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Advancesin deep learning have greatly improved structure prediction of
molecules. However, many macroscopic observations that are important

for real-world applications are not functions of a single molecular structure
but rather determined from the equilibrium distribution of structures.
Conventional methods for obtaining these distributions, such as molecular
dynamics simulation, are computationally expensive and often intractable.
Here we introduce a deep learning framework, called Distributional
Graphormer (DiG), in an attempt to predict the equilibrium distribution of
molecular systems. Inspired by the annealing process in thermodynamics,

DiG uses deep neural networks to transform a simple distribution towards
the equilibrium distribution, conditioned on a descriptor of amolecular
system such as achemical graph or a protein sequence. This framework
enables the efficient generation of diverse conformations and provides
estimations of state densities, orders of magnitude faster than conventional
methods. We demonstrate applications of DiG on several molecular tasks,
including protein conformation sampling, ligand structure sampling,
catalyst-adsorbate sampling and property-guided structure generation.
DiG presents a substantial advancement in methodology for statistically
understanding molecular systems, opening up new research opportunities
inthe molecular sciences.

Deep learning methods excel at predicting molecular structures with
high efficiency. For example, AlphaFold predicts protein structures
withatomicaccuracy’, enabling new structural biology applications®*;
neural network-based docking methods predict ligand binding struc-
tures*®, supporting drug discovery virtual screening”®; and deep learn-
ing models predict adsorbate structures on catalyst surfaces’ % These
developments demonstrate the potential of deep learningin modelling
molecular structures and states.

However, predicting the most probable structure only reveals a
fraction of the information about a molecular system in equilibrium.

Molecules can be very flexible, and the equilibrium distribution is
essential for the accurate calculation of macroscopic properties. For
example, biomolecule functions canbeinferred fromstructure prob-
abilities to identify metastable states; and thermodynamic properties,
such as entropy and free energies, can be computed from probabilistic
densities in the structure space using statistical mechanics.

Figure 1a shows the difference between conventional structure
prediction and distribution prediction of molecular systems. Adenylate
kinase has two distinct functional conformations (open and closed
states), both experimentally determined, but a predicted structure
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Fig.1| Predicting conformational distributions with the DiG framework.

a, DiG takes the basic descriptor D of a target molecular system as input—for
example, an amino acid sequence—to generate a probability distribution of
structures that aims at approximating the equilibrium distribution and sampling
different metastable or intermediate states. In contrast, static structure
prediction methods, such as AlphaFold', aim at predicting one single high-
probability structure of amolecule. b, The DiG framework for predicting
distributions of molecular structures. A deep learning model (Graphormer™) is

used as modules to predict a diffusion process () that gradually transforms a
simple distribution towards the target distribution. The model is trained so that
the derived distribution p;in each intermediate diffusion time step i matches the
corresponding distribution g;in a predefined diffusion process (<) thatis set to
transform the target distribution to the simple distribution. Supervision can be
obtained from both samples (workflow in the top row) and amolecular energy
function (workflow shownin the bottom row).

usually corresponds to a highly probable metastable state or aninter-
mediate state (as shown in this figure). Amethod is desired to sample
the equilibriumdistribution of proteins with multiple functional states,
such asadenylate kinase.

Unlike single structure prediction, equilibrium distribution
research still depends on classical and costly simulation methods,
while deep learning methods are underdeveloped. Commonly, equi-
librium distributions are sampled with molecular dynamics (MD)
simulations, which are expensive or infeasible”. Enhanced sampling
simulations'" and Markov state modelling'® can accelerate rare event
sampling but need system-specific collective variables and are not
easily generalized. Another approachis coarse-grained MD'”*8, where
deep learning approaches have been proposed'*?°. These deep learn-
ing coarse-grained methods have worked well for individual molecular
systems but have notyet demonstrated generalization. Boltzmann gen-
erators” areadeep learning approach to generate equilibrium distribu-
tions by creating a probability flow from a simple reference state, but
thisalso hard to generalize to different molecules. Generalization has
been demonstrated for flows generating simulations with longer time
steps for small peptides but has notyet beenscaled to large proteins™.

Inthis Article, we develop DiG, adeep learning approach to approx-
imately predict the equilibrium distribution and efficiently sample
diverse and function-relevant structures of molecular systems. We
show that DiG can generalize across molecular systems and propose
diverse structures that resemble observations in experiments. DiG
draws inspiration from simulated annealing®¢, which transforms a
uniform distribution to acomplex one through asimulated annealing
process. DiG simulates a diffusion process that gradually transforms a
simple distribution to the target one, approximating the equilibrium
distribution of the given molecular system?*® (Fig. 1b, right arrow
symbol). As the simple distribution is chosen to enable independent
sampling and have a closed-form density function, DiG enables inde-
pendent sampling of the equilibrium distribution and also provides a
density function for the distribution by tracking the process. The diffu-
sion process can also be biased towards a desired property for inverse
designandallowsinterpolation betweenstructures that passes through

high-probability regions. This diffusion process is implemented by
a deep learning model based upon the Graphormer architecture’
(Fig.1b), conditioned ona descriptor of the target molecule, suchasa
chemicalgraphoraproteinsequence. DiG canbe trained with structure
datafromexperiments and MD simulations. For data-scarce cases, we
develop a physics-informed diffusion pre-training (PIDP) method to
train DiG with energy functions (such as force fields) of the systems. In
both data-based or energy-supervised modes, the model gets a training
signalin each diffusion step independently (Fig. 1b, leftarrow symbol),
enabling efficient training that avoids long-chain back-propagation.

