Cancer Biology I:

Topics covered

Week 1:

Lecture 1: Hallmarks of cancer – an overview; Oncogenes and tumor suppressor

genes

(Chapters 2, 4, 7 (Weinberg book))

Week 2:

DNA repair of DNA double strand breaks; Synthetic lethality Lecture and paper discussion

Week 3:

Lecture 3/Exercises: Synthetic lethality continued; chromatin at double strand

breaks; DNA repair: NER; the DNA damage response

Week 4:

Lecture 4/Exercises: **p53** and apoptosis (Chapters 9 (Weinberg))

Links for Background Information on Techniques you Should be Familiar with from Previous Courses

(also covered in text books; e.g. Mol Biol of the Cell (Alberts et al.))

RNA interference

https://en.wikipedia.org/wiki/Small interfering RNA

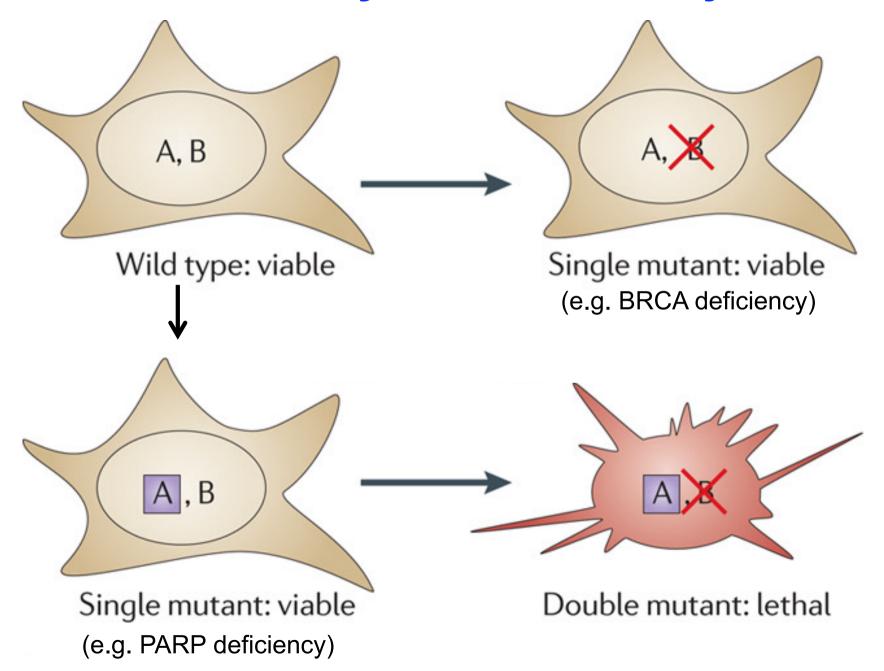
https://horizondiscovery.com/en/applications/rnai/sirna-applications?gclid=EAlaIQobChMIkpaT4N-3-gIV6oODBx1G7Q1pEAAYAiAAEgLjiPD BwE

Western blot

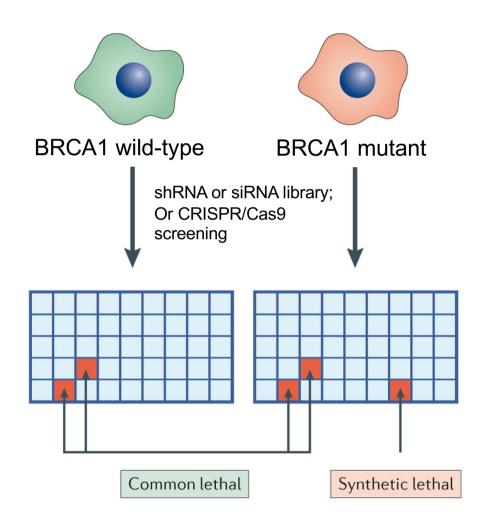
https://en.wikipedia.org/wiki/Western blot

Immunoprecipitation

https://en.wikipedia.org/wiki/Immunoprecipitation https://www.youtube.com/watch?v=OrVVZ8X3n6k


PCR

https://en.wikipedia.org/wiki/Polymerase chain reaction


CRISPR-Cas9 genome engineering

https://www.ibiology.org/genetics-and-gene-regulation/crispr-cas9/

From Week 2: Synthetic Lethality

RNAi Screen for Synthetic Lethality

CRISPR-Cas9 Screens: Identification of Genes whose Loss Increases (or Decreases) Sensitivity to a Genotoxic **Drug (used in cancer therapy)**

Lentiviral

sqRNA library

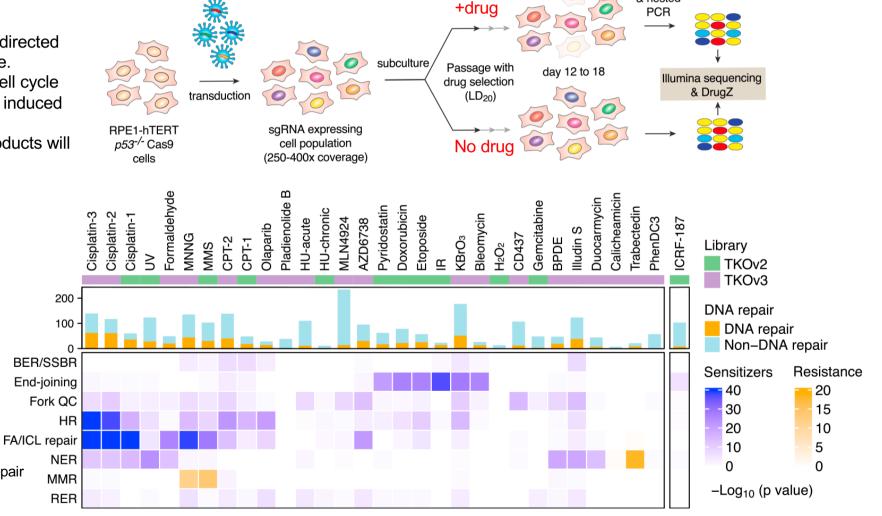
TKOv2 or TKOv3

RPE: retinal epithelial cells.

hTERT: cells are immortalized.

Cas9: guide RNA-directed

DNA endonuclease.


p53 -/-: to avoid cell cycle arrest that may be induced

by these drugs.

Essential gene products will

100

not be identified.

BER: Base Excision Repair

HR: Homologous Recombination

NER: Nucleotide Excision

Repair

MMR: Mismatch Repair

From Cell 182, 481-496 (2020)

