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Reprogramming and Generation of pluripotent cells
Cellular Ditterentiation and 2D vs. 3D models
Hallmarks ot ageing

Developing relevant in vitro models

Somatic Reprogramming vs. Direct Reprogramming

iIPSC based therapies
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What totipotency/pluripotency?

A totipotent stem cell can give rise to all (toti) cell types of the body

A pluripotent stem cell can give rise to many (pluri) cell types of the body

These cells exist in early embryos
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Inner cell mass
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Source of
embryonic stem
cells
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How can cells be reprogrammed to earlier Developmental stages?
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How can cells be reprogrammed to earlier Developmental stages’?

¢ Transcription-factor transduction
Oct4

SoxZ

C- Myc© @
7 Cell division -
DNA replication ' “

IPS cell




Timeline and application of iPSCs in research
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Cells growing on a 2D plastic dish
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iPSCs can give rise to all cell types
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IPSCs can be used to derive organoids
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Ageing is the biggest risk factor for neurodegeneration

How can we study ageing and neurodegeneration?

What are relevant models?

How can we identity molecular markers of ageing and neurodegeneration and
develop models?



What happens to an ageing cell?
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What happens to an ageing cell?
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How to identify a relevant model?

The maximum projected human life span is approximately 115 years!

Mice often do not develop ageing related diseases (without artificially generating
human like mutations)



How to identify a relevant model?

Aging Werner syndrome Centenarian Parkinson's disease Alzheimer's disease
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Modeling strategies

Aging/disease
phenotype

Jothi, Kulka (2024) Ageing

Aging

Progerin overexpression
Long-term culture
3D tissue models (with aged
ECM/exposure to hypoxia/
exposure to ionizing radiation)
Telomere manipulation

DNA damageT
Mito-ROST
Telomere length ],

% short telomeres
Senescence/p21/p53T
TH+ cells {

lipofuscin accumulation
Inclusion bodies
Dendrite degeneration
cardiac beat velocity |
BBB dysfunction
secretion of cytokinest

General iPSC models of ageing

Mutation

C1824T
Aberrant pre-mRNA splicing

PROGERIN

Nuclear defects

Elevated DNA damage
Epigenetic alterations

Loss of protein homeostasis
Chrematin disorganization

Cell and tissue defects

Chronic p53 signaling
Inflammatory response
Metabolic alterations
Autophagy deregulation
Stem cell dysfunction

Lamina
assembly

Symptoms
Growth impairment
Cardiovascular disease
Skeletal dysplasia
Lipodystrophy
Alopecia
Skin and nail defects
Joint contractures

Gordon, .., Misteli (2014) Cell




Werner syndrome

-- General iPSC models of ageing

WRN is a RecO recombinase that contains an exonuclease

domain
_ .
v . . L L
f 1 It is important for DNA repair, recombination, replication
and transcription. WRN plays also a role in telomere
Werner syndrome .
Reprogramming by OSKM malntenance. , ,
MOdeling Strategies +HDACi+TGFB Rl kinase i Oshima, Monnat (2017) Ageing Research Reviews

hTERT overexpression and p53
knockdown in WS-MSC
Gene correction of WRN in WS
IPSC clones

Mutations is WRN cause premature ageing
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phenOtype gene correction)
Increased telomere length (upon
hTERT knock in)
Normal karyotype (upon WRN
gene correction)
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Using CRISPR to generate iPSC models

Generation of random mutations C-T and A-G mutations Any mutation
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Centenarian

General iPSC models of ageing

£

Reprogramming fibroblast of members of the world’s oldest

Centenarian populations (e.g. Okinawa) to iPSCs results in cells with high
: - R ing by OSKM ' "
Modeling strategies |  [geormmming O SIRT1 expression and little senescence

These factors could potentially play protective roles in the
\ / donors

Drawback: -No isogenic control!

Aging/disease long telomeres

normal karyotype - '
phenotype g1, igH, sit2, foxo?, sirti] Loss of ageing features

Senescence

Jothi, Kulka (2024) Ageing



rarkinson's disease  iPSC models of Parkinson’s Disease (PD)
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Substantia nigra

Parkinson's disease

Reprogramming by OSKM/OSK e >
and differentiation by dual COIltl'Ol Parkmson S
SMAD inhibition + . . . . . .
Modeling strategies | Dorsomorphin/protocol by Kirks Selective loss of dopaminergic neurons in the midbrain
et al., 2011, Byers et al., 2011,
Nyugen et al., 2011, Cooper et (causes motor defects)

al., 2012, Chambers et al.,
2009, Shaltouki et al., 2015,
Hanss et al., 2021, Doi et al.,
2014

{ ) Use patient cells for reprogramming and repair mutations or
induce patient mutations in commercial iPSCs
a-synucleinT
g g oxidative stress
itochondrial dysfuncti . . . .
Aging/disease R0 E n Common mutations: -Triplication of SNCA
phenOtype synaptic dysfunction
Endosomal dysfunction - |_ R R K2
neuroinflammation
compromised BBB function -PARK?

