

Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of *SMN*

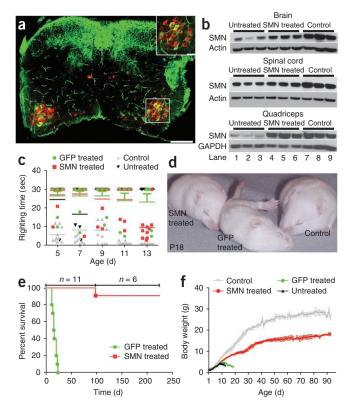
Kevin D Foust¹, Xueyong Wang^{2,6}, Vicki L McGovern^{3,6}, Lyndsey Braun¹, Adam K Bevan^{1,4}, Amanda Maidet^{1,4}, Thanh T Le³, Pablo R Morales⁵, Mark M Rich², Arthur H M Burghes^{3,4} & Brian K Kaspar^{1,4}

Spinal muscular atrophy (SMA), the most common autosomal recessive neurodegenerative disease affecting children, results in impaired motor neuron function¹. Despite knowledge of the pathogenic role of decreased survival motor neuron (SMN) protein levels, efforts to increase SMN have not resulted in a treatment for patients. We recently demonstrated that self-complementary adeno-associated virus 9 (scAAV9) can infect ~60% of motor neurons when injected intravenously into neonatal mice^{2–4}. Here we use scAAV9-mediated postnatal day 1 vascular gene delivery to replace SMN in SMA pups and rescue motor function, neuromuscular physiology and life span. Treatment on postnatal day 5 results in partial correction, whereas postnatal day 10 treatment has little effect, suggesting a developmental period in which scAAV9 therapy has maximal benefit. Notably, we lso show extensive scAAV9-mediated motor neuron transduction. after injection into a newborn cynomolgus macaque. This demonstration that scAAV9 traverses the blood-brain begier in a nonhuman primate emphasizes the clinical potential of s. 1/19 gene therapy for SMA.

ppip a cord. SMA is Proximal SMA results in motor neuron death in caused by loss of survival motor neuron 1 (SMN1) and retention of SMN2, resulting in reduced levels of SLAN, ... iquitously expressed protein important in the assemble fribon (cleoprotein complexes^{1,5–7}. Neuronal expression of SMY appers essential⁸. Recent work using a double transgenic knocko 't me 'mous of SMA showed that postnatal lentiviral-mediated del' 'ry of SM. motor neurons increased survival by 3–5 d in an animal the normally survives $\sim \! 13$ d 9 . Pharmacological approaches have increased wival up to $\sim \! 40$ d 10,11 . We and others recently dem stricted that intravenous injection of scAAV9 into 1-d-old (postnatal da, P1) n ice and cats infects ~60% of motor neurons, indicate. he post ial of this approach in treating SMA^{2,12}. Here, we rep tha scAAV9-mediated SMN gene replacement (with scAAV9-SMN, Swa nice results in an unprecedented improvement in survival and for function 13. We also show that scAAV9-green fluorescent protein (GFP) crosses the blood-brain barrier in a nonhuman primate and transduces motor neurons, supporting the possibility of translating this treatment option to human patients.

To determine transduction level in SMA mice $(SMN2^{+/+}; SMN\Delta7^{+/+}; SMn^{-/-})$, we in the definition of the scalar of sca

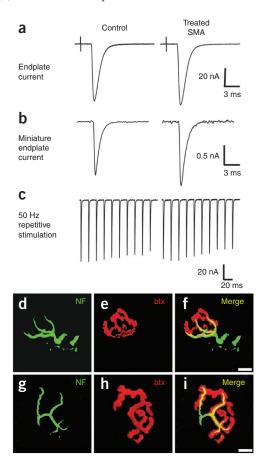
e next evaluated whether scAAV9-SMN treatment of SMA animals inproved motor function 14. SMA animals treated with scAAV9-SMN or scAAV9-GFP on P1 were assessed for the ability to right themselves compared to control and untreated animals (n = 10/group). Control animals could right themselves quickly, whereas the SMN- and GFP-treated SMA animals showed difficulty at P5. However, by P13, 90% of SMN-treated animals could right themselves compared with 20% of GFP-treated controls and 0% of untreated SMA animals, suggesting that SMN-treated animals improved (Fig. 1c). At P18, SMNtreated animals were larger than GFP-treated animals but smaller than controls (Fig. 1d). Locomotive ability of the SMN-treated animals was nearly identical to that of controls as assayed by x, y and z plane beam breaks (open field testing) and wheel running (Supplementary Figs. 3 and 4 and Supplementary Movie). Age-matched untreated SMA animals were not available as controls for open field or running wheel analysis owing to their short life span.