aDNA

extraction

& nested

lame	Mechanism of Action	Dose used	library	Product supplier / machine ID	Cat#	Author	Set
Cisplatin-2	Inter- intrastrand crosslink/Helix distoring lesion	1.5 μΜ	TKOv3	https://www.sigmaaldrich.com/catalog/product/sigma/p4394?lang=en®ion=CA	Cat# P4394	NH	
leomycin	DNA strand breaks	25 nM	TKOv3	https://www.sigmaaldrich.com/catalog/product/sigma/15361?lang=en®ion=CA	Cat# 15361	MZ	
laparib	PARP inhibitor	5 μΜ	TKOv3	https://www.selleckchem.com/products/AZD2281(Olaparib).html	Cat# S1060	MZ	
D437	DNA replication stress	200 nM	TKOv3	https://www.sigmaaldrich.com/catalog/product/sigma/c5865?lang=en®ion=CA	Cat# C5865	MO, TC	
udin S	Transcription-interefering	30 nM	TKOv3	https://www.caymanchem.com/product/17451	Cat# 17451	MO, TC	
3rO3	Oxidative DNA damage	500 μΜ	TKOv3	https://www.sigmaaldrich.com/catalog/product/sigald/60085?lang=en®ion=CA	Cat# 60085	MO, TC	
ILN4924 (Pevonedistat)	NAE inhibitor	250 nM	TKOv3	https://www.activebiochem.com/product/231	Cat# A-1139	MO, TC	
иNNG	Base alkylation	100 nM	TKOv3	https://www.trc-canada.com/product-detail/2CatNum=N493990&CAS=70-25-7&Chemical_Name=N%E2%80%99-Nitro-N-nitroso-N-methylguanidine%20(Stabilized%20with%20Water)&Mol_Formula=C%E2%82%82H%E2%82%85N%E2%82%50%E2%82%83	8 Cat# N493990	мо, тс	
isplatin-3	Inter- intrastrand crosslink/Helix distoring lesion	1.5 μΜ	TKOv3	https://www.sigmaaldrich.com/catalog/product/sigma/p4394?lang=en®ion=CA	Cat# P4394	SA	
amptothecin (CPT)-2	DNA strand breaks	6 nM	TKOv3	https://www.sigmaaldrich.com/catalog/product/sigma/c9911?lang=en®ion=CA	Cat# C9911	SA	
alicheamicin	DNA strand breaks	0.5 nM - 0.05nM	TKOv3	https://www.medchemexpress.com/Calicheamicin.html	Cat# HY-19609	MO, JY	
uocarmycin SA	Base alkylation	1 nM - 0.075 nM	TKOv3	https://www.creative-biolabs.com/adc/duocarmycin-sa-746.htm	Cat# ADC-P-043	MO, JY	
ormaldehyde	Inter- intrastrand crosslink	63.5 μM	TKOv3	https://www.sigmaaldrich.com/catalog/product/sial/252549?lang=en®ion=CA	Cat# 252549	MO, JY	
hen-DC3	C-quadruplex stabilizer	1 μM	TKOv3	https://www.polysciences.com/default/phen-dc3	Cat# 26000	MO, JY	
rabectedin	Transcription-interefering	1 nM - 0.075 nM	TKOv3	https://www.trc-canada.com/product-detail/?CatNum=T703500&CAS=114899-77- 3&Chemical Name=Trabectedin&Mol Formula=C%E2%82%83%E2%82%89H%E2%82%84%E2%82%83N%E2 %82%830%E2%82%81%E2%82%815	Cat# T703500	MO, JY	(
ZD6738	ATR inhibitor	0.5 μΜ	TKOv3	https://www.medchemexpress.com/AZD6738.html?src=google- product&gclid=CjwKCAjwxaXtBRBbEiwAPqPxcL0DcECB0Evzv- llkhFibqfnHxGvkqQu2_gAQpqgTdDYc7jJTQOclBoCuQ0QAvD_BwE	Cat# HY-19323	AAQ	
amptothecin (CPT)-1	DNA strand breaks	5 nM	TKOv2	https://www.sigmaaldrich.com/catalog/product/sigma/c9911?lang=en®ion=CA	Cat# C9911	MO, TC	
isplatin-1	Inter- intrastrand crosslink/Helix distoring lesion	1 mM	TKOv2	https://www.sigmaaldrich.com/catalog/product/sigma/p4394?lang=en®ion=CA	Cat# P4394	MO, TC	,
toposide (VP-16)	DNA strand breaks	100 nM	TKOv2	https://www.sigmaaldrich.com/catalog/product/sigma/e1383?lang=en®ion=CA	Cat# E1383	мо, тс	
ydroxyurea (HU)	DNA replication stress	100 μM (chronic)	TKOv2	https://www.sigmaaldrich.com/catalog/product/sigma/h8627?lang=en®ion=CA	Cat# H8627	MO, TC	
nizing radiation (IR)	DNA strand breaks	3 Gy	TKOv2	Faxitron 43855C	N/A	MO, TC	
oxorubicin	DNA strand breaks	5 nM	TKOv2	https://www.sigmaaldrich.com/catalog/product/sigma/d1515?lang=en®ion=CA	Cat# D1515	MO, GSM	
ydrogen Peroxide (H2O2)	Oxidative DNA damage	15 μΜ	TKOv2	https://www.sigmaaldrich.com/catalog/product/sigma/h1009?lang=en®ion=CA	Cat# H1009	MO, GSM	
ethyl Metanesulfonate (MMS)	Base alkylation	25 nM	TKOv2	https://www.sigmaaldrich.com/catalog/product/aldrich/129925?lang=en®ion=CA	Cat# 129925	MO, GSM	
ridostatin	C-quadruplex stabilizer	0.75 μΜ	TKOv2	https://www.sigmaaldrich.com/catalog/product/sigma/sml0678?lang=en®ion=CA	Cat# SML0678	MO, GSM	
traviolet Light (UV)	Helix distoring lesion	5 J/m2	TKOv2	UVS 254 nm lamp	N/A	MO, GSM	
RF-187	TOP2 inhibitor	25 μΜ	TKOv2	https://www.sigmaaldrich.com/catalog/product/sigma/d1446?lang=en®ion=CA	Cat# D1446	ASB, IDS	1
enzo(a)pyrene diol epoxide (BPDE)	Helix distoring lesion	200 nM	TKOv3	https://www.scbt.com/p/benzoapyrene-diol-epoxide-58917-67-2?requestFrom=search	Cat# sc-503767A	TC, SF	1
ydroxyurea (HU)	DNA replication stress	1.5 mM (acute)	TKOv3	https://www.sigmaaldrich.com/catalog/product/sigma/h8627?lang=en®ion=CA	Cat# H8627	TC, SF	1
ladienolide B (PladB)	splicing-interefering	0.5 nM	TKOv3	https://www.tocris.com/products/pladienolide-b 6070	Cat# 6070	TC, SF	1:
iemcitabine	DNA replication stress	3 nM	TKOv2	https://www.sigmaaldrich.com/catalog/product/sigma/g6423?lang=en®ion=CA	Cat# G6423	TU, MWF	1:

Example: PARP-1 inhibitors

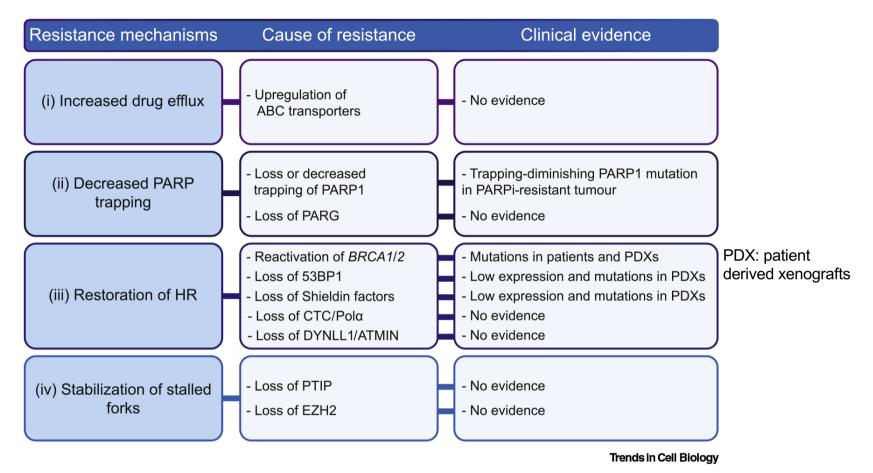
- BRCA-silenced or mutated cells are sensitive to PARP-1 inhibitors (as discussed previously)
- Recent work (published in 2015): Pol θ (teta) which is involved in microhomology-mediated end joining is also a lethal target for the treatment of BRCA1-mutated cancers.

→ Development of PARP-inhibitors

- Olaparib: cellular model (BRCA2-deficient Capan-1 cells); concentration for 50% reduction in survival: IC₅₀ = 259 nM; approved by the FDA (US food and drug administration) and EMA (European medicines agency) for the treatment of BRCA-mutated advanced ovarian cancer.
- Talazoparib has also been approved. Talazoparib traps PARP on DNA and is effective at low concentrations in a cellular model (Capan-1 cells) ($IC_{50} = 5 \text{ nM}$).

Table 1 Comparison of clinical PARP inhibitors based on the individual parameters^a

	Catalytic inhibition (IC ₅₀ in wild-type	Cytotoxicity (IC ₉₀ in wild-type	Cytotoxicity (IC ₉₀ in Brca2-deficient	PARP trapping potency	
	DT40 cells)	DT40 cells)	DT40 cells)	(relative to	Anticancer clinical
	(μΜ)	(μM)	(μΜ)	olaparib)	application (dose)
Olaparib	0.006	4.6	0.20	1	Approved as single agent for ovarian and breast cancers for maintenance and for ovarian cancers with <i>BRCA</i> mutations (300 mg × 2/day)
Niraparib	0.060	2.3	NA	2	Approved as single agent for ovarian cancer for maintenance (300 mg \times 1/day)
Rucaparib	0.021	3.1	0.15	1	Approved as a single agent for ovarian cancer for maintenance and for ovarian cancers with <i>BRCA</i> mutations (600 mg × 2/day)
Talazoparib	0.004	0.5	0.006	100	Approved as a single agent for advanced metastatic HER2-negative breast cancers with deleterious or suspected deleterious germline <i>BRCA</i> mutations (1 mg × 1/day)
Veliparib	0.030	>50	15	<0.2	Combination clinical trials (400 mg × 2/day)


Abbreviations: IC_n , n% of maximal inhibitory concentration; NA, not available; PARP, poly(ADP-ribose) polymerase.

^aData from Murai et al. (2012, 2014a) and Murai & Pommier (2015).

Resistance to therapy

• Resistance to platinum-based chemotherapies is a strong predictor for PARPi resistance, indicating sharing of common mechanisms.