We evaluate DiG on three predictive tasks: protein structure dis-
tribution, the ligand conformation distribution in binding pockets
and the molecular adsorption distribution on catalyst surfaces. DiG
generates realistic and diverse molecular structures in these tasks.
For the proteins in this Article, DiG efficiently generated structures
resembling major functional states. We further demonstrate that DiG
can facilitate the inverse design of molecular structures by applying
biased distributions that favour structures with desired properties.
This capability can expand molecular design for properties that lack
enough data. These results indicate that DiG advances deep learning
for molecules from predicting a single structure towards predicting
structure distributions, paving the way for efficient prediction of the
thermodynamic properties of molecules.

Results

Here, we demonstrate that DiG can be applied to study protein con-
formations, protein-ligand interactions and molecule adsorption on
catalystsurfaces.Inaddition, weinvestigate theinverse design capabil-
ity of DiG through its application to carbon allotrope generation for
desired electronic band gaps.

Protein conformation sampling

At physiological conditions, most protein molecules exhibit multiple
functional states that are linked via dynamical processes. Sampling
of these conformations is crucial for the understanding of protein
properties and their interactions with other molecules. Recently, it was
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reported that AlphaFold' can generate alternative conformations for
certain proteins by manipulating input information such as multiple
sequence alignments (MSAs)*. However, this approach is developed
on the basis of varying the depth of MSAs, and it is hard to generalize
to all proteins (especially those with a small number of homologous
sequences). Therefore, it is highly desirable to develop advanced
artificial intelligence (Al) models that can sample diverse structures
consistent with the energy landscape in the conformational space”.
Here, we show that DiGis capable of generating diverse and functionally
relevant protein structures, which is a key capability for being able to
efficiently sample equilibrium distributions.

Because the equilibrium distribution of protein conformations is
difficult to obtain experimentally or computationally, thereis alack of
high-quality data for training or benchmarking. To train this model, we
collectexperimental and simulated structures from public databases.
To mitigate the data scarcity, we generated an MD simulation dataset
and developed the PIDP training method (see Supplementary Informa-
tionsections A.1.1and D.1for the training procedure and the dataset).
The performance of DiG was assessed at two levels: (1) by comparing the
conformational distributions against those obtained from extensive
(millisecond timescale) atomistic MD simulations and (2) by validat-
ing on proteins with multiple conformations. As shown in Fig. 2a, the
conformational distributions are obtained from MD simulations for
two proteins from the SARS-CoV-2 virus® (the receptor-binding domain
(RBD) of the spike protein and the main protease, also known as 3CL
protease; see Supplementary Information section A.7 for details on the
MD simulation data). These two proteins are the crucial components
of the SARS-CoV-2 and key targets for drug development in treating
COVID-19°"*, The millisecond-timescale MD simulations extensively
sample conformation space, and we therefore regard the resulting
distribution as a proxy for the equilibrium distribution.

Taking protein sequences as the descriptor inputs for DiG, struc-
tures were generated and compared with simulation data. Although
simulation data of RBD and the main protease were not used for DiG
training, generated structures resemble the conformational distribu-
tions (Fig. 2a). In the two-dimensional (2D) projection space of RBD
conformations, MD simulations populate four regions, which are all
sampled by DiG (Fig. 2a, left). Four representative structures are well
reproduced by DiG. Similarly, three representative structures from
main protease simulations are predicted by DiG (Fig. 2a). We noticed
that conformations in cluster I are not well recovered by DiG, indicat-
ing room for improvement. In terms of conformational coverage, we
compared the regions sampled by DiG with those from simulationsin
the 2D manifold (Fig. 2a), observing that about 70% of the RBD con-
formations sampled by simulations can be covered with just 10,000
DiG-generated structures (Supplementary Fig.1).

Atomistic MD simulations are computationally expensive, there-
fore millisecond-timescale simulations of proteins are rarely executed,
except for simulations on special-purpose hardware such as the Anton
supercomputer® or extensive distributed simulations combined in
Markov state models'®. To obtain an additional assessment on the
diverse structures generated by DiG, we turn to proteins with multiple
structures that have been experimentally determined. In Fig. 2b, we
show the capability of DiG in generating multiple conformations for
four proteins. Experimental structures are shownin cylinder cartoons,
eachaligned with two structures generated by DiG (thin ribbons). For
example, DiG generated structures similar to either open or closed
states of the adenylate kinase protein (for example, backbone root
mean square difference (r.m.s.d.) < 1.0 A to the closed state, 1ake). Simi-
larly, for the drug transport protein LmrP, DiG generated structures
covering both states (r.m.s.d. <2.0): one structure is experimentally
determined, and the other (denoted as DEER-AF) is the AlphaFold
prediction® supported by double electron electron resonance (DEER)
experiments®. For human BRAF kinase, the overall structural difference
between the two states is less pronounced. The major differenceisin
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Fig. 2| Distribution and sampling results for protein conformations.