We next examined survival of SMN-treated SMA animals (n = 11) compared with GFP-treated SMA animals (n = 11). No GFP-treated control animals survived past P22, with a median life span of 15.5 d (**Fig. 1e**). We analyzed body weight in SMN- or GFP-treated animals compared to wild-type littermates. The GFP-treated animals' weights peaked at P10 and then precipitously declined until death. In contrast, SMN-treated animals showed a steady weight gain to approximately P40, where the weight stabilized at 17 g, half the weight of controls (**Fig. 1f**). The smaller size of corrected animals is likely related to

¹Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA. ²Wright State University, Dayton, Ohio, USA. ³Department of Molecular and Cellular Biochemistry and ⁴Integrated Biomedical Graduate Program, The Ohio State University, Columbus, Ohio, USA. ⁵The Mannheimer Foundation, Inc., Homestead, Florida, USA. ⁶These authors contributed equally to this work. Correspondence should be addressed to B.K.K. (Brian.Kaspar@NationwideChildrens.org).

Received 29 July 2009; accepted 28 January 2010; published online 28 February 2010; doi:10.1038/nbt.1610

the tropism and incomplete transduction of scAAV9, resulting in a 'chimeric' animal in which some cells are not transduced. Additionally, the smaller size suggests an embryonic role for SMN. Notably, to deaths occurred in the SMN-treated group until P97. Furthe more, this death appeared to be unrelated to SMA as the mouse "ea after trimming of long extensor teeth. We euthanized our anim (P90–99) for electrophysiology of neuromuscular junct. (NMJs). The remaining six animals were still alive as o' resubn. Jon in November 2009 and had surpassed 250 d of a e.


A recent report demonstrated that neuron cular transmission is abnormal in SMA mice¹⁵. To determine whether a reduction in endplate currents (EPCs) was corrected wi AAV9-5MN, we recorded EPCs from the tibialis anterior (TA) muscry P10 animals were evaluated to ensure the presence the reported abnormalities. Control mice had an EPC amplitud of 15 1 ± 0.8 nA versus 6.4 ± 0.8 nA in untreated SMA animals P =V11, afirming published results 15. Notably, scAAV9-SMN treated Significant improvement at P10 over getched untreated SMA animals (8.8 ± 0.8 versus 6.4 ± 0.8 A, P < 0. However, gene therapy treatment had not restored normal EPC at P10 when comparing scAAV9-SMNtreated SMA nals v ith controls (19.1 \pm 0.8 versus 8.8 \pm 0.8 nA, P99, there was no difference in EPC amplitude

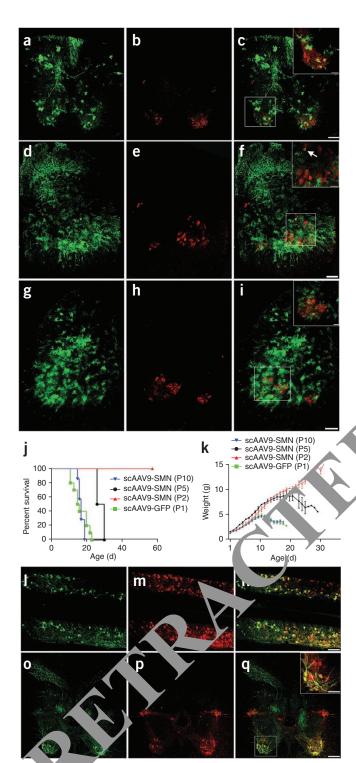

Figure 2 — iffects of SMN treatment at P1 on NMJs of adult SMA mice. Untreated MA mice do not survive to adulthood. (a) scAAV9-SMN treatment restores endplate currents (EPC) in ~90-d-old SMA animals. In control mice, the mean EPC amplitude was 82.6 ± 3.5 nA, and in treated SMA mice, it was 83.4 ± 4.1 nA ($P=0.89,\ n=4$ mice for each group). (b) Affected animals treated with scAAV9-SMN had an increase in miniature endplate currents. (c) Both control and treated SMA endplate currents had a similar degree of depression during 50 Hz nerve stimulation. (d–i) Representative sections from the transverse abdominis (TVA), a proximal muscle with innervation abnormalities in SMA mice², shows normal innervation in both wild-type (d–f) and SMN-treated (g–i) animals. Scale bars, $10~\mu m$.