PARP Inhibitor Resistance

Not discussed in this course:

Figure 2. Modes of Resistance to PARP Inhibitors (PARPi). An overview of the four distinct categories of PARPi resistance mechanisms. In each category (left column), all molecular mechanisms that have been identified in preclinical studies are mentioned (middle column). In addition, whether direct clinical evidence for PARPi resistance has been observed in primary tumor material or PDX-models until this date is indicated (right column). Abbreviations: HR, homologous recombination; PARP, poly(ADP-ribose) polymerase; PDX, patient-derived xenograft.

- PARG: Poly (ADP-ribose) glycohydrolase; removes poly ADP-ribose moieties
- Loss of 53BP1, shieldin, CTC1 →increased 3' overhangs at DSBs

→ reactivates resection and HR in BRCA1 cells (in BRCA1 deficiency resection is inhibited). BRCA2 deficient cells are not acquiring PARP inhibitor resistance by loss of 53BP1.

From: Trends Cell Biol 29, 820 (2019)

Loss of 53BP1 in BRCA1-mt Cells Leads to PARPi-resistance

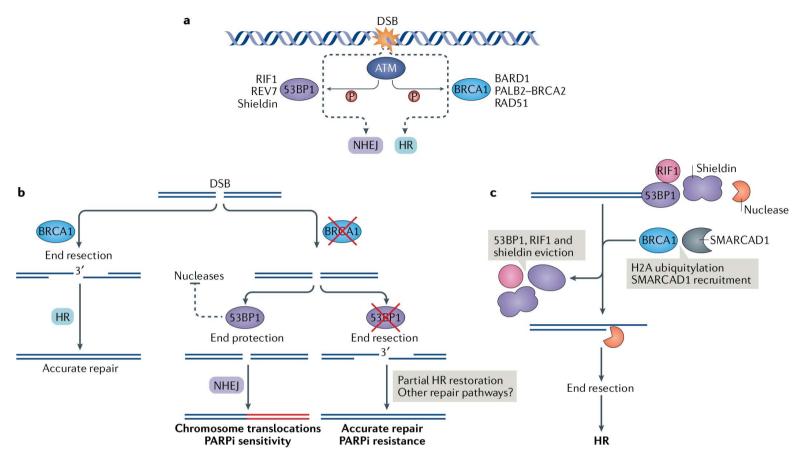


Fig. 3 | Antagonistic roles of BRCA1–BARD1 and the 53BP1 complex. a | A DNA double-strand break (DSB) elicits ataxia telangiectasia mutated (ATM)-dependent checkpoint responses, which activate and recruit breast cancer type 1 susceptibility protein (BRCA1)-containing and/or p53-binding protein 1 (53BP1)-containing complexes to the DNA lesion. BRCA1 and 53BP1 compete and perform opposing functions at broken DNA ends by engaging either homologous recombination (HR) or non-homologous end joining (NHEJ) for DSB repair, respectively. b | BRCA1 promotes DNA end resection and HR repair (left). If BRCA1 is abrogated, DSB ends are protected from resection by 53BP1-containing complexes and are channelled into NHEJ for repair (right). This process can lead to deleterious chromosome translocations, which underline the sensitivity of BRCA1-deficient cells to poly(ADP-ribose) polymerase inhibitors (PARPi). If, in addition to BRCA1, 53BP1 is concomitantly abrogated, the DNA ends are accessible to resection nucleases, leading to partial HR restoration and PARPi resistance. c | 53BP1-containing complexes (53BP1–RIF1–shieldin) protect DNA ends from nucleolytic digestion by nucleases. This end protection is overcome by BRCA1-mediated histone H2A ubiquitylation and recruitment of the helicase SMARCAD1. The eviction of the 53BP1-containing complexes leads to DNA end resection and HR.

Targeting Resistance

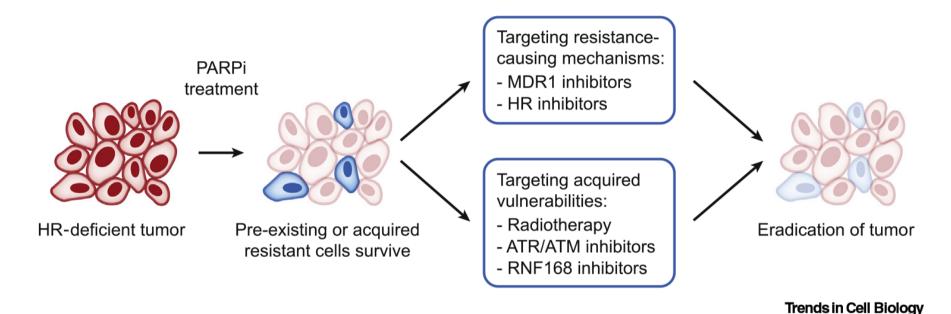
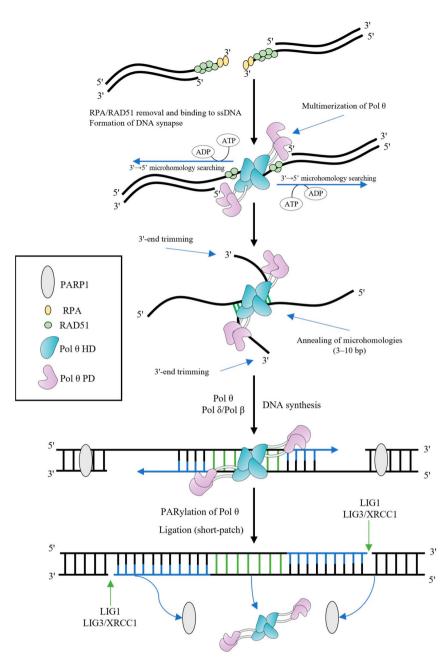


Figure 5. Novel Treatment Options for Tumors Resistant to PARP Inhibitors (PARPi). PARPi have shown great promise in the selective killing of homologous recombination (HR)-deficient tumors, although the rates of pre-existing or acquired resistance are high. Depending on the resistance mechanism, specific treatment options are available to target resistance by inhibiting increased drug efflux (MDR1 inhibitors) or by inhibiting reactivated HR (e.g., by using CDK, HDAC, or PI3K inhibitors). As a second approach, the resistant clones can potentially be killed by drugs targeting acquired vulnerabilities such as sensitivity to irradiation as well as by ATR, ATM, and RNF168 pathway inhibitors.

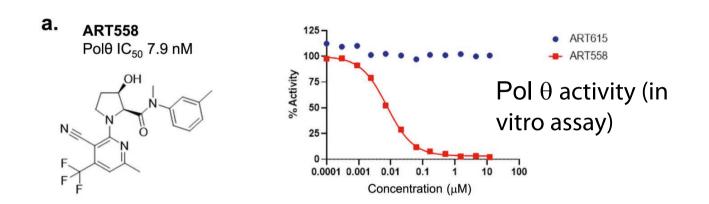
From: Trends Cell Biol 29, 820 (2019)

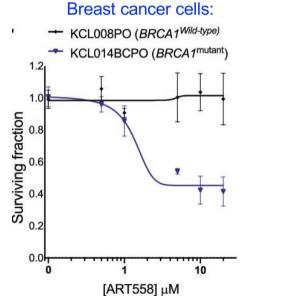

Example: PARP-1 inhibitors

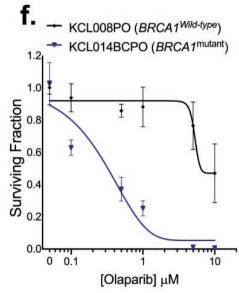
- BRCA-silenced or mutated cells are sensitive to PARP-1 inhibitors (as discussed previously)
- Recent work (published in 2015): Pol θ (teta) which is involved in microhomology-mediated end joining is also a lethal target for the treatment of BRCA1-mutated cancers.

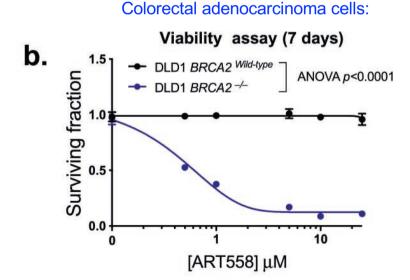
→ Development of PARP-inhibitors

- Olaparib: cellular model (*BRCA2*-deficient Capan-1 cells); concentration for 50% reduction in survival: IC₅₀ = 259 nM; approved by the FDA (US food and drug administration) and EMA (European medicines agency) for the treatment of BRCA-mutated advanced ovarian cancer.
- Talazoparib has also been approved. Talazoparib traps PARP on DNA and is effective at low concentrations in a cellular model (Capan-1 cells) ($IC_{50} = 5$ nM).

