004) without the equal and opposite effect of clustered

inhibitory inputs. These local islands of excitatory input

are therefore expected to be largely unaffected by the

net balance of excitatory and inhibitory inputs over the

dendritic tree as a whole and can therefore operate

according to their specific reversal potential of near

0 mV (Moriyoshi et al., 1991). The emerging picture is

one where thousands of inputs combine to clamp the neu-

ron at a particular subthreshold value, while a handful of

synapses several orders of magnitude less in number

but with explosive impact dictate the firing of the neuron

(Fig. 4A–C).

The situation for the computational properties of layer

2/3 pyramidal neurons of rodent sensory cortex might

seem on the face of it quite bizarre and is certainly quite

unlike the integrate-and-fire picture (Fig. 4A–C). In this

revised picture, real neurons ignore most synaptic

inputs during high synaptic barrages. There may be,

however, a perfectly simple explanation: to be optimally

feature-specific, cortical neurons need to respond to a

given feature in a manner that doesn’t depend on the

stimulus strength or other factors not related to saliency.

Orientation-selective neurons in visual cortex are a case

in point. If stimulus strength dominated the response of

these neurons, non-preferred orientations at high

stimulus strengths would evoke more output than

preferred orientations at low stimulus strengths. To be

optimally feature selective, a neuron should respond

most vigorously to the pattern of inputs that relate to

that particular feature and invariant to stimulus strength.

This could in principle be achieved by having very few

and specific synaptic connections, however cortical

neurons typically have in the order of 10,000 synaptic

inputs (Larkman, 1991), something quite unexpected in

the world of machine learning that seems to demand an

explanation (Hawkins and Ahmad, 2016). Furthermore,

learning should involve becoming sensitive to new con-

texts or conditions. To do this, the cell needs to have

access to information that is not (yet) relevant but never-

theless be able to ignore it until needed. Interestingly, it

has long been observed that despite the huge differences

in action potential firing in response to differently-oriented

drifting gratings the subthreshold activity of neurons in pri-

mary visual cortex is very similar regardless of orientation

(Carandini and Ferster, 2000). This implies that
orientation-selective neurons get a substantial amount

of synaptic inputs conveying information about all orienta-

tions (Jia et al., 2010), while nevertheless maintaining

their orientation selectivity in terms of their output

(Fig. 2B). In this way, neurons can be both feature-

selective while also caring about the activity state of the

network, perhaps indicating the general presence of a

stimulus or brain state.

The sensitivity of the neuron to clustered input giving

rise to local dendritic spikes that cause action potentials

not only best explains the data but also makes

computational sense. Using this approach, the neuron

can be hyper-sensitive to a small number of inputs that

represent precisely defined collections of synchronously

firing presynaptic neurons, i.e. specific and preferred

input patterns. The hundreds to thousands of inputs that

contribute to the up-state serve the dual purpose of

setting the neuron in the active state and increasing the

overall density of synaptic inputs, thereby increasing the

probability of spatial clusters of inputs in the first place.

This interpretation would imply that, in terms of defining

the precise conditions for firing action potentials moment

to moment, the thousands of AMPA-dependent inputs

are largely ignored. For the purposes of the current

essay, it shows, at least in principle, that a radically

different way of describing the function of a neuron that

takes into account the active spatio-temporal properties

of the dendritic tree, might lead to a more parsimonious

and conceptually useful description of a bistable network.
ACTIVATION FUNCTIONS – CHALLENGING
THE LINEAR SUMMATION MODEL

If a neuron could be compared to a logic gate, the

integrate-and-fire model would be a kind of ‘OR’ gate,

an inclusive-OR gate (Shepherd and Brayton, 1987).