a, Structures generated by DiG resemble the diverse conformations of
millisecond MD simulations. MD-simulated structures are projected onto the
reduced space spanned by two time-lagged independent component analysis
(TICA) coordinates (that is, independent component (IC) 1and 2), and the
probability densities are depicted using contour lines. Left: for the RBD protein,
MD simulation reveals four highly populated regions in the 2D space spanned by
TICA coordinates. DiG-generated structures are mapped to this 2D space (shown
asorange dots), witha distribution reflected by the colour intensity. Under the
distribution plot, structures generated by DiG (thin ribbons) are superposed
onrepresentative structures. AlphaFold-predicted structures (stars) are shown
inthe plot. Right: the results for the SARS-CoV-2 main protease, compared with
MD simulation and AlphaFold prediction results. The contour map reveals

three clusters, DiG-generated structures overlap with clusters Il and Ill, whereas
structuresin cluster Iare underrepresented. b, The performance of DiG on
generating multiple conformations of proteins. Structures generated by DiG
(thinribbons) are compared with the experimentally determined structures
(eachstructureis labelled by its PDB ID, except DEER-AF, which is an AlphaFold
predicted model, shown as cylindrical cartoons). For the four proteins (adenylate
kinase, LmrP membrane protein, human BRAF kinase and D-ribose binding
protein), structures in two functional states (distinguished by cyan and brown)
are well reproduced by DiG (ribbons).

the A-loop region and a nearby helix (the aC-helix, indicated in the
figure)®*. Structures generated by DiG accurately capture such regional
structural differences. For D-ribose binding protein, the packing of two
domainsisthe major source of structural difference. DiG correctly gen-
erates structures correspondingto both the straight-up conformation
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Fig. 3| Results of DiG for ligand structure sampling around protein pockets.
a, Theresults of DiG on poses of ligands bound to protein pockets. DiG generates
ligand structures and binding poses with good accuracy compared with the
crystal structures (reflected by the r.m.s.d. statistics shown in the red histogram
for the best matching cases and the green histogram for the median r.m.s.d.
statistics). When considering all 50 predicted structures for each system,
diversity is observed, as reflected in the r.m.s.d. histogram (yellow colour,
normalized). Allr.m.s.d. values are calculated for ligands with respect to their
coordinatesin complex structures. b, Representative systems show diversity

inligand structures, and such predicted diversity is related to the properties

of the binding pocket. For a deep and narrow binding pocket such as for the

TYK2 protein (shown in the surface representation, top panel), DiG predicts
highly similar binding poses for the ligand (in atom bond representations, top
panel). For the P38 protein, the binding pocket is relatively flat and shallow and
predicted ligand poses are more diverse and have large conformational flexibility
(bottom panel, following the same representations as in the TYK2 case). The
average r.m.s.d. values and the associated standard deviations are indicated next
to the complex structures.

(cylinder cartoon) and the twisted or tilted conformation. If we align
one domain of D-ribose binding protein, the other domain only par-
tially matches the twisted conformation as an ‘intermediate’ state.
Furthermore, DiG can generate plausible conformation transition
pathways by latent space interpolations (see demonstration cases in
Supplementary Videos 1and 2). In summary, beyond static structure
prediction for proteins, DiG generates diverse structures correspond-
ing to different functional states.

Ligand structure sampling around binding sites

Animmediate extension of protein conformational sampling is to pre-
dictligand structuresin druggable pockets. To model the interactions
between proteins and ligands, we conducted MD simulations for 1,500
complexes to train the DiG model (see Supplementary Information
section D.1for the dataset). We evaluated the performance of DiG with
409 protein-ligand systems®>° that are not in the training dataset. The
inputs of DiG include protein pocket information (atomic type and
position) and the ligand descriptor (aSMILES string). We pad the input
node and pair representations with zeros to handle the different num-
ber of atoms surrounding a pocket and the different length of SMILES
strings. The predicted results are the atomic coordinate distributions
ofboththeligand and the protein pocket. For protein pockets, changes
inatomic positions are up to 1.0 A in terms of r.m.s.d. compared with
the input values, reflecting pocket flexibility during ligand structure
generation. For the ligand structures, the deviation comes from two
sources: (1) the conformational difference between generated and
experimental structures, and (2) the difference in the binding pose
duetoligandtranslation and rotation. Amongall the tested cases, the
conformational differences are small, with an r.m.s.d. value of 1.74 A
on average, indicating that generated structures are highly similar to
theligandsresolvedincrystal structures (Fig.3a). Whenincluding the
binding pose deviations, larger discrepancies are observed. Yet, the DiG
predictsstructures that are very similar to the experimental structure
for each system. The best matched structure among 50 generated
structures for each system is within 2.0 A r.m.s.d. compared with the
experimental data for nearly all 409 testing systems (see Fig. 3a for
the r.m.s.d. distribution, with more cases shown in Supplementary
Fig.3). The accuracy of generated structures for ligandis related to the
characteristics of the binding pocket. For example, in the case of the
TYK2 kinase protein, the ligand shown in Fig. 3b (top) deviated from

the crystalstructure by 0.91 A (r.m.s.d.) onaverage. For target P38, the
ligand exhibited more diverse binding poses, probably owing to the
relatively shallow binding pocket, making the most stable binding pose
less dominant compared with other poses (Fig. 3b, bottom). MD simu-
lations reveal similar trends as DiG-generated structures, with ligand
binding to TYK2 more tightly than in the case of P38 (Supplementary
Fig. 2). Overall, we observed that the generated structures resemble
experimentally observed poses.