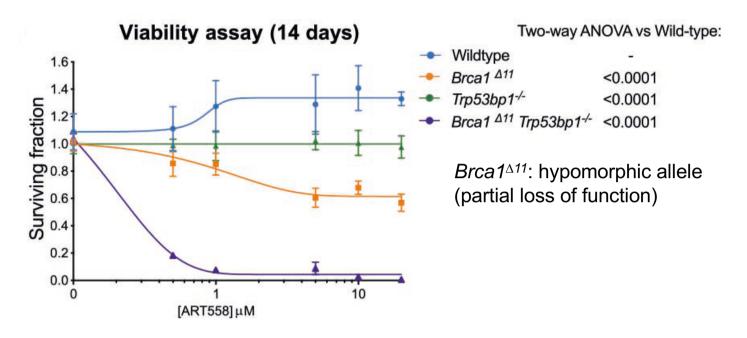

Pol θ (teta) and MMEJ



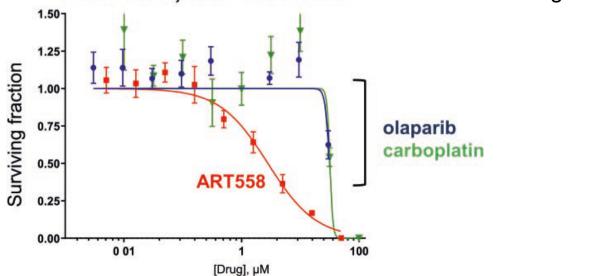

Model of MMEJ. . The resected 3'-overhangs are coated by RPA and RAD51 filaments. The HD of Pol θ removes both of them in ATP-dependent manner, contributing to TMEJ. Multimerization of Pol θ promotes the DNA synapse formation and initiates the $3' \rightarrow 5'$ bidirectional searching for microhomologies, using the energy of ATP hydrolysis. Aligned 3'-ends are annealed in microhomology-rich regions. Unannealed 3'-overhangs are trimmed before DNA extension. Pol θ (or Pol θ) fills gaps from annealed microhomologies, using them as primers. PARP1 PARylates Pol θ in order to remove the polymerase from DNA and complete the synthesis step. LIG1 or LIG3/XRCC1 complex finish the end joining (the short-patch resolution is shown).


Development of Pol θ (teta) Inhibitors

(e.g. NatComm 12: 3636 (2021); NatCancer 2, 598 (2021))



...the Pol θ inhibitor targets BRCA1 and BRCA2-deficient cells


Pol θ (teta) Inhibitor Targets even a PARPi Resistant *BRCA1-mt* Cells

(NatComm 12: 3636 (2021))

3D tumor growth assay

BRCA1 low, 53BP1 low PDO : Patient-derived Organoid

Pol θ (teta) Inhibitor Targets PARPi Resistant *BRCA1-mt* Cells (NatComm 12: 3636 (2021))

Model: the authors observed elevated DNA end resection upon Pol θ inhibition. Therefore, they <u>speculate</u> that when both BRCA1 and 53BP1 function become impaired, Pol θ becomes essential for repairing resected ssDNA caused by the exposure of DSB ends due to 53BP1-loss. I.e. This would correspond to a MMEJ-independent function of pol θto be investigated further.

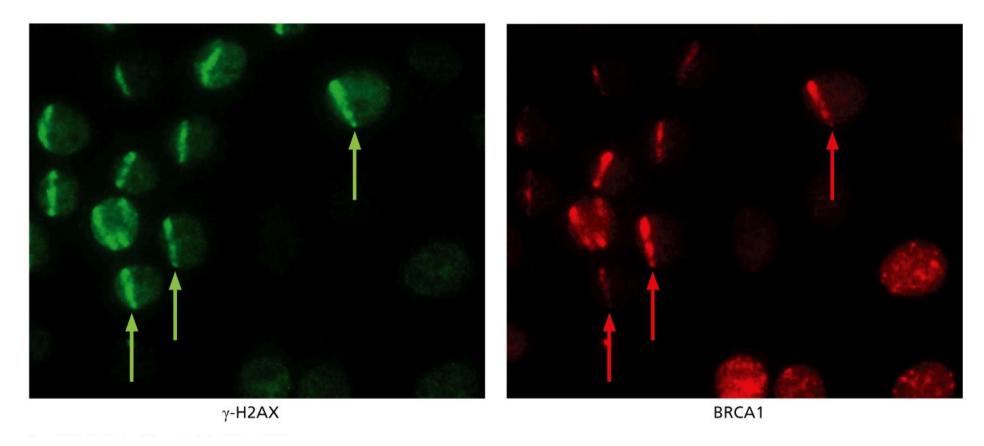
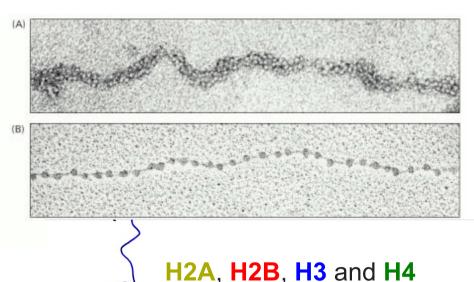
BRCA1 & 53BP1 deficiency PARPi resistant Polθ-mediated Partial HR restoration repair 53BP1-me ated repair +Pole inhibition yH2Ax foci RPA foci accumulation Elevated resection Profound Polθi sensitivity

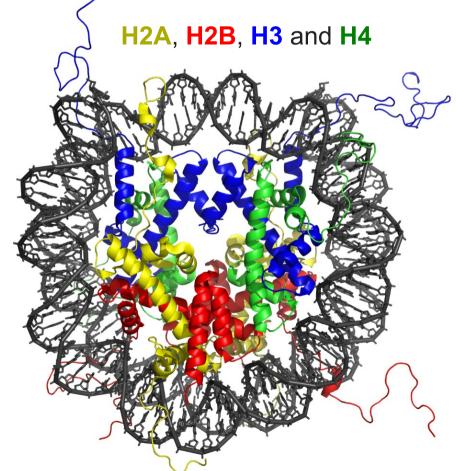
Chromatin and DNA Repair

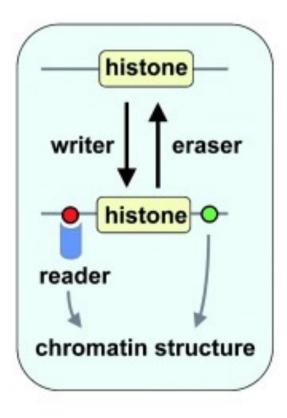
Repair of DSB Involves Posttranslational Modifications of Nucleosomes and other Proteins

- Detect DNA damage
- Remodel local chromatin to provide access
- Reorganize nucleosome-DNA template for processing and repair
- Restore local chromatin organization after repair

Colocalization of BRCA1 with γ -H2AX at ds DNA Breaks


Figure 12.28. Weinberg, The Biology of Cancer


A 355-nm UV laser was used to paint stripes across nuclei

30 nm fiber

Linker histone H1 removed: "beads on a string" 147 bp are rolling 1.7 times around a histone octamer (two of histones H2A, H2B, H3 and H4).

H2AX

10 % of the H2A pool of mammals H2AX is the 'normal' histone H2A in budding yeast

Posttranslational modifications

Ser 1 Phosphorylated

Lys 5 Acetylated

Lys 119 Ubiquitylated

Double strand breaks \longrightarrow Phosphorylation of Ser 139 (Ser c-4) $\rightarrow \gamma$ H2AX