Jothi, Kulka (2024) Ageing . / 'Pl N K1



iIPSC models of Parkinson’s Disease (PD)
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Alzheimer's disease  iPSC models of Alzheimer’s Disease (AD)

Accumulation of amyloid-b/tau plagues, increase in
phosporylated tau

ST | ) Common mutations: -PSEN
zheimer's disease
Reprogramming by OSKLN/ - DS E N 2
OSKM/OSKM+EGFP and
differentiation by medium w/o -APO4
: : bFGF, RA, dual-SMAD inhibition,
Modeling strategies S (L
3D brain organoid model protocol
inL t t al., 2014, Park . .
S Ual 2001 Kecatim e e Only 5% of AD cases can be explained by genetics
2013
> S Crosstalk with pericytes, astrocytes and microglia is very
P important in modelling the disease
AB 42/40 ratio
. . premature differentiation . . . . .
SONIG ioens GSKaBptaut iPSC derived AD neurons show premature differentiation but
phenotype amyloid plaque deposition

endosomal abnormalities

calfophiagy Imbalrment no aggregate formation

mitochondrial dysfunction
developmental defects
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iPSC derived neurons resemble early developmental stages
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Direct reprogramming maintains cellular features associated with ageing
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Direct reprogramming can give rise to multiple cell types

Ectoderm Endoderm
[
Sertoli Neural Oligodendrocyte Motor Neuron Endothelial B-cell Hepatic Hepatocyte
cell stem cell ) neuron (glutamatergic) cell 4 stem cell
A A A A
GATA4 SOX2 SOX10 ASCL1 ASCL1 FOXO1 NEUROG3 FOXA3 FOXAL,
NR5A1, WT1, ZFP536, LHX3, HB9, BRN2, Er71, KLF2, PDX1, MAFA HNF1b FOXA2,
DMRT1, SOX9 OLIG2 LSL1, NGN2, MYT1L TAL1, LMO2 FOXA3
BRN2, MYT1L HNF4a
. N _\\\-‘v /_‘ ) J
i f‘—__/,:f-"'/‘?/ — H\\E’ - ) A
Starting cell
(for example, fibroblast)
CEBPb GATA4 OCT4 SOX2 OCT4
PRDM16 MEF2C, RUNX2,
TBX5 OSX, MYC
Y \ 4 Y Y Y
Adipocyte Cardiomyocyte Haematopoietic Monocyte-like Osteoblast
progenitor cell
I |
Mesoderm

Wang,..., Qian (2021) Nature Reviews Molecular Cell Biology



Delivery of reprogramming factors

Strategy Lentivirus piggybac Adenovirus | Sendai Virus Plasmid RNA Protein
, Integrates into .
, Integrates into , , , Might , ,
Integration genome but is | No Integration | No Integration , No Integration | No Integration
genome , Integrate
excisable
Relatively
.. Fast and Medium . Medium Medium efficient .
Efficiency . . Low efficiency . . , Low efficiency
efficient efficient Efficiency efficiency (multiple
transfections)
Safety Low Medium Medium Medium Medium High High




Inhibiting heterochromatin writers enhances reprogramming

a Single histone modification

Starting cell H3K4me3 H3K27me3 H3K9me3 H2AK119Ub
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Dil‘eCt H DNA Stal‘ting-cell ' Target‘ceu 'TarQEt‘Ce“ Cardiac Iineage
reprogramming IStone’ |ineage genes lineage genes lineage genes genes
progress
7L T\

L E |

Target-cell Orginal-cell Target-cell Cardiac lineage
Target cell lineage genes lineage genes lineage genes genes

Perturbation of
H3K4me3 makes
reprogramming
less efficient

Wang,..., Qian (2021) Nature Reviews Molecular Cell Biology



Chemical repgrogramming

Small molecules have been used to reprogram cardiomyocytes or fibroblasts to neurons

Advantages: A

SB+Noggin SHH+FGF8b

I R EE——————.«
-relatively sate for clinical application (no 1d 10d 3W

-relatively fast
-scalable

integration risk)

Wang, ...,Gao (2016) Experimental research



Stem Cell derived therapies

Transplantation of Embryonic Dopamine Neurons

2001, first clinical trial to treat Parkinson'’s

Fluorodopa PET Scans disease by Imp|ant|ng dopaminergic

neurons from abortion tissue

PO g ¢ -low efficiency of the graft
Sham Surgery

-little material
-high variability

-effect too little

Normal

Before surgery After surgery



Generating mid-brain dopaminergic neurons in vitro

Diencephalon Masencephalon

Midarain-hindbrain
bouncary

Telencephalon
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Replate Replate
+ ROCKIi + ROCKIi
Day O Day 11
N-2 supplement B-27 supplement
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differentiation
in vitro

Nolbrant, ... Kirkeby (2017) Nature Protocols
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Generating mid-brain dopaminergic neurons in vitro

RC17, fresh
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Nolbrant, ... Kirkeby (2017) Nature Protocols Weeks after transplantation



Stem Cell derlved theraples

O BlueRock
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Pharmaceuticals

SluerRock [herapeutics' investigational cell |
therapy bemdaneprocel for Parkinson’'s
disease shows positive data at 24-months

Viviane Tabar & Laurehhz Studer
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Agnete Kirkeby Kirkeby, ...,Parmar (2023) Cell Stem Cell Malin Parmar



Take Home - what you should know after the lecture:
What is the difterence between hESC and iPSC?

How can cells be regprogrammed?

What is OKSM?

What is progerin and what is WRN and why are they used as ageing models?
What is an isogenic control line and how can it be obtained?

Choose two factors that can enhance reprogramming and explain why.

What is the ditterence between direct reprogramming and iPSCs?

Explain advantages and disadvantages ot either and give examples how
reprogramming factors can be delivered.



Exercises

1. Go through the questions of the lecture.

2. In groups, please select an aspect of ageing or a neurodegenerative disease and explain, basea

on your knowledge from the lecture, how iPSCs could be used to model it. What are the advantages
and disadvantages?

3. Imagine you found a new and interesting phenotype in a neurodegenerative disorder.
-How would you generate enough material to study it independently of the patient?
-Which considerations would you take?

-How would you try to revert the phenotype?