The binary version of this has two inputs either or both

of which being ‘ON’ results in the output being ‘ON’ (or

‘TRUE’). It is very natural and easy to implement with a

counting device and a threshold function (an integrate-

and-fire unit), and it also extrapolates conveniently to an

N-gate with N inputs. However, inclusive-OR gates are

not that useful computationally, partly because they don’t

do much actual work - they simply decide if there is or isn’t

enough input. Many real-world and computational issues

involve decisions which are better characterized as

either/or (i.e. exclusive-OR), e.g. should I choose vanilla

or chocolate? It was recently shown that human layer

2/3 pyramidal neurons have a very interesting ion channel

in their dendrites that allow them to compute the equiva-

lent of an exclusive-OR, ‘XOR’, function (Fig. 4D, E)

(Gidon et al., 2020). More broadly, this allows dendritic

compartments to calculate the anti-coincidence of classes

of inputs which adds to the range of functions that single

biological neurons can compute (Segev, 1992; Herz et al.,

2006). This aspect of dendritic computation is likely just

the tip of the iceberg for what can be achieved with local

dendritic spike mechanisms and interesting activation

functions.



Fig. 4. Re-examining how neurons compute. (A) A L2/3 neuron receiving asynchronous distributed

inputs that activate AMPA receptors at >500 (Chen et al. 2013) synapses (black dots) during an up-

state and a few (<50) clustered synaptic inputs (red dots) that activate NMDA channels causing

NMDA spikes. (B) Dendritic NMDA spikes (red, left) summate and cause up to 15 mV depolarization

at the cell body (Palmer et al., 2014). This depolarization in addition to the up-state is likely to cause a

Na+ spike at the cell body which repolarizes due to the opening of K+ channels aborting the longer

NMDA spike. (C) It is hypothesized that, at the preferred orientation (here 0०), >500 AMPA broadly

distributed EPSPs with balanced inhibition cause a steady up-state that with the addition of the

combined NMDA spike current due to a handful (<50) clustered inputs, leads to robust AP spiking

(red), whereas no spiking occurs without the <50 clustered inputs (black). This data is taken from (Jia

et al. 2010). (D) A L2/3 human pyramidal neuron (left) with dendritic calcium action potentials

(dCaAPs) that inactivate at currents above threshold (left, blue traces), can perform the XOR

operation on two different excitatory pre-synaptic pathways that nevertheless distribute synapses over

a similar region of the dendritic tree (red and blue dots). (E) A model of the human L2/3 pyramidal

neuron with two distinct activation functions for spatially segregated compartments. D, E from (Gidon

et al., 2020).
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In a larger context, active dendrites serve not only to

boost signals arriving at the dendrite (Stuart and

Sakmann, 1995; Branco and Häusser, 2011), but also

allow for multiple sites of spike initiation (Llinás et al.,

1968; Calabrese and Kennedy, 1974; Mel, 1993;

Larkum et al., 2009). Further complicating this situation

is the fact that signals can travel actively in all directions

throughout the dendritic tree. For instance, back-

propagating sodium action potentials (Stuart and
Sakmann, 1994) travel actively

from the axonal initiation zone

(Kole et al., 2008) allowing the out-

put of the neuron to reverberate

with inputs significantly complicat-

ing the input/output relationship

(Waters et al., 2005). This aspect

of biological neurons with dendritic

trees is particularly hard to capture

by using small networks of point

neurons to represent dendrites

(Poirazi et al., 2003) because neu-

rons have privileged access in both

directions to their dendrites com-

pared to synaptic connections

which only allow one-way interac-

tion. The ability of neurons to signal

freely throughout the dendritic tree

means that the activation of the

neuron can be a complex function

over time and space which can

only be captured with differential

equations. It also means that some

synaptic inputs or neuromodulation

can serve to alter the coupling

between dendritic compartments

(Larkum et al., 2001; Schaefer

et al., 2003; Suzuki and Larkum,

2020). All of these features speak

to the conceptual efficiency of units

with multiple compartments and

non-linear properties.
DENDRITES FOR
SEGREGATING INPUTS

The suggestion that dendrites

might provide conceptual insights

is not new and was championed

by Wilfrid Rall as far back as the

1950s (reviewed in Jack et al.,

1988; Segev, 1992). The core con-

ceptual advantage of using den-

drites is that they allow for the

segregation of synaptic inputs,

which in turn enables multiple par-

allel operations to be performed

on the inputs, e.g. in retinal gan-

glion neurons (Koch et al., 1983).