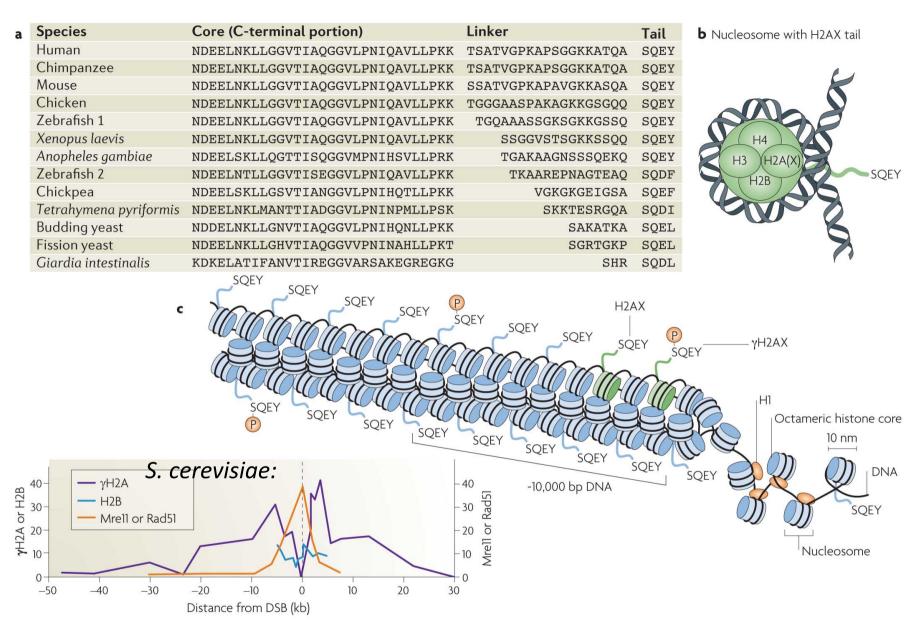
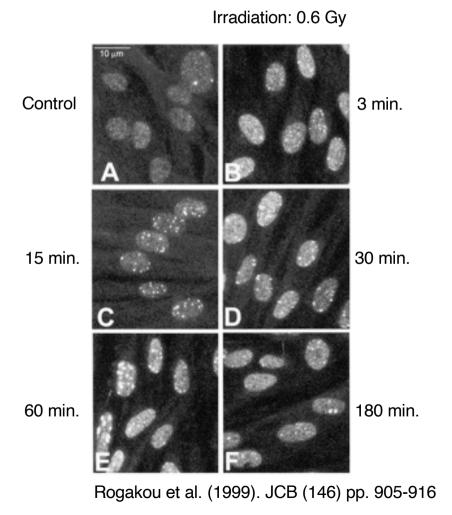
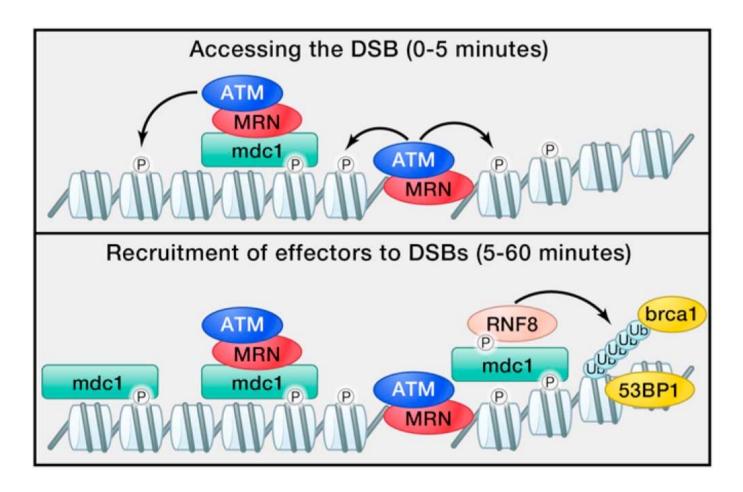



Figure 3 | **H2AX and** γ **H2AX foci. a** | H2AX is an H2A histone with a core sequence conserved with other H2A species and a tail conserved through evolution connected by a linker of variable length. **b** | The SQEY tail extends from the core nucleosome near the entry and exit point of the DNA. **c** | The nucleosomes form a 30 nm fibre with H2AX molecules in every fifth nucleosome on average in mammals and every nucleosome in yeast.

Approximately 10% of the H2AX molecules are phosphorylated at any one time in a focus.

From NatureRevCancer 8, 957 (2008)

Nuclear γ-H2AX foci are a Direct Consequence of DNA Double Strand Breaks



Ionizing radiation Replicative stress

ATM/ATR

The stress of the stress

Spreading of γ **-H2AX at DSB**

Figure 1. The Mechanism of DSB Repair

Top: ATM phosphorylates H2AX at DSBs, creating a binding site for the mdc1 protein. ATM-MRN complexes then associate with mdc1, promoting the spreading of γ H2AX along the chromatin for hundreds of kilobases.

Bottom: mdc1 recruits multiple DSB-repair proteins, including the RNF8/RNF168 ubiquitin ligases, to sites of damage. Chromatin ubiquitination then facilitates loading of the brca1 complex and 53BP1 DSB-repair proteins.

P = phosphorylation, Ub = ubiquitination, MRN = mre11-rad50-nbs1 complex.

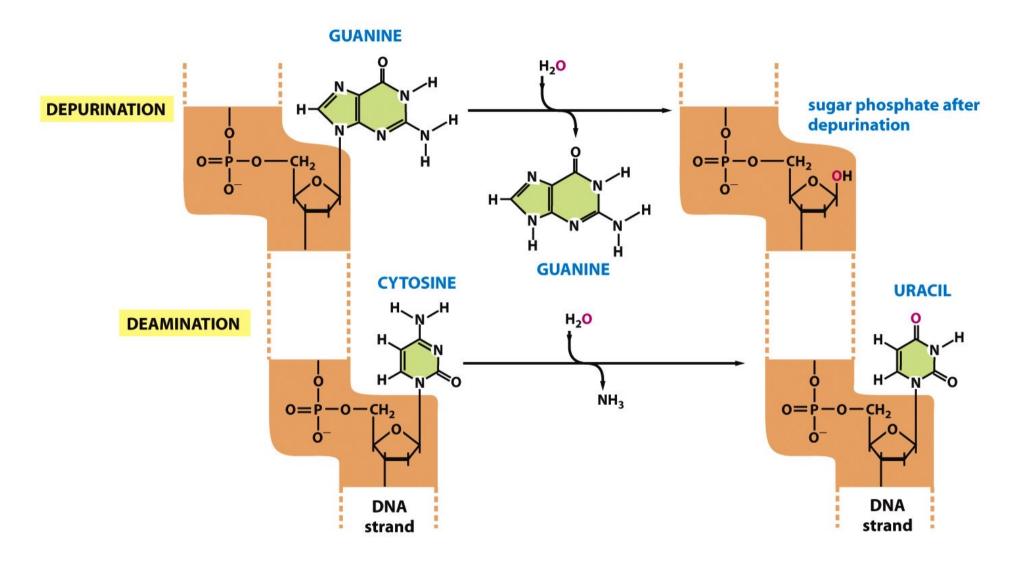
Role of H2AX

 Repair of double-strand breaks: NHEJ & HR (impaired recruitment of 53BP1 and BRCA1)

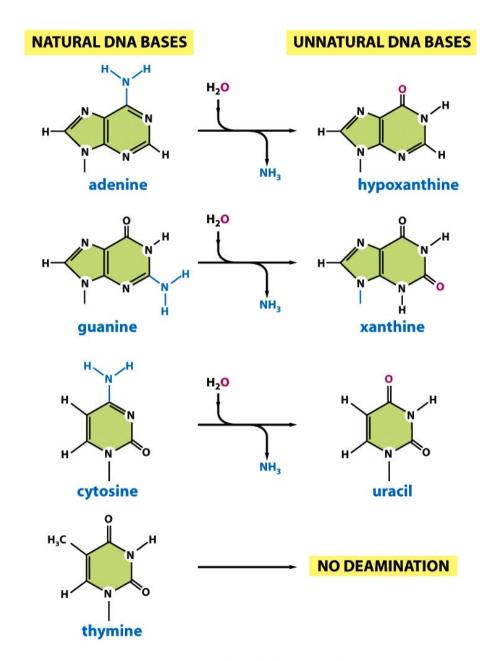
Mouse H2AX -/-:

Chromosomal breaks and translocations Small size Lymphomas & solid tumors

Ionizing Radiation (IR)

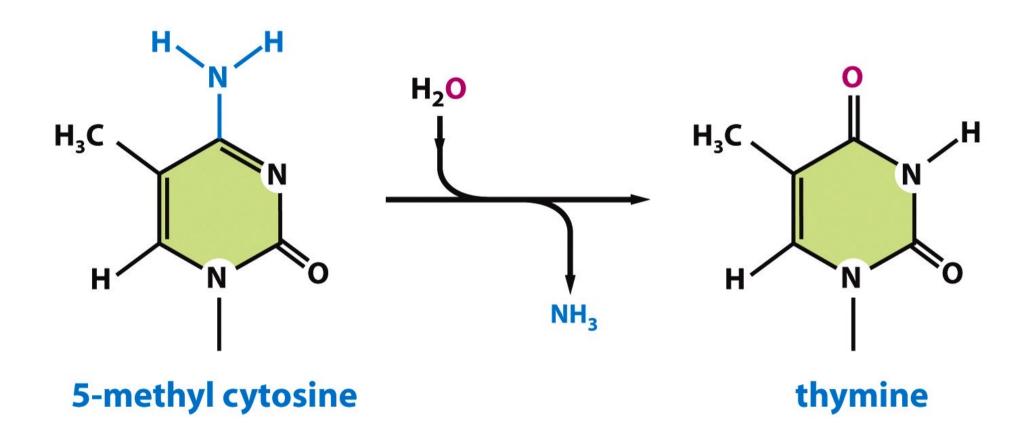

- •Deposits energy to yield ionized molecules or reactive oxygen species (ROS) that then attack the DNA.
- •Causes base damage, DNA-protein cross-links, phosphate backbone damage, single-strand breaks, and double-strand breaks (DSBs).
- •Cell killing by IR generally reflects the generation of DSBs, as these are difficult to repair.
- •Does not occur "often" but note that 200,000,000 gamma rays pass through your body every hour (these come from decay of naturally-occurring radioactive isotopes).
- Used in cancer therapy.