Figure 1 Phenotypic correction of SMA mice injected on P1. (a) Injection of scAAV9-GFP in SMA animals results in GFP expression (green) within dorsal root ganglia and motor neurons (ChAT staining in red) in the lumbar spinal cord 10-d post-injection. (b) Western blots from tissues of control, scAAV9-SMN-treated and untreated SMA animals show elevated levels of SMN expression in SMN-treated animals compared to control animals, although levels are still lower than those of control littermates. Quantifications of western blots are available in the Supplementary Figures 1 and 7. (c) Righting ability shows that SMN-treated animals can right themselves similarly to control animals by P13. (d) animals treated with scAAV9-SMN are larger than GFP-treated animals. (e) scAAV9-SMN treatment of SMA animals results in greating rtended survival over GFP treatment. (f) Body weight assessments show increase in animals treated with scAAV9-SMN vers is those treate with GFP. Scale bars, 200 μ m (a); 50 μ m (a inset).

between controls and SMA mice that d been treated with scAAV-SMN (Fig. 2a). Thus, treatment scA. SMN fully corrected the reduction in synaptic current. 190—1 age-matched untreated SMA animals were not available. Controls sing to their short life span.

The amplitude of EPCs is cormined by the number of synaptic vesicles released after erve stin, nation (quantal content) and the amplitude of the ruscoresponse to the transmitter released from a single vesicle (quantal campunade). Untreated SMA mice have a reduction in EPC primarily available of reduced quantal content. In our P9–P10 color contreated SMA animals had a reduced quantal content compared with wild-type controls (5.7 \pm 0.6 versus 12.8 \pm 0.6, P < 0.05), but scAAV9-SMN—treated animals were again improved over the untreated animals (9.5 \pm 0.6 versus 5.7 \pm 0.6, P < 0.05), but not to the level of wild-type animals (9.5 \pm 0.6 versus 12.8 \pm 0.6, (0.6)). At P90–P99, the quantal content in treated SMA mice was

slightly. Urced (control = 61.3 ± 3.5 ; SMA-treated = 50.3 ± 2.6 , P < 0.05) but was compensated for by a statistically significant increase in quantal amplitude (**Fig. 2b**; control = 1.39 ± 0.06 ; SMA-treated = 1.74 ± 0.08 , P < 0.05). Quantal amplitudes in young animals had no significant differences (control = 1.6 ± 0.1 , untreated SMA = 1.3 ± 0.1 , treated SMA = 1.1 ± 0.1 nA, P = 0.28).

The reduction in vesicle release in untreated SMA mice was due to a decrease in probability of vesicle release, demonstrated by increased facilitation of EPCs during repetitive stimulation¹⁵. Both control and treated SMA EPCs were reduced by close to 20% by the 10th pulse

Figure 3 Systemic injection of scAAV9-GFP into SMA mice of varying ages. (a-c) Animals injected on P2 have a transduction pattern identical to P1-injected animals, with motoneuron transduction in lumbar spinal cord. (d-f) P5-injected animals have more glial transduction and less motoneuron (f inset, arrow) transduction than younger animals in lumbar spinal cord analysis. (g-i) The pattern of increasing glial transduction continues in P10-injected animals. GFP (green), ChAT (red, a motoneuron marker) and merged (yellow). (j-k) scAAV9-SMN injection on P2 in SMA animals rescues life span and increases body weight (n = 6), whereas P5 scAAV9-SMN delivery in SMA animals only partially rescues life span and body reight (n = 4) compared with control scAAV9-GFP-treated (n = 10) No increase in life span or body weight was seen in mice treated with scA. 2-SIMN C P10 (n = 4). (I-q) Systemic injection of scAAV9-GFP into a cync macaque on P1 results in a similar transduction patern within the pinal cord as previously shown in P1-injected mice. GFP ChAT (,p) and merged (n,q) images from thoracic spinal cord demons. notor neuron transduction. A representative longitudinal ection is show in (I-n), indicating transduction along the neuraxis. ansverse sections (o-q) mimic the pattern of dorsal root ganglia and notor von transduction seen in P1-injected mice. Inset scale bars, 50 r; **c,1,.,** ±00 μm; **n,q**, 200 μm.

