

BIO-482 Neuroscience: cellular and circuit mechanisms

Mini-project: Neurophysiological data analysis

Sylvain Crochet & Carl Petersen

Laboratory of Sensory Processing

In the mini-project, you will use Matlab/Python to analyse a database of *in vivo* recordings of membrane potential during mouse behavior. The data are published:

Kiritani T, Pala A, Gasselin C, Crochet S, Petersen CCH (2023) Membrane potential dynamics of excitatory and inhibitory neurons in mouse barrel cortex during active whisker sensing. PLOS ONE 18: e0287174. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287174

Kiritani T, Pala A, Gasselin C, Crochet S, Petersen CCH (2023) Data set for "Membrane potential dynamics of excitatory and inhibitory neurons in mouse barrel cortex during active whisker sensing." [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7833080

Learn about the brain by yourself!

General organization

- Download the **Data** and **Codes**, as well as the **Questions** from the Google drive: https://drive.google.com/drive/folders/0ALc1PlvbCTdKUk9PVA
- 2) Install Matlab or Python and follow the instructions in *Miniproject 2024_Questions* to run the codes.
- 3) Answer questions 1-3 using (some of) the figures produced by the codes
- 4) Devise your own question, write the code to perform the analysis and answer your question (can be done in group of 2-5 students).
- 5) Optional but recommended: Get some help from the TAs and Sylvain Crochet every Wednesday 13:15 15:00 in room CM 1105 and every Friday 13:15 15:00 in Room CE 1106.
- 6) Submit your <u>individual</u> report as a single pdf file by email to <u>sylvain.crochet@epfl.ch</u> by <u>Friday</u>

 20^{tht} December midnight.
- 7) Miniproject report will count towards 1/3 of the final grade