DNA Lesions Generated by Endogenous and Exogenous Sources


Endogenous DNA Damage	DNA Lesions Generated	Number Lesions/Cell/Day			
Depurination	AP site	10000 ^a			
Cytosine deamination	Base transition	100–500 ^a			
SAM-induced methylation	3meA	600 ^a			
	7meG	4000 ^a			
	O ⁶ meG	10–30 ^b			
Oxidation	8oxoG	400–1500 ^c			
Exogenous DNA Damage	Dose Exposure (mSv)	DNA Lesions Generated	Estimated Number Lesions/Cell		
Peak hr sunlight	-	Pyrimidine dimers, (6–4) photoproducts	100,000/day ^d		
Cigarette smoke	_	aromatic DNA adducts	45–1029 ^e		
Chest X-rays	0.02 ^{f,g,h}	DSBs	0.0008 ⁱ		
Dental X-rays	0.005 ^{f,g,h}	DSBs	0.0002 ⁱ		
Mammography	0.4 ^{f,g,h}	DSBs	0.016 ⁱ		
Body CT	7 ^f	DSBs	0.28 ⁱ		
Head CT	2 ^{f,g}	DSBs	0.08 ⁱ		
Coronary angioplasty	22 ^h	DSBs	0.88 ⁱ		
Tumor PET scan (18F)	10 ^h	DSBs	0.4 ⁱ		
¹³¹ I treatment	70–150 ^h	DSBs	2.8–6 ⁱ		
External beam therapy	1800–2000 ^j	DSBs	72–80		
Airline travel	0.005/hr ^f	DSBs	0.0002/hr ⁱ		
Space mission (60 days)	50 ^k	DSBs	2 ⁱ		
Chernobyl accident	300 ^l	DSBs	12 ⁱ		
Hiroshima and Nagasaki atomic bombs	5–4000 ^k	DSBs	0.2–160 ⁱ		

Type and number of DNA lesions are indicated. The number of lesions/cell has been estimated as described.

Depurination and Deamination


Deamination Yields Unnatural Bases

APOBEC3 proteins catalyze deamination reactions in ssDNA to target viruses and retroelements as part of the innate immune response. However, **APOBEC3**mediated mutagenesis has also been observed in 70% of all cancer types and 50% of all cancer genomes! (Nature 607, pages 799–807 (2022).

Figure 5-50a Molecular Biology of the Cell (© Garland Science 2008)

Deamination of 5-Methyl Cytosine Yields Thymine!

Thymine-Dimer: Caused by UV-light in the Skin

Figure 12.12a The Biology of Cancer (© Garland Science 2014)

6-4 Photoproducts of Pyrimidines

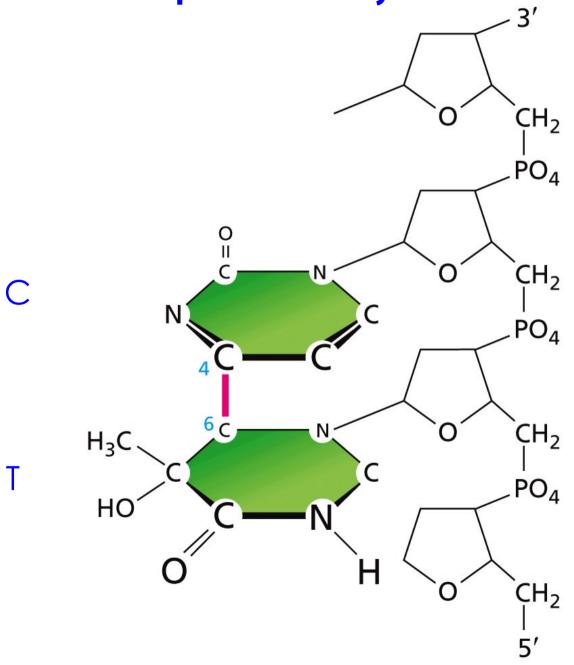
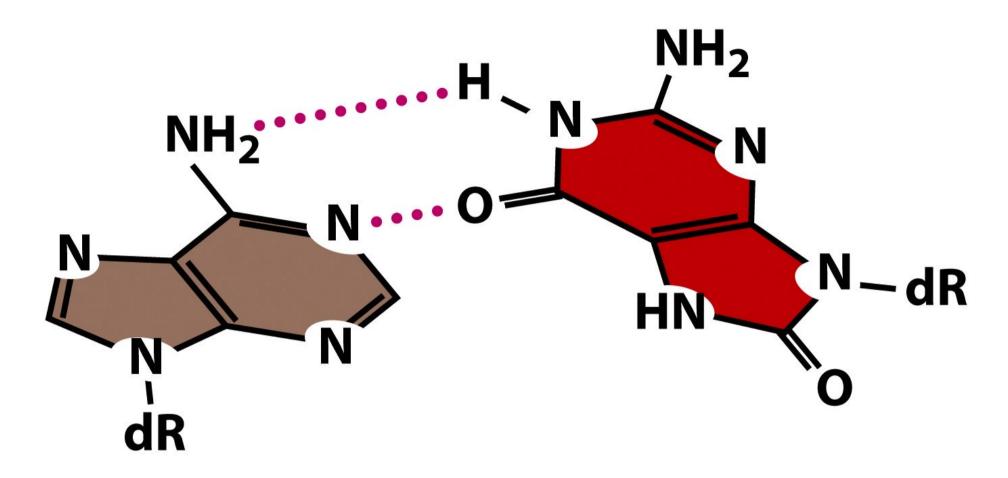


Figure 12.12b The Biology of Cancer (© Garland Science 2014)


Oxidation of DNA Bases

deoxyguanosine (dG)

8-oxo-deoxyguanosine (8-oxo-dG)

deoxy 5-methyl-cytosine (d 5'mC)

deoxythymidine glycol (dTg)

mispairing of 8-oxo-dG with deoxyadenosine (dA)

DNA Repair Mechanisms

Repair by excision

BER: Base excision repair

•MMR: Mismatch repair

■NER: Nucleotide excision repair

Ribonucleotide excision repair

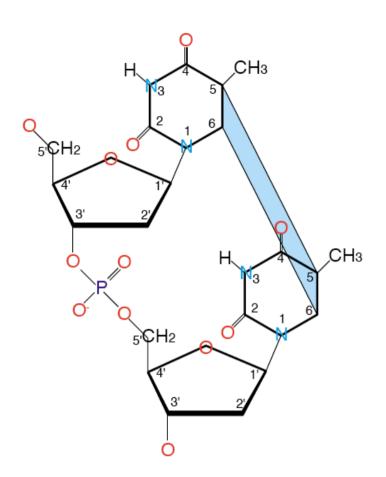
Low fidelity DNA polymerases-Translesion polymerases

(Some play a role,in excision repair while others are able to replicate through a lesion which would normally block progression of polymerase during replication.)

Double strand break repair.

• MMEJ: Microhomology directed end-joining (or Alt-EJ)

•HR: Homologous recombination

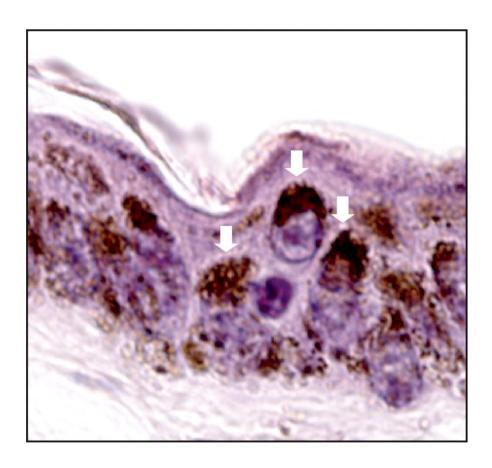

For an exhaustive list of proteins that are implicated in genome stability.