of a 50 Hz train of couli (**Fig. 2c**, 22 ± 3% reduction in control versus 19 ± 1% reduction in treated SMA, *P* = 0.36). This suggests that the reduction probability of release was corrected by replacement of SMN. During Mcctrophysiologic recording, no evidence of denervation poted. Furthermore, all adult NMJs analyzed showed normal morphology and full maturity (**Fig. 2d–i**). P9–P10 transverse abdominis immunohistochemistry showed the typical neurofilament accomplaint in untreated SMA NMJs howed a marked reduction in neurofilament accumulation uplementary **Fig. 5**).

recent study using a histone deacetylase inhibitor to extend surival of SMA mice reported necrosis of the extremities and internal tissues²⁰. In our study, mice developed necrotic pinna between P45–P70 (**Supplementary Fig. 6**). Pathological examination of the pinna revealed vascular necrosis, but necrosis was not found elsewhere. We previously demonstrated that vascular endothelium was among the cell types transduced after systemic scAAV9 delivery². Lack of necrosis in the tail and hind-paws could be due to treatment of vascular tissue, whereas the development of the pinna after P1 precludes correction of this tissue owing to loss of recombinant vector genomes in dividing cells^{21–23}.

To explore the therapeutic window in SMA mice, we performed systemic scAAV9-GFP injections at varying postnatal time points to evaluate the pattern of transduction of motor neurons and astrocytes. scAAV9-GFP systemic injections in mice on P2, P5 or P10 showed distinct differences in the spinal cord. There was a shift from neuronal transduction in P2-treated animals toward predominantly glial transduction in older, P10 animals, consistent with our previous studies and knowledge of the developing blood-brain barrier in mice (**Fig. 3a–i**)^{2,24}.

To determine the therapeutic effect of SMN delivery at these various time points, small cohorts of SMA-affected mice were injected with scAAV9-SMN on P2, P5 and P10 and evaluated for changes in survival and body weight (**Fig. 3j–k**). P2-injected animals were rescued and indistinguishable from animals injected with scAAV9-SMN on P1. However, P5-injected animals showed a more modest increase in survival of ~15 d, whereas P10-injected animals were indistinguishable from GFP-injected SMA pups. These findings support previous studies demonstrating the importance of increasing SMN levels in neurons of SMA mice⁸. Furthermore, these results suggest a finite period during development in which intravenous injection of scAAV9 can target neurons in sufficient numbers for benefit in SMA.

To assess the potential for clinical translation of this approach, we investigated whether scAAV9 can traverse the blood–brain barrier in nonhuman primates 25 . We intravenously injected a male cynomolgus macaque on P1 with 1 \times 10 14 particles (2.2 \times 10 11 particles/g of body weight) of scAAV9-GFP and euthanized it 25 d after injection. Examination of the spinal cord revealed robust GFP expression within the dorsal root ganglia and motor neurons along the entire neuraxis (Fig. 3l–q), as seen in P1-injected mice. This finding demonstrates that early systemic delivery of scAAV9 can efficiently target motor neurons in a nonhuman primate.

In conclusion, we report here the most robust postnatal rescue of SMA mice to date, with correction of motor function, neuromuscular electrophysiology and survival after a one-time delivery of SMN. Intravenous scAAV9 treats neurons, muscle and vascular endothelium, all of which have been proposed as target cells for treatment². Although this study did not attempt to dissect the roles of different cell types in SMA, our P10 data show that SMN replacement in astrocytes is not effective in delaying disease, consistent with previous results using transgenic approaches⁸. We have also defined a window of opportunity for targeting motor neurons in neonates. Future studies in nonhuman primates will further elucidate a therapeutic window more relevant to human therapy. Advances in vector design, such as AAV capsid modification, mutagenesis or gene shuffling, may expand the opportunity to target neurons in the adult^{26–28}. Although SMA children are often asymptomatic at birth, newborn screening that can detect SMA has been developed, supporting the feasibility of delivering scAAV9-SMN to affected children²⁹. Additionally, we have demonstrated widespread transduction within the spinal cord of a nonhuman primate species. We are continuing to advance this delivery system in nonhuman primates and evaluating immunological consequences to the SMN gene and capsid in order to set the stage for human clinical trials of se AN9 SMN in SMA. Given that SMA is a disease of low versus no p. we do not anticipate an immune response against the SN V transge. Further, we expect gene delivery to newborn patients o wild-type AAV infection, thereby lowering the charges of p. immunity to the AAV capsid.