Catalyst-adsorbate sampling

Identifying active adsorption sites is a central task in heterogeneous
catalysis. Owing to the complex surface-molecule interactions, such
tasks rely heavily on a combination of quantum chemistry methods
suchas density functional theory (DFT) and sampling techniques such
asMD simulations and grid search. These lead to large and sometimes
intractable computational costs. We evaluate the capability of DiG for
this task by training it on the MD trajectories of catalyst-adsorbate
systems from the Open Catalyst Project and carrying out further evalu-
ationsonrandom combinations of adsorbates and surfaces thatare not
included in the training set’. DiG takes the atomic types, initial positions
of atoms in substrate, and the lattice vectors of the substrate, with an
initial structure of the molecular adsorbate, asjoint inputs. Besides, we
use across-attention sub-layer to handle the periodicboundary condi-
tions, as detailed in Supplementary Information section B.5. Onfeeding
the model with asubstrate and amolecular adsorbate, DiG can predict
adsorption sites and stable adsorbate configurations, along with the
probability for each configuration (see Supplementary Information
sections A.4 and A.7 for training and evaluation details). Figure 4a,b
shows the adsorption configurations of an acyl group on a stepped
Tilr alloy surface. Multiple adsorption sites are predicted by DiG. To
test the plausibility of these predicted configurations and evaluate
the coverage of the predictions, we carry out a grid search using DFT
methods. The results confirm that DiG predicts all stable sites found
by the grid search and that the adsorption configurations are in close
agreement, with anr.m.s.d. of 0.5-0.8 A (Fig. 4b). It should be noted
thatthe combinations of substrate and adsorbate shownin Fig.4b are
notincludedinthetraining dataset. Therefore, the result demonstrates
the cross-system generalization capability of DiGin catalyst adsorption
predictions. Here we show only the top view. Supplementary Fig. 4 in
addition shows the front view of the adsorption configurations.
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DiG notonly predicts the adsorption sites with correct configura-
tions butalso provides a probability estimate for each adsorption con-
figuration. This capability isillustrated in the systems with single-atom
adsorbates (including H, N and O atoms) on ten randomly chosen
metallic surfaces. For each combination of adsorbate and catalyst,
DiG predicts the adsorption sites and the probability distributions.
To validate the results, for the same systems, grid search DFT calcula-
tionsare carried out to find adsorption sites and corresponding ener-
gies. Taking the adsorptionsitesidentified by grid search asreferences,
DiG achieved 81% site coverage for single-atom adsorbates on the ten
metallic catalyst surfaces. Figure 4c-f shows closer examinations on
adsorption predictions for four systems, namely single N or O atoms
onTiN, RhTcHf, AlHf and TaPd metallic surfaces (top panels). The pre-
dicted adsorption probabilities projected on the planein parallel with
the catalyst surface are shown in the middle panels. The probabilities
show excellent accordance with the adsorption energies calculated
using DFT methods (bottom panels). It is worth noting that the speed
of DiGis much faster compared with DFT; that s, it takes about 1 min to
sample all adsorptionsites for a catalyst-adsorbate system for DiG on
asingle modern graphics processing unit (GPU), butatleast2 hours for
asingle DFT relaxation with VASP, anumber that will be further multi-
plied by afactor of >100 depending on the resolution of the searching
grid®. Such fast and accurate prediction of adsorption sites and the
corresponding distributional features can be useful in identifying
catalytic mechanisms and guiding research on new catalysts.