Wood, R. D., Mitchell, M., Sgouros, J., and Lindahl, T. (2001). Human DNA repair genes. Science 291, 1284-1289.

http://sciencepark.mdanderson.org/labs/wood/DNA Repair Genes.html

1. Nucleotide Excision Repair (NER)

UV-induced Lesions



Cyclobutane pyrimidine dimers:

T-T > T-C, C-T > C-CHelix curvature 7-9° 6-4 photoproducts: T-C >> C-C > T-T > C-T Helix curvature 44°

Physical Shielding of Keratinocytes Nuclei from UV

Melanosomes that sit above keratinocyte nuclei (arrows) shield these nuclei from UVB radiation.

NER deficiency syndrome: Xeroderma Pigmentosum

Dry, parchment-like skin (xeroderma) Many freckles (pigmentosum)

Autosomal recessive disorder

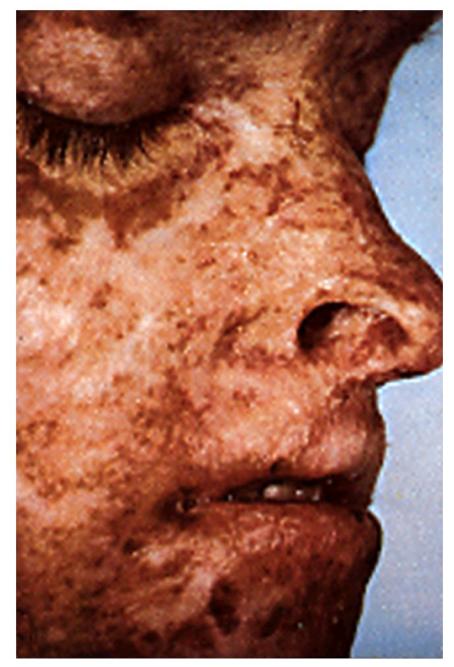


Figure 12.23. Weinberg, The Biology of Cancer

Early Onset of Skin Cancer in XP-Patients

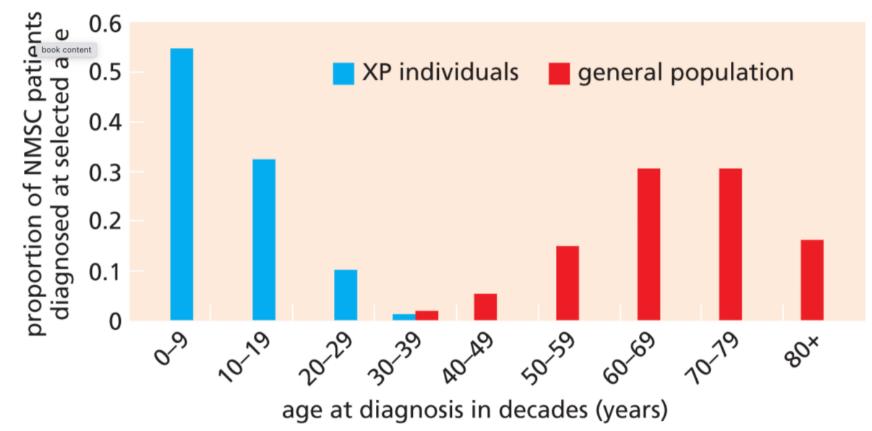
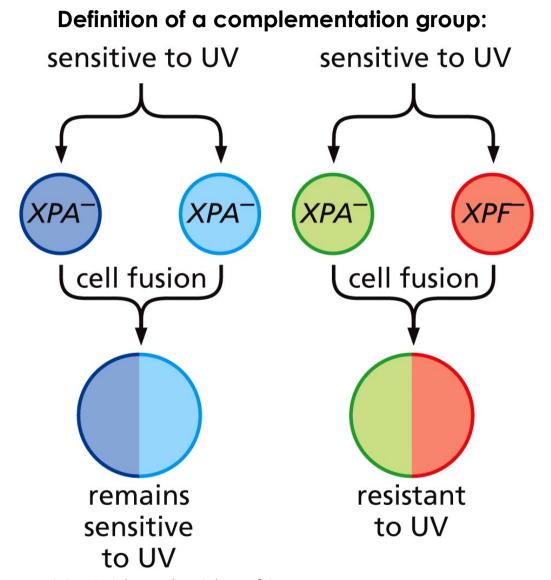


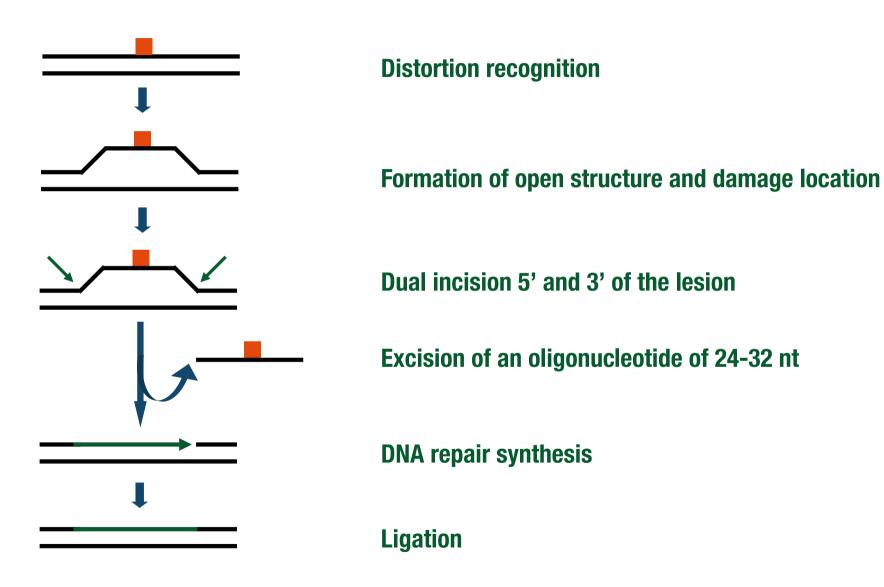
Figure 12.24. Weinberg, The Biology of Cancer

The graph shows individuals which were diagnosed with non-melanoma skin cancer (NMSC). The median age of diagnosis was 9 years for XP individuals and 67 years for the general population.

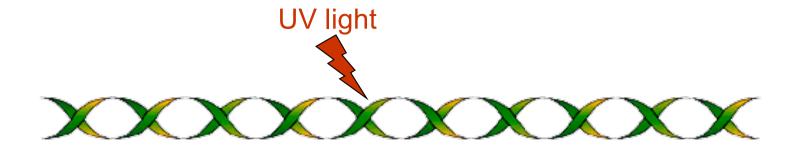
Complementation Groups of XP

8 genes: XP-A, XP-B, XP-C, XP-D, XP-E, XP-F, XP-G, XP-V

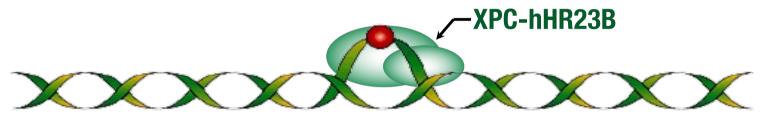



Figure 12.25. Weinberg, The Biology of Cancer

Thought Questions



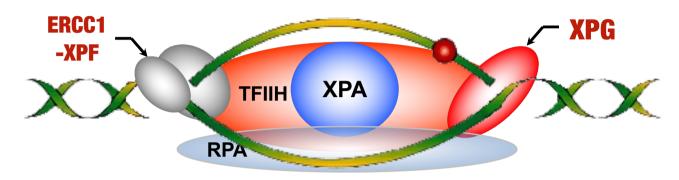
- Are XP mutations dominant or recessive?
- How would you identify the mutated genes?
- How would you identify proteins that interact with your new protein?
- How would you test if the mutant gene product is responsible for recognition of damaged DNA ((6-4) Photo Products and Cyclobutane pyrimidine dimers)?

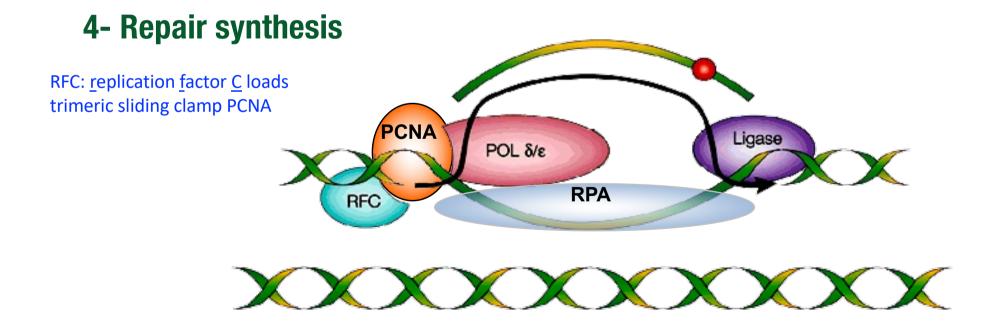

NER Pathway

Actors of NER

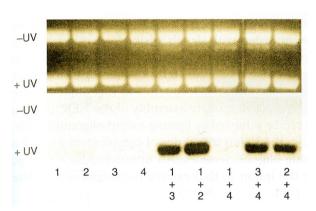


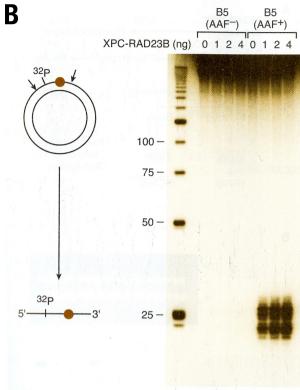
1- Recognition of lesion


2- Formation of pre-incision complex


TFIIH: ten subunit complex involved in DNA unwinding for transcription initiation; but also required for NER.