METHODS

Methods and any associated references at available in the online version of the paper at http://www.nature.com/natu___echnology/.

Note: Supplementary information is available on the Nature Biotechnology website.

ACKNOWLEDGMENTS

This work was supported by NIH/NIN. P21NS064328 to B.K.K., NINDS R01NS038650 to A.H.M.B., NDS core 30-NS045758, RC2 NS069476-01 and Miracles for Madison Fund to 1 K. and A.H.M.B. and NINDS P01NS057228 to M.M.R. We thank it. Levine an 1. Nurre for expert technical assistance and J. Ward for pathology services.

AUTHOP CONTA VTICNS

K.D.F. M.W. .., A.H.R. o. and B.K.K. designed and executed experiments and wrong environments. V.L.M., X.W, L.B., A.M.H., A.K.B., P.R.M. and T.T.L. contrib. 1 to experiments.

COMPETING INTERESTS STATEMENT

The authors declare no competing financial interests.

Published online at http://www.nature.com/naturebiotechnology/. Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/.

- Burghes, A.H. & Beattie, C.E. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? *Nat. Rev. Neurosci.* 10, 597–609 (2009).
- Foust, K.D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).
- Gao, G. et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 6381–6388 (2004).
- McCarty, D.M. et al. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther. 10, 2112–2118 (2003).
- Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophydetermining gene. Cell 80, 155–165 (1995).
- McGovern, V.L., Gavrilina, T.O., Beattie, C.E. & Burghes, A.H. Imbivonic motor axon development in the severe SMA mouse. *Hum. Mol. Genes*. 200–209 (2008).
- MacKenzie, A.E. & Gendron, N.H. Tudor reign. Nat. Struct. Bion. 13–15 (2001).
- Gavrilina, T.O. et al. Neuronal SMN expression corrects and musc are atrophy in severe SMA mice while muscle-specific SMN expression in a phenotypic effect. Hum. Mol. Genet. 17, 1063–1075 (2008).
- Azzouz, M. et al. Lentivector-mediated SM replacement in a mouse model of spinal muscular atrophy. J. Clin. Invest 114 726–173 (2004).
- Avila, A.M. et al. Trichostatin A increase SMIN profon and survival in a mouse model of spinal muscular atrophy V. Ch. Pavest. 117, 659–671 (2007).
- 11. Hastings, M.L. *et al.* Tetracy lines that propose SMN2 exon 7 splicing as therapeutics for spinal museum trophy. *Sci. transl. Med* **1**, 5–14 (2009).
- Duque, S. et al. Intra enous ministration of self-complementary AAV9 enables transgene delivery to adult after neurons. Mol. Ther. 17, 1187–1196 (2009).
- 13. Le, T.T. et al. MNDe a7, the major product of the centromeric survival motor neuron (Sn. Atends survival in mice with spinal muscular atrophy and associate with full-length SMN. Hum. Mol. Genet. 14, 845–857 (2005).
- Butchback Edwards, J.D. & Burghes, A.H. Abnormal motor phenotype in the SMNDelta7 mot see Lidel of spinal muscular atrophy. *Neurobiol. Dis.* 27, 207–219 (2007).
- 15. Kong, L. *et a* Impaired synaptic vesicle release and immaturity of neuromuscular tions in spinal muscular atrophy mice. *J. Neurosci.* **29**, 842–851 (2009).
- 16. W. X. et al. Decreased synaptic activity shifts the calcium dependence of release at the mammalian neuromuscular junction in vivo. J. Neurosci. 24, 10687–10692 (2004).
- 17. Junetes-Diaz, C. et al. Neurofilament accumulation at the motor endplate and ack of axonal sprouting in a spinal muscular atrophy mouse model. *Hum. Mol. Genet.* 11, 1439–1447 (2002).
- Kariya, S. et al. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum. Mol. Genet. 17, 2552–2569 (2008).
- Murray, L.M. et al. Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum. Mol. Genet. 17, 949–962 (2008).
- Narver, H.L. et al. Sustained improvement of spinal muscular atrophy mice treated with trichostatin A plus nutrition. Ann. Neurol. 64, 465–470 (2008).
- Clark, K.R. et al. Gene transfer into the CNS using recombinant adeno-associated virus: analysis of vector DNA forms resulting in sustained expression. J. Drug Target. 7, 269–283 (1999).
- Duan, D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol. 72, 8568–8577 (1998).
- Nakai, H. et al. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J. Virol. 75, 6969–6976 (2001).
- Saunders, N.R., Joakim Ek, C. & Dziegielewska, K.M. The neonatal bloodbrain barrier is functionally effective, and immaturity does not explain differential targeting of AAV9. Nat. Biotechnol. 27, 804–805, author reply 805 (2009).
- 25. Kota, J. et al. Follistatin gene delivery enhances muscle growth and strength in nonhuman primates. Sci. Transl. Med 1, 6-15 (2009).
- Koerber, J.T. et al. Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol. Ther. 17, 2088–2095 (2009).
- Maheshri, N., Koerber, J.T., Kaspar, B.K. & Schaffer, D.V. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. *Nat. Biotechnol.* 24, 198–204 (2006).
- Asokan, A. et al. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat. Biotechnol. 28, 79–82 (2010).
- Pyatt, R.E., Mihal, D.C. & Prior, T.W. Assessment of liquid microbead arrays for the screening of newborns for spinal muscular atrophy. *Clin. Chem.* 53, 1879–1885 (2007).