Property-guided structure generation
While DiG by default generates structures following thelearned training
data distribution, the output distribution can be purposely biased to
steer the structure generation to meet particular requirements. Here,
we leverage this capability by using DiG for inverse design (describedin
‘Property-guided structure generation with DiG’ section). As a proof of
concept, we searchfor carbon allotropes with desired electronic band
gaps. Similar tasks are critical to the design of novel photovoltaic and
semi-conductive materials®®. To train this model, we prepared a dataset
composed of carbon materials by carrying out structure search based
onenergy profiles obtained from DFT calculations (L.Z., manuscriptin
preparation). The structures corresponding to energy minima formthe
datasetused to train DiG, whichinturnare applied to generate carbon
structures. We use a neural network model based on the M3GNet archi-
tecture as the property predictor for the electronic band gap, whichis
fedtothe property-guided structure generation of carbon structures.
Figure 5 shows the distributions of band gaps calculated from
generated carbon structures. In the original training dataset, most
structures have a band gap of around O eV (Fig. 5a). When the target
band gaps are supplied to DiG as an additional condition, carbon struc-
tures are generated with desired band gaps. Under the guidance of a
band gap model in conditional generation, the distribution is biased
towards the targets, showing pronounced peaks around the targetband
gaps. Representative structures are shown in Fig. 5. For conditional
generationwithatargetband gap of 4 eV, DiG generates stable carbon
structures similar to diamond, which has large band gaps. In the case of
the 0 eV band gap, we obtain graphite-like structures with small band
gaps. In Fig. 5a, we show some structures obtained by unconditional
generation. To evaluate the quality of carbon structures generated by
DiG, we calculate the percentage of generated structures that match
relaxed structures in the dataset by using the ‘StructureMatcher’ in
the PyMatgen package®. For unconditional generation, the match
rateis 99.87%, and the average matched normalized r.m.s.d. computed
from fractional coordinates over all sampled structures is 0.16. For
conditional generation, the match rate is 99.99%, but with a higher
average normalized r.m.s.d. of 0.22. While increasing the possibility
of generating structures with the target band gap, conditional genera-
tion can influence the quality of the structures (see Supplementary
Information section F.1 for more discussion). This proof-of-concept
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Fig. 4 | Results of DiG for catalyst-adsorbate sampling problems. a, The
problem setting: the prediction of the adsorption configuration distribution of
anadsorbate on a catalyst surface. b, The adsorption sites and corresponding
configurations of the adsorbate found by DiG (in colour) compared with DFT
results (in white). DiG finds all adsorption sites, with adsorbate structures close
to the DFT calculation results (see Supplementary Information for details of
the adsorption sites and configurations). c—f, Adsorption prediction results of
single Nor O atoms on TiN (c), RhTcHf (d), AIHf (e) and TaPd (f) catalyst surfaces
compared with DFT calculation results. Top: the catalyst surface. Middle: the
probability distribution of adsorbate molecules on the corresponding catalyst
surfaces onlog scale. Bottom: the interaction energies between the adsorbate
molecule and the catalyst calculated using DFT methods. The adsorption sites
and predicted probabilities are highly consistent with the energy landscape
obtained by DFT.

study shows that DiG not only captures the probability distributions
with complex featuresin alarge configurational space butalso canbe
applied for inverse design of materials, when combined with a prop-
erty quantifier, such as a machine learning (ML) predictor. Since the
property prediction model (for example, the M3GNet model for band
gap prediction) and the diffusion model of DiG are fully decoupled,
our approach can be readily extended to inverse design of materials
targeting for other properties.

Discussion

Predicting the equilibrium distribution of molecular states is a for-
midable challenge in molecular sciences, with broad impacts for
understanding structure—function relations, computing macroscopic
properties and designing molecules and materials. Existing methods
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Fig. 5| Property-guided structure generation of carbon structures with
particular band gaps. a, The electronic band gaps of generated structures from
the trained DiG with no specification on the band gap. Generated structures

do not show any obvious preference on band gaps, closely resembling the
distribution of the training dataset. b, Structures generated for three band gaps
(0,2and 4 eV). The distributions of band gaps for generated structures peak at
the desired values. In particular, DiG generates graphite-like structures when the
desired band gapis O eV, while for the 4 eV band gap, the generated structures are
mostly similar to diamonds. The vertical dashed lines represent the band gaps of
generated structures near to 0,2 and 4 eV. Inset: representative structures.

need numerous measurements or simulated samples of single mol-
eculestocharacterize the equilibriumdistribution. We introduce DiG,
adeep generative framework towards predicting equilibrium probabil-
ity distributions, enabling efficient sampling of diverse conformations
andstate densities across molecular systems. Inspired by the annealing
process, DiG uses a sequence of deep neural networks to gradually
transform state distributions from a simple form to the target ones.
DiG can be trained to approximate the equilibrium distribution with
suitable data.

We applied DiG to several molecular tasks, including protein
conformation sampling, protein-ligand binding structure genera-
tion, molecular adsorption on catalyst surfaces and property-guided
structure generation. DiG generates chemically realistic and diverse
structures, and distributions that resemble MD simulations in
low-dimensional projections in some cases. By leveraging advanced
deeplearningarchitectures, DiG learns the representation of molecular
conformations from molecular descriptors such as sequences for pro-
teins or formulas for compound molecules. Moreover, its capacity to
model complex, multimodal distributions using diffusion models ena-
blesitto capture equilibriumdistributionsin high-dimensional space.

Consequently, the framework opens the door to a multitude of
research opportunities and applications in molecular science. DiG can
provide statistical understanding of molecules, enabling computation
of macroscopic properties such as free energies and thermodynamic
stability. These insights are critical for investigating physical and
chemical phenomena of molecular systems.

Finally, with its ability to generate independent and identically
distributed (i.i.d.) conformations from equilibrium distributions, DiG

offers a substantial advantage over traditional sampling or simula-
tion approaches, such as Markov chain Monte Carlo (MCMC) or MD
simulations, which need rare events to cross energy barriers. DiG
covers similar conformation space as millisecond-timescale MD simu-
lations in the two tested protein cases. On the basis of the OpenMM
performance benchmark, it would require about 7-10 GPU-years on
NVIDIA A100s to simulate 1.8 ms for RBD of the spike protein, while
generating 50k structures with DiG takes about 10 days on a single
A100 GPU without inference acceleration (Supplementary Informa-
tionsection A.6).Similar or even better speed-up has been achieved for
predicting the adsorbate distribution on a catalyst surface, as shownin
Results. Combined with high-accuracy probability distributions, such
order-of-magnitude speed-up will be transformative for molecular
simulation and design.