Point neurons cannot process dif-

ferent synaptic inputs separately.
However, information can sometimes be categorically

separated into different classes of information, such as

in binaural processing (Agmon-Snir et al., 1998). Perhaps

the most important partition for an information system is

the dichotomy between external versus internal informa-

tion which translates roughly to feed-forward and feed-

back information. In the cerebral cortex, these

information streams follow broadly separable architectural
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principles (Felleman and Van Essen, 1991; Harris et al.,

2019). The class of neurons that is most abundant and

ubiquitous in the cortex, the pyramidal neuron, is built

and positioned to optimally separate and then integrate

these two information streams allowing for the cortex to

perform operations that have large-scale, network-wide

consequences (Larkum, 2013; Larkum et al., 2018; Aru

et al., 2020).

It would make sense that the elements of the cortex

are built to be able to parse these information streams

separately and could also significantly improve learning

rules (Körding and König, 2000; Nielsen, 2003;

Urbanczik and Senn, 2014; Kastellakis et al., 2015;

Brea et al., 2016; Hawkins and Ahmad, 2016; Schiess

et al., 2016; Sardi et al., 2018; Richards et al., 2019)

and has been suggested as a way to solve the credit

assignment problem in biological networks (Guerguiev

et al., 2017). There is also growing empirical evidence

for dendrite-specific learning (Letzkus et al., 2006;

Sjöström and Häusser, 2006; Losonczy et al., 2008;

Makara et al., 2009; Gambino et al., 2014; Cichon and

Gan, 2015; Brandalise et al., 2016; Bittner et al., 2017;

Sheffield et al., 2017; Abs et al., 2018; Roelfsema and

Holtmaat, 2018; Doron et al., 2020; Shin et al., 2021).

These data and models demonstrate that dendrites can

function to segregate synaptic inputs so that particular

rules can be applied to subsets of dendritic inputs. Vari-

ous categories of information may be useful conceptually

to segregate at the input stage. For example, information

related to learning, like error signals, rewards, as well as

states of arousal related to environmental conditions or

cognitive states. The cerebellum is a prime example of

the use of spatio-temporal principles efficiently imple-

mented with parallel fibers coursing through rows of com-

plex Purkinje cell dendritic trees. With point neurons, the

segregation and re-integration of information would need

to be performed by separate neurons making their inte-

gration more difficult both conceptually and practically.

In summary, there is ample evidence that neurons of

the brain do not behave like simple point neurons and that

including dendrites in their description might be useful to

efficiently capture their true function.
CONCLUDING REMARKS – DENDRITES AND
WHAT CONSTITUTES UNDERSTANDING

Consider a scenario in which aliens correctly ascertain

that the digital computers of the humans are binary

devices. Could they immediately understand how

Donkey Kong is programmed by reverse engineering?

Probably not – at the very least, simply recording the

transistors as they turn on and off would probably be

unenlightening (Jonas and Körding, 2016). Whereas the

original programmer could claim they, ‘‘don’t understand

how the computer works”, for instance, and nevertheless

write functional programs, we (humans) collectively do

understand how digital computers work in the sense that

we can describe how high-level descriptions are imple-

mented. On the other hand, if the aliens incorrectly iden-

tified the binary nature of a digital computer, there would
no way to implement high-level ideas and no conceptual

through-line that could be described as understanding

digital computers.

The key insight in terms of understanding is that the

problem is not symmetric; it is necessary that the

implementation level is understood (by someone at

least) in order for anything to operate, but there is no

highest limit that would constitute final understanding.

The lower limit is defined by the level at which the

components capture the principles of implementation.

Here, replacing semiconductors with tubes would not

change the important concepts at any level of

understanding. And so it seems that the often cited

claim of Richard Feynman that, ‘‘What I cannot create, I

do not understand” (Way, 2017), is not invertible. That

is, it is not necessarily true that ‘‘what I can create, I

understand completely”. Understanding can be reached

on many levels, and it is not necessarily true that under-

standing on one level entails understanding on another.

For instance, do we understand artificial neural networks

(Lillicrap and Kording, 2019)? Much effort is currently

being invested in trying to understand how deep neural

networks actually recognize faces or play ‘Go’ even

though they can already perform better than humans.