ONLINE METHODS

Review board approval. All animal procedures were approved by Nationwide Children's Hospital Institutional Animal Care and Use Committee, Wright State Institutional Animal Care and Use Committee, The Mannheimer Foundation Animal Care and Use Committee and Ohio State University Animal Care and Use Committee.

Animals. SMA parent mice $(Smn^{+/-}, SMN2^{+/+}, SMN\Delta7^{+/+})$ were time mated³⁰. Cages were monitored 18-21 d after visualization of a vaginal plug for the presence of litters. Once litters were delivered, the mother was separated from pups, pups were given tattoos for identification and tail samples were collected. Tail samples were incubated in lysis solution (25 mM NaOH, 0.2 mM EDTA) at 90 °C for 1 h. After incubation, tubes were placed on ice for 10 min then received an equal volume of neutralization solution (40 mM Tris pH5). After the neutralization buffer, the extracted genomic DNA was added to two different PCR reactions for the mouse Smn allele (Forward 1: 5'-TCCAGCTC CGGGATATTGGGATTG, Reverse 1: 5'-AGGTCCCACCACCTAAGAAAGCC, Forward 2: 5'-GTGTCTGGGCTGTAGGCATTGC, Reverse 2: 5'-GCTG TGCCTTTTGGCTTATCTG) and one reaction for the mouse Smn knockout allele (Forward: 5'-GCCTGCGATGTCGGTTTCTGTGAGG, Reverse: 5'-CCAGCGCGGATCGGTCAGACG). After analysis of the genotyping PCR, litters were culled to three animals. Affected animals (Smn^{-/-}, SMN2^{+/+}, $SMN\Delta 7^{+/+}$) were injected as previously described with 5×10^{11} particles of scAAV9-SMN or scAAV9-GFP2.

Ultrasound-guided intracardiac delivery of scAAV9. In older mice we used ultrasound-guided intracardiac injections to efficiently deliver the gene therapy vector. Animals were anesthetized using 1–2.5% isofluorane (in O_2 gas) throughout the procedure. Animals were secured with tape to a heated platform and fitted with a nose cone. A Vevo 2100 ultrasound was used to visualize the animal's heart and monitor vitals. For scAAV9-GFP injections into wild-type mice, P5 animals were injected with 7E+11 vector genomes (vg, in 70 µl), P10 animals with 3.5E+11vg (in 70 µl), into the left ventricle. Aff ...ed mice were similarly injected with scAAV9-SMN on P5 and P10 with 3'+11vg (in 60 µl). Upon successful vector delivery, the animals were monitory consigns of cardio-pulmonary distress, disconnected from the anest hetic machant placed in an oxygen recovery chamber for a short period. Time before being returned to its cage.

Nonhuman primate subjects. The selected experimental subject was a 1-d-old cynomolgus macaque (*Macaca fascicularis*) born in Decembe 2009, at The Mannheimer Foundation, an Association for Assess. It and Accreditation of Laboratory Animal Care International-modited facility. The dam and sire of this neonate were both part of the cynomologus breeding colony at the Foundation, housed in an outdoor colosure. All cynomolgus macaques at the Foundation are fed a commercial die Harlan Teklad 2050), supplemented with seeds, fruits/produce and projection fresh water *ad libitum*. All uses and procedures were approved and rescondance with the Institutional Animal Care and Use Committee (CUC) of the Mannheimer Foundation. Both dam and newborn were negatively selected retroviruses (simian immunodeficiency virus, sin an retrovirus pe D and simian T-cell lymphotropic virus type 1) and Poirus (cercopithecine herpes virus 1).