Although the quantitative prediction of equilibrium distributions
at given states will hinge upon data availability, the capacity of DiG to
explore vast and diverse conformational spaces contributes to the
discovery of novel and functional molecular structures, including
proteinstructures, ligand conformers and adsorbate configurations.
DiG can help to connect microscopic descriptors and macroscopic
observations of molecular systems, with potential effect on various
areas of molecular sciences, including but not limited to life sciences,
drug design, catalysis research and materials sciences.

Methods

Deep neural networks have been demonstrated to predict accurate
molecular structures from descriptors  for many molecular sys-
tems"***2_ Here, DiG aims to take one step further to predict not only
the most probable structure but also diverse structures with probabili-
ties under the equilibrium distribution. To tackle this challenge,
inspired by the heating-annealing paradigm, we break down the dif-
ficulty of this probleminto aseries of simpler problems. The heating-
annealing paradigm can be viewed as a pair of reciprocal stochastic
processes on the structure space that simulate the transformation
between the system-specific equilibrium distribution and a
system-independent simple distribution pg,,... Following thisidea, we
use an explicit diffusion process (forward process; Fig. 1b, orange
arrows) that gradually transforms the target distribution of the mol-
ecule g, o, as the initial distribution, towards p;;n,. through a time
period 7. The corresponding reverse diffusion process then transforms
Psimpie Dack tothe target distribution g5 . This is the generation process
of DiG (Fig. 1b, blue arrows). The reverse process is performed by incor-
porating updates predicted by deep neural networks from the given
D, which are trained to match the forward process. The descriptor D
is processed into node representations v describing the feature of each
system-specificindividual element and a pair representation > describ-
ing inter-node features. The {v, 2} representation is the direct input
from the descriptor part to the Graphormer model', together with the
geometric structure input R to produce a physically finer structure
(Supplementary Information sections B.1 and B.3). Specifically, we
choose pgimple := N(0,I)as the standard Gaussian distributionin the
state space, and the forward diffusion process as the Langevin diffusion
process targeting this pg,.. (Ornstein-Uhlenbeck process)****. A time
dilation scheme B, (ref. 43) isintroduced for approximate convergence
tO Pgimple after afinite time 7. The result is written as the following sto-
chastic differential equation (SDE):

dR, = —%thm \/EdBt @

where B, is the standard Brownian motion (a.k.a. Wiener process).
Choosing this forward process leads to a pg;,,. that is more concen-
trated thanaheated distribution, henceitis easier to draw high-density
samples, and the form of the process enables efficient training
and sampling.
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Following stochastic process theory (see, for example, ref. 44),
the reverse process is also a stochastic process, written as the follow-
ing SDE:

dR; = %Rgdf + BV l0g 4 (R dE +\/B; dB; @

wheref :=7—tisthereversedtime, gp; := gp .-, ;is the forward pro-
cess distribution at the corresponding time and B; is the Brownian
motion in reversed time. Note that the forward and corresponding
reverse processes, equations (1) and (2), are inspired from but not
exactly the heating and annealing processes. In particular, there is no
concept of temperature in the two processes. The temperature T men-
tionedinthe PIDPloss belowis the temperature of the real target system
butis not related to the diffusion processes.

Fromequation (2), the only obstacle thatimpedes the simulation
of the reverse process for recovering g o from pg, is the unknown
Vlog gy :(Ry). Deep neural networks are then used to construct ascore
model s‘;’[(R), which is trained to predict the true score function
Vlog gy (R) of each instantaneous distribution g5, from the forward
process. This formulationis called a diffusion-based generative model
and has been demonstrated to be able to generate high-quality samples
of images and other content?***~*, As our score model is defined in
molecular conformational space, we use our previously developed
Graphormer model™ as the neural network architecture backbone of
DiG, toleverage its capabilities in modelling molecular structures and
togeneralizetoarange of molecular systems. Note that the score model
aims to approximate a gradient, which is a set of vectors. As these are
equivariant with respect to the input coordinates, we designed an
equivariant vector output head for the Graphormer model (Supple-
mentary Information section B.4).

Withthe SZ),:(R) model, drawing asample R, from the equilibrium
distribution of a system © can be done by simulating the reverse pro-
cessinequation (2) on N +1steps that uniformly discretize [0, 7] with
step size h = t/N (Fig. 1b, blue arrows), thus

Ry ~ Psimple-

R R; + B;s5, i(Ri)> +N(O,8D),i=N, - 1,

1
i—1=ﬁ(

wherethe discrete stepindexicorrespondstotimet=ih,and 5;:= hf,;.
Supplementary Information section A.1 providesthe derivation. Note
that thereverse process does not need to be ergodic. The way that DiG
models the equilibriumdistributionis to use the instantaneous distri-
butionattheinstant¢ =0 (or f = 7) onthereverse process, but not using
atime average. As R, samples can be drawn independently, DiG can
generate statistically independent R, samples for the equilibrium
distribution. In contrast to MD or MCMC simulations, the generation
of DiG samples does not suffer from rare events that link different states
and can thus be far more computationally efficient.

PIDP
DiG canbe trained by using conformation data sampled over arange
of molecular systems. However, collecting sufficient experimental
or simulation data to characterize the equilibrium distribution for
various systems is extremely costly. To address this data scarcity
issue, we propose a pre-training algorithm, called PIDP, which effec-
tively optimizes DiG on an initial set of candidate structures that
need not be sampled from the equilibrium distribution. The supervi-
sion comes from the energy function £, of each system D, which
defines the equilibrium distribution gy o(R) exp(—E”(R)) at the
target temperature 7.