What has this all to do with dendrites? Neurons with

dendrites are clearly not linear counting devices. This is

a category error that, it is argued here, will have

consequences similar to that of aliens misinterpreting

the function of transistors. What we are learning from

looking closely at neurons is that real neurons are not

only quite unlike point neurons, but under closer

inspection they don’t even seem to operate according to

the same principles. In other words, we are quite

possibly trying to derive high-level theories of the brain

while completely misunderstanding the substrate upon

which they need to operate. But the problem may go

deeper than this; there may well be aspects of the

implementation that suggest higher-level principles. In

my own work, for instance, I have argued that a useful

description of a cortical pyramidal neuron is as a three-

compartment neuron (Larkum et al., 2001) that compares

external, feature-specific information with internally-

generated predictions arriving at separate compartments

(Larkum et al., 1999; Larkum, 2013) and that their privi-

leged access and coupling under certain circumstances

may be useful, for instance, for understanding of how

anesthetics lead to loss of consciousness (Aru et al.,

2020; Suzuki and Larkum, 2020) and what transpires at

the moment of perception (Takahashi et al., 2016). I claim

this should be described as implementation-level informa-

tion that nevertheless suggests new ways to understand

the brain at high levels of description. Furthermore, this

understanding is fundamentally rooted in the conceptual

importance of the dendrites.
ABANDONING THE SOMATO-CENTRIC
PERSPECTIVE

This dendritically-enriched perspective of neurons offers a

radical update of the integrate-and-fire model, which
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simply counts inputs regardless of their dendritic location.

This approach implies that the vast majority of current

neural models, whether ‘biologically-inspired’ or not, are

operating under misguided assumptions that may in

effect render the models biologically inaccurate. How

could this situation have gone on so long? I would

argue this comes from the somato-centric perspective

the neuroscience community has inherited (Larkum

et al., 2018). Almost all recordings are either made from,

or influenced by, the cell bodies of neurons. Extracellular

methods that detect spikes in the electric field are much

more sensitive to a big ball of excitable membrane (the

soma) than to dendrites. Intracellular and imaging meth-

ods are also orders-of-magnitude easier and more com-

mon from cell bodies than intra-dendritic recordings.

Furthermore, the point-neuron dogma is seemingly trivial

to demonstrate: a student on their first day in an electro-

physiology laboratory can easily show that the firing fre-

quency of a neuron has a simple threshold/linear

relationship to current injection at the cell body over most

of its firing range. But this is really because the axon hap-

pens to be near the cell body, which means that the inter-

esting aspects of single-cell computation are bypassed

with recordings at the soma. Ironically, even the work

done by the dendritic spikes is likely to be obscured at

the cell body by the axo-somatic APs that repolarize the

membrane (Fig. 4B). The experiments that need to be

done to understand the input–output relationship of a neu-

ron are much harder, however, and would require control

of the �10,000 synaptic inputs to the neuron. Better con-

ceptual descriptions of neurons are not lacking. Perhaps,

the simplest version of a pattern-dependent neuron is the

‘clusteron’ (Mel, 1994), however there are small network

conceptual descriptions (Poirazi et al., 2003) and even

full-scale, neural-network-in-a-neuron solutions being

offered (Beniaguev et al., 2019; Jones and Kording,

2021). At the moment, empirical data is still lacking from

neuroscience.

Since the brain arose from evolutionary processes,

there is no one we can ask what the crucial base unit of

computation in the brain is, nor how complex should be

its description. At stake, is not only the amount of

processing power that can be invested at the single-

neuron level, but what conceptual efficiencies can be

gained at higher levels of description, with better

component-level descriptions. At a minimum,

interactions between synapses and post-synaptic

intrinsic excitability that are a function of space and time

are almost certainly crucial for determining the input/

output function of neurons and these facts appear to be

lost in modern-day descriptions of neuronal function

without dendrites. In any case, the best evidence we

have from real neurons suggests that neuroscientists

may have completely mischaracterized the conceptual

operation of single neurons (Koch and Segev, 2000).

