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Cancer Biology | :

Topics covered

Week 1:

* Exercises: Wednesday 13:15-16:00: room CE1103 Oncogenes and tumor suppressor genes

Week 2:

* Lecture 2 (Monday 14:15-16:00: room AAC132):

* p53, genome instability and DNA repair of DNA double strand breaks; Synthetic lethality
* Exercises: Wednesday 13:15-16:00: room CE1103

Week 3:
* Lecture 3/Exercises: DNA repair and the DNA damage response

Week 4:
* Lecture 4/Exercises: p53 and apoptosis
* (Chapters 9 (Weinberg))



Viral Oncogenes
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Viral Oncogenes are Derived from Cellular

Proto-oncogenes

host cell chromosomal DNA
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Cellular Proto-oncogenes

* 1970’s: tumor viruses were suspected to be the cause of many human
cancers. The study of tumor viruses led to the understanding of
molecular principles in many human cancers.

e But: Of the > 100 tumor types, only cervical carcinoma (
) and hepatomas ( ) could be linked to viruses.
Though, there are probably others...



Cellular Proto-oncogenes

Hypothesis:
e Carcinogens function as mutagens
* They mutate critical growth-controlling genes (proto-oncogenes)
* The mutated alleles function as active oncogenes



Cellular Proto-oncogenes

To test the hypothesis:
* Development of gene transfer protocols
e Extract DNA from cancer cells
* Choose appropriate recipient cells



Nonviral oncogenes
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Nonviral oncogenes
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Human tumor DNA can also transform NIH3T3

Transformed NIH3T3 Untransformed NIH3T3
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Cloning of Transfected Human Oncogenes
(DNA from bladder carcinoma cells)
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Mutation Responsible for H-ras Oncogene
Activation
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Concentration of point mutations in K-ras

9787 tumors

121 13 61

0 20 40 60 80 100 120 140 160 180
N-terminus amino acid residue number C-terminus
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frequency of substitutions



Amplification of the erb2/neu/HER2 Oncogene
in 30% of Breast Cancer

Erb2/Neu: membrane surface-
bound receptor tyrosine kinase
e drives the cell cycle
e protects from apoptosis

= DNA
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Figure 4.4a The Biology of Cancer (© Garland Science 2014)



Kaplan-Meier Plot: Relapse after Diagnosis
and Treatment
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Monoclonal Antibodies (“Herceptin”) Against
HER2 for Treatment of Breast Cancer
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N-myc amplification in Pediatric Neuroblastoma

The gene is detected by fluorescence in situ hybridization (FISH) with fluorescent dye-
labeled N-myc specific oligonucleotide probes.
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Kaplan-Meier Plot: Event-Free Survival of
Children Suffering from Neuroblastoma
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Burkitt’s Lymphoma: Translocation Brings
c-myc Gene under Control of an Ig Gene
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Reciprocal Translocation
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Tumor Suppressor Genes

Genes whose partial or complete inactivation, occurring in either the
germ line or the genome of a somatic cell, leads to an increased
likelihood of cancer development

» Gatekeeper genes - operate to regulate cell proliferation or to regulate cell
number by controlling cell differentiation or cell death. Loss of a gatekeeper
gene removes an impediment to cell proliferation and thus to the appearance
of populations of neoplastic cells

* Caretaker genes - encode a proteins that maintain the integrity of the genome
and thereby prevent the accumulation of mutations and, in turn, the
formation of neoplastic cells



Dominance and Recessiveness of the
Tumorigenic Phenotype
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Retinoblastoma: Develops from Retina Cell
P recursor thickening of optic nerve

due to extension of tumor
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Figure 7.3¢ The Biology of Cancer (© Garland Science 2014)




Dynamics of Retinoblastoma Formation
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Loss of Heterosygosity
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* Nondisjunction: LOH through loss of an entire chromosome

* Promoter methylation can also lead to inactivation of tumor suppressor genes (MeCpG)



Rb action

E2F target genes:
* cell cycle regulators

* DNA synthesis enzymes
* dihydrofolate reductase (DHFR)
* DNA polymerase a

* DNA replication proteins

cyclin E
cyclin A
cyclin D1
Cdc2
Cdc25A

Cdc6
ORC1
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* Apoptotic genes

* Apoptosis protease-activating factor 1 (Apafl)
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: Master Guardian
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p53 is a transcription factor