The key idea is that the true score function Vlog gy, from the
forward process in equation (1) obeys a partial differential equation,
known as the Fokker-Planck equation (see, for example, ref. 48). We

then pre-train the score model sf . by minimizing the following loss
function that enforces the equatlon to hold:

b (v(RGY 5§ (R('")))+VHS (R('"))” +V(v

55, ®5))

+h z | LvE, (RO + 5, ()]

o Dl(

Here, the second term, weighted by A,, matches the score model at the
final generation step to the score from the energy function, and the
first term implicitly propagates the energy function supervision
tointermediate time steps (Fig. 1b, upperrow). The structures {R('")}
are pointsonagrid spanning the structure space. Since these structures1
areonly used to evaluate the loss function on discretized points, they
do not have to obey the equilibrium distribution (as is required by
structuresinthe training dataset), therefore the cost of preparing these
structures can be much lower. As structure spaces of molecular systems
are often very high dimensional (for example, thousands for proteins),
aregular grid would have intractably many points. Fortunately, the
space of actualiinterestis only alow-dimensional manifold of physically
reasonable structures (structures with low energy) relevant to the
problem. This allows us to effectively train the model only on these
relevant structures as R,samples. R;samples are produced by passing
R,samples through the forward process. See Supplementary Informa-
tion section C.1for an example on acquiring relevant structures for
protein systems.

We also leverage stochastic estimators, including Hutchinson’s
estimator***°, toreduce the complexity in calculating derivatives of high
order and for high-dimensional vector-valued functions. Note that, for
each step i, the corresponding model s?  receives a training loss inde-
pendent of other stepsand canbe dlrectly back-propagated. In this way,
the supervision on each step canimprove the optimizing efficiency.

Training DiG with data

In addition to using the energy function for information on the prob-
ability distribution of the molecular system, DiG can also be trained
with molecular structure samples that can be obtained from experi-
ments, MD or other simulation methods. See Supplementary Informa-
tion section C for data collection details. Even when the simulation
data are limited, they still provide information about the regions of
interest and about the local shape of the distributionin these regions;
hence, they are helpful to improve a pre-trained DiG. To train DiG on
data, the score model s"m(Ri) is matched to the corresponding score
function Vlog g, ; demonstrated by datasamples. This canbe done by
minimizing g, ;| s%,i(R,«) - Viog gy (R) ||2 for each diffusion time
stepi. Although a precise calculation of V log g, ;isimpractical, theloss
function can be equivalently reformulated into a denoising
score-matching form®*

IID o(Ro)[Eﬂ(fx)” Gtsp ,(atRO +0i€;) + €; ”

2=
Mz

)
—_

wherea; := H}:l \/1-B;0; :=,/1-aZandp(e)isthestandard Gaussian
distribution. The expectation under g, o can be estimated using the
simulation dataset.

We remark that this score-predicting formulation is equivalent
(Supplementary Information section A.1.2) to the noise-predicting
formulation® in the diffusion model literature. Note that this func-
tion allows direct loss estimation and back-propagation for each i in
constant (with respect to i) cost, recovering the efficient step-specific
supervision again (Fig. 1b, bottom).

Density estimation by DiG
The computation of many thermodynamic properties of amolecular
system (for example, free energy or entropy) also requires the density
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functionofthe equilibriumdistribution, whichis another aspect of the
distribution besides asampling method. DiG allows for this by tracking
the distribution change along the diffusion process*:

logpf, o (Ro) = 108 Psimple (R%,r(RO))

T D T
- /O %V‘S%,t(kgt(ko)) a2 fo B, dt

where Dis the dimension of the state space and R‘;J(RO) isthesolution
to the ordinary differential equation (ODE)

__b
th = —7

(R +s% (R)) dt ©)
with initial condition R,, which can be solved using standard ODE
solvers or more efficient specific solvers (Supplementary Information
section A.6).

Property-guided structure generation with DiG
Thereisagrowing demand for the design of materials and molecules
that possess desired properties, such as intrinsic electronic band
gaps, elasticmodulus and ionic conductivity, without going through
aforward searching process. DiG provides a feature to enable such
property-guided structure generation, by directly predicting the
conditional structural distribution given a value c of a microscopic
property.

To achieve this goal, regarding the data-generating process in
equation (2), we only need to adapt the score function from Vlog g, ,(R)
to Vg log g5 (R|c). Using Bayes’ rule, the latter can be reformulated as
Vg log gy (R|c) = Viog gy «(R) + Vg log g5 (c[R), where the first term can
be approximated by thelearned (unconditioned) score model; thatis,
the new score modelis

s, (Rij) = 85 (R)) + Vg, log g (cIRy)

Hence, only a g, (c|R)modelis additionally needed**¢, whichis a prop-
erty predictor or classifier thatis much easier to train than agenerative
model.

In a normal workflow for ML inverse design, a dataset must be
generated to meet the conditional distribution, then an ML model
will be trained on this dataset for structure distribution predictions.
The ability to generate structures for conditional distribution without
requiring a conditional dataset places DiGinanadvantageous position
when compared with normal workflows in terms of both efficiency and
computational cost.