AAV9 c istrat. * nonhuman primates. As soon as the newborn subject was bentifyed and selected in the outdoor enclosure, it was brought into an indoor sprace oom on the same birth-day and pair-housed along with its dam. When 24 h of the birth and just before the AAV9 delivery both dam and newborn were sedated with ketamine HCL (at a dose of 10 mg/kg intramuscular) and briefly separated from each other to perform the initial procedures. Baseline blood samples were collected from both dam and newborn through femoral venipunctures. After blood samples were collected, the dam was placed back in its cage; the newborn was positioned on sternal recumbency, and one of its legs shaved/disinfected in preparation for the intravenous injection of the AAV9. A 24-gauge intravenous catheter was placed into the saphenous vein. Vector solution was drawn into a 12 cc syringe pre-wetted with saline solution (0.9% NaCl). The intravenous catheter was flushed and its patency verified by using ~1 cc of the same saline solution. A total volume of 10 cc of the AAV9

was delivered intravenously (medium dose of 1-5E+12 vg/g) in a bolus fashion. After injection, the newborn was recovered in a controlled temperature isolette (set at 95 °F) and returned to its dam after full recovery was achieved.

Perfusion-fixation procedures and organ collections. 25 d post-AAV9 injection dam and infant were accessed once more by sedation with ketamine HCL (at a dose of 10 mg/kg) and Telazol (at a dose of 5 mg/kg), respectively. A follow-up blood sample was collected from the dam; the infant was separated and taken to the necropsy room for its terminal collections and procedures. A 24-gauge intravenous catheter was placed into a saphenous van to facilitate subsequent doses of the anesthetic drug and the delivery the outhanasia solution. Once the infant was confirmed to be in a deep and etic plane, a blood sample was collected, and then both thoracic and abdom. were exposed to proceed with the perfusion press. A 20-rauge needle was inserted intra-cardially into the left venticle, right auricle was sectioned and the perfusion started first vith 0.9% No. and then with 4% paraformaldehyde solution. A total of γ 5 liters of the solution were perfused by gravity flow. Upon completion of the perfusion, several sections of major organs were harvested and fixe v im. Son using the same paraformaldehyde solution.

Viral vector. AAV9 was produced transient transfection procedures using a double-stranded AAV of TR-based and GFP vector, with a plasmid encoding Rep2Cap9 sequence as proviously described³ along with a adenoviral helper plasmid; pHelpef (2018). HEK293 cells. Our serotype 9 sequence was verified by sequencing and identical to that previously described³. Virus was purified by the cesium chloride density gradient purification steps, dialyzed against PBS and resoluted with 0.001% Pluronic-F68 to prevent virus aggregation and stored at 4 °C. All vector preparations were titered by quantitative-PCP, using Taq Man technology. Purity of vectors was assessed by 4–12% SDS anylamide gel electrophoresis and silver staining (Invitrogen).

havi r. Pups were weighed daily and tested for righting reflex every other day, rom P5–P13. Pups were placed on their sides and time to right was corded, with a maximum of 30 sec allowed 14. Every 5 d between P15 and P30, animals were tested in an open field analysis (San Diego Instruments). Animals were given several minutes within the testing chamber before the beginning of testing, then activity was monitored for 5 min. Beam breaks were recorded in the x, y and z planes, averaged across groups at each time point, then graphed.

Immunofluorescence. Whole mount tissue. Whole mount TVA muscle was blocked in 10% Tween-20 (Sigma), 4% goat serum (Sigma) and PBS for 30 min. Whole mount tissue was incubated with goat anti-mouse neurofilament 160, (1:500, Chemicon) in 10% Tween-20, 0.4% goat serum, PBS overnight and incubated with Alexa Fluor-488 anti-mouse secondary antibody (1:1,000, Molecular Probes) for 2 h, and Alexa Fluor594 alpha-bungarotoxin (1:1,000, Molecular Probes) for 30 min. Tissues were mounted in Vectashield (Vector Labs).