More than 300 target genes
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Consensus DNA sequence bound by p53

* Analyzed 1546 sites; consensus sequence: relative size of letter
indicates frequency of DNA base at the position

Figure 9.12¢ The Biology of Cancer (© Garland Science 2014)



TP53 is the most frequently mutated gene in
cancer

TP53 mutation prevalence by tumor type
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Effects of mutant p53 alleles in the mouse
germ line
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Most of the mutations in p53 are missense
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p53: Binds DNA as a Tetramer

Figure 1. Overall Structure of the p53 Core
Domain Bound to DNA as a Tetramer

(A) The tetramer viewed from the protein side. The
four monomers are colored in blue (A), light green
(B), light blue (C), and green (D). The same color
scheme is used throughout the illustration unless
indicated otherwise. The DNA is in stick model
with its sequence shown below. The four pen-
tameric motifs (quarter site) and their correspond-
ing monomers are indicated in the sequence.

(B) A view of the tetramer along the DNA axis. This
view shows that the tetramer has a planer struc-
ture wherein the A-B dimer (front) and C-D dimer
align almost perfectly along the DNA axis.

(C) The tetramer viewed from the DNA side. The

1 5 10 15 20
5’ AGGCATGCCTAGGCATGCCT 3’ parallelogram is shown together with the global
3’ TCCGTACGGATCCGTACGGA 5° two-fold axis (dark oval) and the two local dyad

aces (gray ovals).

(D) A surface model of the tetramer view in the
same orientation as (A). The four protein-protein
interfaces are indicated.

From Chen et al. Structure 18, 246-256, 2010




Most of the missense mutations in p53 affect
DNA-binding Domain
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Dominant-Negative Mutations in p53
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Figure 9.5 The Biology of Cancer

lllustration of dominant negative effect of p53 missense mutations in myeloid
malignancies: Boettcher et al., Science 2019 365: 599-604



Activation of p53 Upon DNA Damage
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Distribution of mutations in two oncogenes
and two tumor suppressor genes

¥ = Missense mutation
A = Truncating mutation
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20/20 rule

* Oncogene classification: >20% of recorded mutations are at
recurrent positions and are missense

* Tumor suppressor gene classification: >20% of the recorded
mutations in the gene are inactivating

* TP53: Oncogene score: 73%; TSG score: 20%

B Vogelstein et al. Science (2013):339:1546-1558




Distribution of mutations in p53
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Key Concepts

e An oncogene is a mutated gene that contributes to the development
of a cancer. In their normal, un-mutated state, oncogenes are called
proto-oncogenes.

e Tumor suppressor genes, originally called antioncogenes, function to
suppress the development of cancerous growth.

e Retinoblastoma protein (pRb) is a tumor suppressor protein that
becomes dysfunctional in many types of cancer. In its active state,
pRb is phosphorylated and able to act as a tumor suppressor by
inhibiting cell cycle progression.



Key Concepts

e p53 is a transcription factor. As such, p53 can induce cell cycle arrest
or apoptosis

e p53 turnover is blocked during cell-physiologic stress or DNA damage
e p53 mutations that occur in cancer are often dominant-negative

e p53 protein levels are controlled: to be discussed in detail later in the
context of apoptosis! (week 4)



Exercise

CDKN2A, MET, FGFR3, RET, WT1, NF1, GNAQ, SMAD4, STK11,KIT

Is it possible to distinguish oncogenes from tumor suppressor genes by analyzing
the mutations that occur in these genes in tumors?

Explore www.cbioportal.org
- Check out the mutation spectrum occurring in tumors in a given gene.
- Is there any pattern? Is it a tumor suppressor or an oncogene?

How do mutations in oncogenes and tumor suppressors affect cancer therapies?

Check out your gene in https://www.oncokb.org/
- Which mutations in oncogenes are associated with resistance to targeted therapies?

- Are there mutations in tumor suppressor genes that contribute to poor response to
therapy? If yes, how?

- How does the mutation type (e.g., loss of function vs. gain of function) affect drug
resistance in cancer?



http://www.cbioportal.org/
https://www.oncokb.org/