There is every reason to suspect that better descriptions

of sophisticated single-cell computation will lead to better

descriptions at the network level blurring the distinction

between Marr’s algorithmic and implementation levels.
Box 1
Input clustering, NMDA spikes and local dendritic com-

putation Another advantage of dendritic trees is
that they allow for subsets of synaptic inputs to
operate cooperatively. This was elegantly pointed out
in the visionary work of Bartlett Mel and colleagues in
the early 1990s (Mel, 1992, 1994; Poirazi and Mel,
2001), in which he speculated that NMDA receptors
can in principle operate like other voltage-dependent
ion channels making the neuron sensitive to clustered
input. This led to the ground-breaking discovery of the
so-called ‘NMDA spike’ by Jackie Schiller and col-
leagues (Schiller et al., 2000). Input clustering is
quintessentially a spatial feature (Mel and Schiller,
2004), with possible computational advantages like
sequence learning (Hawkins and Ahmad, 2016) and
binocular rivalry (Archie and Mel, 2000). There is by
now a lot of evidence for synaptic clustering in the brain
(Larkum and Nevian, 2008; Kleindienst et al., 2011;
Takahashi et al., 2012; Winnubst and Lohmann, 2012;
Kastellakis et al., 2015; Weber et al., 2016; Wilson
et al., 2016; Kerlin et al., 2019) but the impact of this
on biological and artificial network models has so far
been minimal (Kastellakis and Poirazi, 2019).

The location dependence of NMDA spikes is due not
only to the necessity for clustered synaptic input but
also to the fact that the NMDA spikes can only actively
propagate along stretches of dendrites where NMDA
receptors are activated, i.e. with bound glutamate
(Major et al., 2013). That is, this form of spiking is intrin-
sically location-dependent with the properties aecting
their spatial extent constantly fluctuating. A model
incorporating the NMDA spike (Rao et al., 2021) is there-
fore the conceptual antithesis of the dendrite-less point
neuron used ubiquitously in computational and
machine learning models. The influence of the NMDA
spike can also be orders of magnitude larger than the
depolarization caused by EPSPs such that the underly-
ing synapses can be transformed into having a mas-
sively disproportionate influence on the generation of
somatic action potentials (Polsky et al., 2009). The con-
cept of local cluster-driven NMDA spikes and other
kinds of dendritic spikes stands to revolutionize our
understanding of the way neurons compute and thus
our understanding of the brain and the way we build
artificial networks.
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JK (2016) Location-dependent synaptic plasticity rules by

dendritic spine cooperativity. Nat Commun 7:11380.

Williams SR, Stuart GJ (2002) Dependence of EPSP efficacy on

synapse location in neocortical pyramidal neurons. Science

295:1907–1910.

Wilson C (2008) Up and down states. Scholarpedia J 3:1410.

Wilson DE, Whitney DE, Scholl B, Fitzpatrick D (2016) Orientation

selectivity and the functional clustering of synaptic inputs in

primary visual cortex. Nat Neurosci 19:1003–1009.

Winnubst J, Lohmann C (2012) Synaptic clustering during

development and learning: the why, when, and how. Front Mol

Neurosci 5 Available at: http://journal.frontiersin.org/article/

10.3389/fnmol.2012.00070/abstract [Accessed March 10, 2021].
(Received 19 March 2021, Accepted 5 March 2022)
(Available online 11 March 2022)

http://refhub.elsevier.com/S0306-4522(22)00120-8/h0480
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0480
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0480
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0485
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0485
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0490
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0490
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0490
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0495
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0495
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0495
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0500
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0500
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0505
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0505
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0505
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0510
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0510
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0510
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0515
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0520
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0520
http://refhub.elsevier.com/S0306-4522(22)00120-8/h0520

	Are Dendrites Conceptually Useful?
	METASTABLE STATES OF ACTIVITYINVOLVING EXCITATION AND INHIBITION
	A NEW HYPOTHESIS FOR SPIKE GENERATIONIN LAYER 2/3 PYRAMIDAL NEURONS
	ACTIVATION FUNCTIONS – CHALLENGINGTHE LINEAR SUMMATION MODEL
	DENDRITES FORSEGREGATING INPUTS
	ABANDONING THE SOMATO-CENTRICPERSPECTIVE
	ACKNOWLEDGEMENTS
	REFERENCES