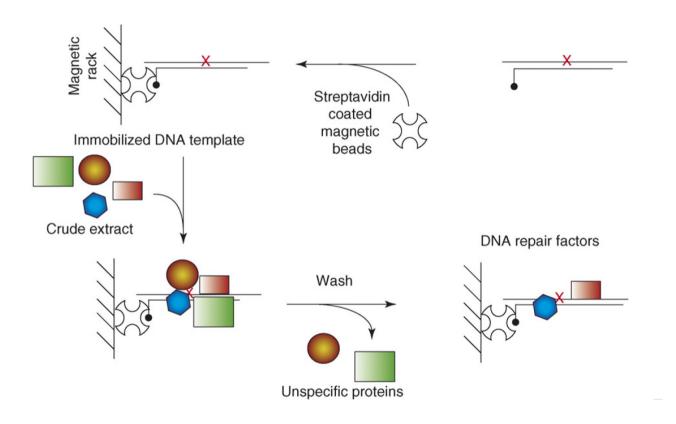
3- Double incision - excision

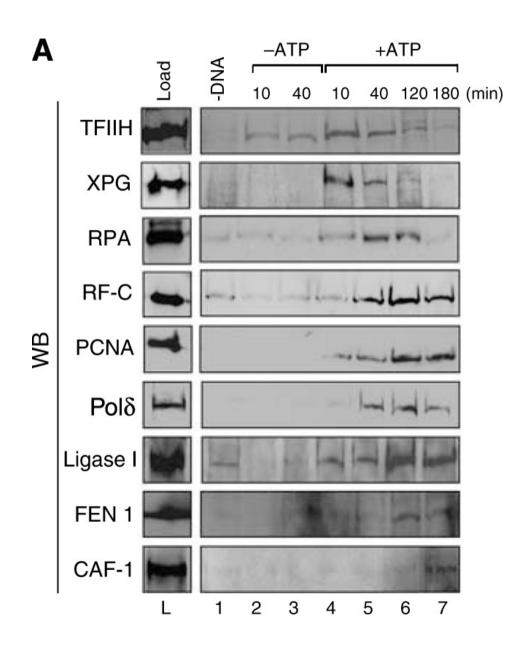

Incision 3' of the lesion precedes incision 5'


NER in vitro

A

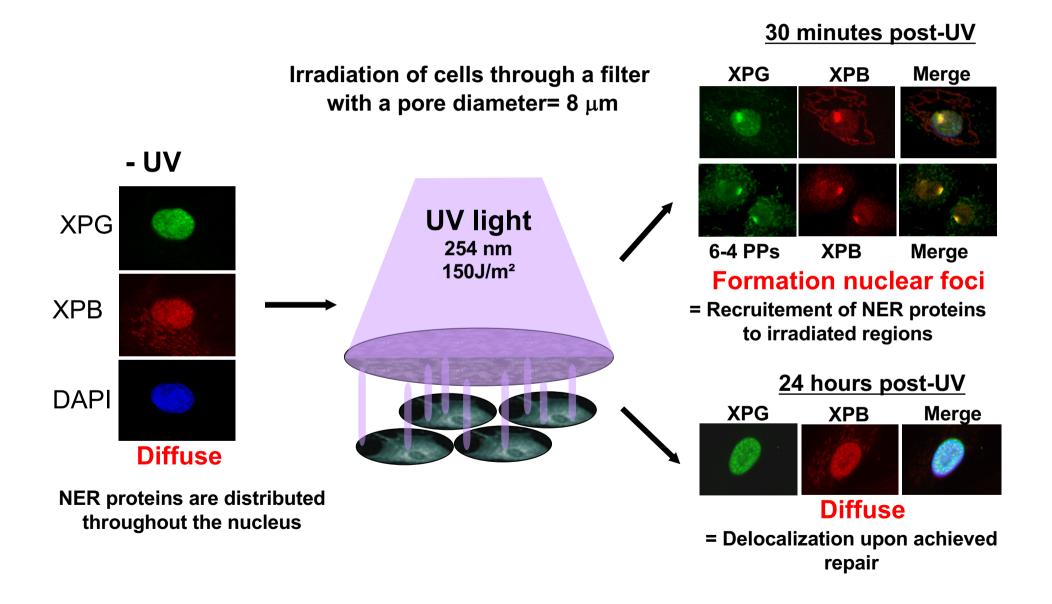
CHO cells defective in NER complementation groups 1, 2, 3, and 4 as indicated: (defective genes: ERCC1, XPD (ERCC2), XPB (ERCC3), or XPF (ERCC4).

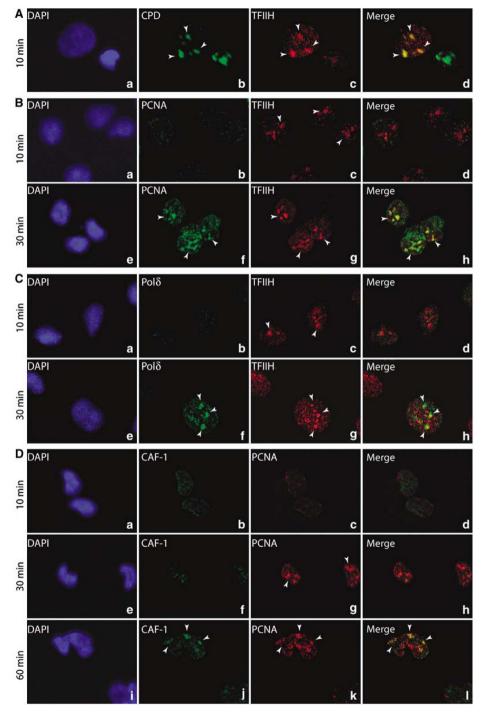

Reaction: fractionated extracts, PCNA, RPA, dNTPs, α -32P-dATP, plasmids


The DNA samples were incubated with whole-cell extract from XPC-defective cells, supplemented with the indicated amounts of purified XPC-RAD23B protein

(N-Acetyl-2-aminofluorene (AAF) is a chemical carcinogen that reacts with guanines at the C8 position in DNA to form a structure that interferes with DNA replication)

Immobilized Repair Template




Generation and use of an immobilized DNA template containing a single, site directed lesion. The immobilized repair template can be incubated with crude extract or purified factors. ...Identification of intermediate complexes.

In vitro sequential recruitment of the NER factors. The immobilized damaged DNA fragment was incubated with nuclear extract. At different time points the immobilized DNA was washed with 0.05 M KCl and the remaining bound factors were further analyzed by Western blot.

Local Damage Induction Method: Visualisation of Recruitment of NER Proteins upon UV Exposure

EMBO J., <u>27</u>, 155 (2008)

Figure 1 *In vivo* sequential recruitment of NER factors. Rescued XPCS2BA human fibroblasts were locally UV irradiated and labelled at 10, 30 and 60 min after UV irradiation with the indicated MAbs or PAbs. Colocalization of (A) CPD and TFIIH (XPB) (panels a–d), (B) TFIIH and PCNA (panels a–h), (C) TFIIH and Polδ (panels a–h) and (D) PCNA and CAF1 (panels a–l). Nuclei were counterstained with DAPI, and pictures were merged.

Key Concepts

- •Synthetic lethality:
- →Screening strategies
- →resistance to PARP-inhibitors
- \rightarrow Pol θ (teta)
- Mentioned chromatin and DNA repair: γ-H2AX
- Generation of DNA lesions by endogenous and exogenous sources
- <u>NER</u>:~30 factors involved. Repair of lesions that induce **helix distortion** (e.g. induced by UV). Repair involves DNA unwinding by TFIIH, dual incisions that flank the damaged location (XPF-ERCC1, XPG), excision and DNA repair synthesis
- -->Xeroderma Pigmentosum
- Complementation