Tissue sections. Whole mount TVA muscle were post-fixed in 4% paraformaldehyde then stained with chicken anti-mouse neurofilament heavy chain, (1:1000, EnCor Biotechnology) in 10% Tween-20, 0.4% goat serum, PBS for 2 h and incubated with Alexa Fluor 488 anti-chicken secondary antibody (1:1000, Molecular Probes) and AlexaFluor594 alpha-bungarotoxin (1:1,000) for 30 min. Tissue sections were mounted in Vectashield.

Confocal microscopy. All images were captured with the Leica TCS_SL scanning confocal microscope system using an inverted Leica DMIRE2 microscope and PMT detectors. Images were captured at 25°C with the following objective: 63× HCX Plan Apo CS oil, NA = 1.4.0. A Z-Galvo stage was used to obtain z-series stacks of ~30 images each. Image acquisition, overlays, scale bars and measurements were produced with the Leica Confocal Software v2.61, and subsequent image processing was performed with Adobe Photoshop CS2.

Cell counts. For both GFP and Gem quantifications, spinal cords from fixed animals were removed from the carcass. Lumbar enlargements were blocked

doi:10.1038/nbt.1610 NATURE BIOTECHNOLOGY

and sliced into 40-\$\mu\$m thick sections on a vibratome (Leica). Sections were collected in order in a 96-well plate. Every 12^{th} section was sampled for a total of eight sections spanning ~3.8 mm. The sections were fluorescently labeled using immunohistochemistry against choline acetyl transferase, green fluorescent protein or survival motor neuron. Sections were counted using the 63× objective on a confocal microscope. Greater detail on the extent of central nervous system transduction by scAAV9 following P1 injection is shown in previous work 30 .

Western blot analysis. 100 mg of tissue was homogenized in Tissue Protein Extraction Reagent (Pierce). The sample was mixed with an equal volume of loading buffer (62.5 mM Tris, pH 6.8, 20% glycerol, 200 mM DTT, 0.2% bromophenol blue) and run on a 12.5% polyacrylamide gel. Samples were transferred to Immobilon-P (Millipore). The blot was blocked in 5% milk powder, 0.5% BSA in PBS-Tween for 1 h, and then incubated for 1 h with a primary antibody cocktail of MANSMA 2, 7, 13 and 19. Bound primary antibody was detected by horseradish peroxidase conjugated secondary antibody followed by chemiluminescence (ECL Western Blotting Detection Reagents, Amersham Biosciences). The blots were then stripped and reprobed with a β -actin monoclonal antibody (clone AC-15, Sigma-Aldrich) or a GAPDH monoclonal antibody (Millipore) to control for protein loading.

Electrophysiology. The recording chamber was continuously perfused with Ringer's solution containing the following (in mmol/l): 118 NaCl, 3.5 KCl,

2 CaCl $_2$, 0.7 MgSO $_4$, 26.2 NaHCO $_3$, 1.7 NaH $_2$ PO $_4$ and 5.5 glucose, pH 7.3–7.4 (20–22 °C, equilibrated with 95% O $_2$ and 5% CO $_2$). Endplate recordings were performed as follows. After dissection, the tibialis anterior muscle was partially bisected and folded apart to flatten the muscle. After pinning, muscle strips were stained with 10 μ M 4-Di-2ASP [4-(4-diethylaminostyryl)-*N*-methylpyridinium iodide] (Molecular Probes) and imaged with an upright epifluorescence microscope. At this concentration, 4-Di-2ASP staining enabled visualization of surface nerve terminals as well as individual surface muscle fibers. All of the endplates were imaged and impaled within 100 μ m. We used two-electrode voltage clamp to measure endplate current (EPC) and miniature EPC (MEPC) amplitude. Muscle fibers were crowd way from the endplate band and voltage clamped to –45 mV to avoid moment after nerve stimulation.

Statistics. Statistical analyses were performed by ing such Pau Prizm software. Means were represented with s.e.m. Student *t*-tests are performed to compare groups using a 95% confidence letel. Kaplan Meier Survival analysis was performed.

30. Monani, U.R. *et al.* The haman intromeric survival motor neuron gene (*SMN2*) rescues embryonic lethality in *Sn.* mice and results in a mouse with spinal muscular atrophy. *Humanol. Genet.* 333–339 (2000).

NATURE BIOTECHNOLOGY doi:10.1038/nbt.1610