Interpolation between states

Giventwo states, DiG canapproximate areaction path thatcorresponds
to reaction coordinates or collective variables, and find intermediate
states along the path. Thisisachieved through the fact that the distribu-
tion transformation process described in equation (1) isequivalent to
the processinequation (3) ifs;’” iswelllearned, whichis deterministic
and invertible, hence establishing a correspondence between the
structure and latent space. We can then uniquely map the two given
statesinthestructure spaceto the latent space, approximate the path
inthe latent space by linear interpolation and then map the path back
to the structure space. Since the distribution in the latent space is
Gaussian, which has a convex contour, the linearly interpolated path
goes through high-probability or low-energy regions, so it gives an
intuitive guess of the real reaction path.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Structures from the Protein Data Bank (PDB) were used for training
and as templates (https://www.wwpdb.org/ftp/pdb-ftp-sites; for
the associated sequence data and 100% sequence clustering see also
https://ftp.wwpdb.org/pub/pdb/derived_data/and https://cdn.rcsb.
org/resources/sequence/clusters/clusters-by-entity-100.txt). Train-
ingused a version of the PDB downloaded on 25 December 2020. The
template search also used the PDB70 database, downloaded 13 May
2020 (https://wwwuser.gwdg.de/-compbiol/data/hhsuite/databases/
hhsuite_dbs/). For MSA lookup at both the training and prediction time,
we used Uniclust30v.2018_08 (https://wwwuser.gwdg.de/-compbiol/
uniclust/2018_08/). The milisecond MD simulation trajectories for
the RBD and main protease of SARS-CoV-2 are downloaded from the
coronavirus disease 2019 simulation database (https://covid.molssi.
org/simulations/). We collect 238 simulation trajectories from the
GPCRmd dataset (https://www.gpcrmd.org/dynadb/datasets/).
Protein-ligand docked complexes are collected from Cross-
Docked2020 dataset v1.3 (https://github.com/gnina/models/tree/
master/data/CrossDocked2020). The MD simulation trajectories for
1,500 protein-ligand complexes and the generated carbon structures
areavailable uponrequest fromthe corresponding authors (S.Z.,C.L.,
H.L.or T.Y.-L.) owing to Microsoft’s data release policy.

The OC20 dataset used for catalyst-adsorption generation modelling
is publicly available (https://github.com/Open-Catalyst-Project/ocp/
blob/main/DATASET.md). Specifically, we use the IS2RS part and MD
part. The carbon polymorphs dataset is generated using random struc-
ture search where randominitial structures are relaxed together with
the lattice using density functional theory with conjugated gradient.
The generated carbon structures are available upon request from the
corresponding authors (S.Z., C.L., H.L. or T.-Y.L.) owing to Microsoft’s
datarelease policy.

Code availability

Source code for the Distributional Graphormer model, inference
scripts, and model weights are available via Zenodo at https://doi.
org/10.5281/zenodo.10911143 (ref. 53). An online demo page is available
at https://DistributionalGraphormer.github.io.

The DiG models are primarily developed using Python, PyTorch,
Numpy, fairseq, torch-geometric and rdkit. We used HHBIits and
HHSearch from the hh-suite for MSA and PDB70 template searches,
and Gromacs for MD simulations. OpenMM, pdbfixer and the amber14
forcefield were utilized for energy function training. DFT calculations
for the carbon polymorphs dataset were performed with VASP. Both the
carbon polymorphs and OC20 datasets were converted to PyG graphs
using torch-geometric and stored inImdb databases. For more detailed
information, please refer to the code repository.

Data analysis for proteins and ligands was conducted using Python,
PyTorch, Numpy, Matplotlib, MDTraj, seaborn, SciPy, scikit-learn,
pandas and Biopython. Visualization and rendering were done
with ChimeraX and Pymol. Analysis and visualization of catalyst—
adsorption systems and carbon structures were performed with
Python, PyTorch, Numpy, Matplotlib, Pandas and VESTA. Adsorption
configurations were searched using density functional theory
computations with VASP.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size sufficient number of structures (or configurations) are generated to reach converged distributions.

Data exclusions  For protein structures generated by DiG models, low quality structures (i.e., TM-score < 0.5) are filtered out for downstream analysis.
Explicitly explained in the method section. TM-score was computed using commonly used method by the protein structure research
community.

Replication multiple trials were carried out to cross validate the results
Randomization  Randomization is involved during the training and sampling processes of DiG, including: 1. the random initialization of the DiG model before

training; 2. the randomness in controlling part of configurations in training, such as the order of the training samples; 3. the Gaussian noise
used for estimating the training loss function of the diffusion model; 4. the randomness in simulating the stochastic process for sampling.
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Software n/a
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Statistical modeling & inference

Model type and settings n/a
Effect(s) tested n/a

Specify type of analysis: [ | whole brain || ROI-based | | Both




Statistic type for inference n/a

(See Eklund et al. 2016)
Correction n/a

Models & analysis

n/a | Involved in the study
IZ |:| Functional and/or effective connectivity

IZ |:| Graph analysis

IZ |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

>
Q
L
C
=
(D
5,
o)
=
o
=
-
@
S,
o)
=
>
@
wv
e
3
=
QO
=
A

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
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