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Large language models generate functional
proteinsequences across diverse families
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Deep-learning language models have shown promise in various

biotechnological applications, including protein design and engineering.
Here we describe ProGen, alanguage model that can generate protein
sequences with a predictable function across large protein families, akin
to generating grammatically and semantically correct natural language
sentences on diverse topics. The model was trained on 280 million protein
sequences from >19,000 families and is augmented with control tags
specifying protein properties. ProGen can be further fine-tuned to curated
sequences and tags to improve controllable generation performance

of proteins from families with sufficient homologous samples. Artificial
proteins fine-tuned to five distinct lysozyme families showed similar
catalytic efficiencies as natural lysozymes, with sequence identity to
natural proteins as low as 31.4%. ProGen is readily adapted to diverse
protein families, as we demonstrate with chorismate mutase and malate

dehydrogenase.

Traditional methods for protein engineering perform iterative
mutagenesis and selection of natural protein sequences to identify
proteins with desired functional and structural properties. By con-
trast, rational or de novo protein design methods aim to improve the
efficiency and precision of creating novel proteins with desired prop-
erties. Structure-based de novo design methods'° employ simula-
tions grounded in biophysical principles, whereas coevolutionary
methods®° build statistical models from evolutionary sequence data
to specify novel sequences with desired function or stability. Both
structuraland coevolutionary approaches are not without limitations.
Structural methods rely on scarce experimental structure data and
difficult or intractable biophysical simulations®". Coevolutionary
statistical models are tailored to specific protein families, frequently
rely onmultiple sequence alignments, and do not operate well in space
outside of the defined multiple sequence alignment". Recently, deep

neural networks have shown promise as generative and discriminative
models for protein science and engineering . Their ability to learn
complex representations could be essential to effectively exploit an
exponentially growing source of diverse and relatively unannotated
protein data—public databases containing millions of raw unaligned
protein sequences® %,

Inspired by the success of deep-learning-based natural language
models trained on large text corpora that generate realistic text with
varied topics and sentiments* %, we developed ProGen, a protein
language model trained on millions of raw protein sequences that
generates artificial proteins across multiple families and functions.
While prior work has shown that natural-language-inspired statis-
tical representations of proteins are useful for protein informatics
tasks such as stability prediction, remote homology detection and
secondary structure prediction*~, we show that the latest advances
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Fig.1| Artificial protein generation with conditional language modeling.

a, Conditional language models are deep neural networks that can generate
semantically and grammatically correct, yet novel and diverse natural language
text, steerable using input control tags that govern style, topic and other entities.
b,c, Analogous to natural language models, we develop ProGen, a conditional
protein language model (b) that generates diverse artificial protein sequences
across protein families based oninput control tags (c). d, ProGen is trained using

alarge, universal protein sequence dataset of 280 million naturally evolved
proteins from thousands of families, of which five diverse lysozyme families are
experimentally characterized in this study. e, ProGenis a1.2-billion-parameter
neural network thatis based on the Transformer architecture, which uses a self-
attention mechanism for modeling comprehensive residue-residue interactions.
ProGen s trained to generate artificial sequences by minimizing the loss over the
nextamino acid prediction problem on the universal protein sequence dataset.

in deep-learning-based language modeling can be adopted to gener-
ate artificial protein sequences, from scratch, that function as well as
natural proteins.

ProGenisiteratively optimized by learning to predict the probabil-
ity ofthe nextamino acid given the pastamino acidsinaraw sequence,
with no explicit structural information or pairwise coevolutionary
assumptions. Trained in thisunsupervised manner fromalarge, varied
protein sequence database (Supplementary Table 1), ProGen learns a
universal, domain-independent representation of proteins that sub-
sumes localand global structure motifs, analogous to natural language
models learning semantic and grammatical rules. After training, Pro-
Gen can be prompted to generate full-length protein sequences for
any protein family from scratch, with a varying degree of similarity to
natural proteins. Inthe common case where some sequence datafrom
a protein family is available, we can use the technique of fine tuning
pretrained language models®* * with family-specific sequences to
further improve the ability of ProGen to capture the distribution of
local sequence neighborhoods corresponding to the protein family.

ProGen is a 1.2-billion-parameter neural network trained using
a publicly available dataset of 280 million protein sequences. A key
component of ProGen is conditional generation®®***% thatis, sequence
generation controlled by property tags (for example, Protein Family:
Pfam ID PF16754, Pesticin) provided as input to the language model.
In the case of natural language, these control tags may be style, top-
ics, dates and other entities (Fig. 1a). For proteins, the control tags are
properties such as protein family, biological process and molecular
function, which are available for alarge fraction of sequences in public
protein databases (Fig. 1b and Supplementary Fig. 1).

Results

We experimentally evaluated the ability of ProGen to generate func-
tional artificial amino acid sequences by testing its generations across
five distinct protein families from the lysozyme clan®* (Supplemen-
tary Table 2). The protein families contain substantial sequence diver-
sity (Supplementary Table 3) with average sequence length varying
between 84-167 across families. The sequences also show large struc-
tural diversity and multiple structural folds (Supplementary Fig. 2). As
awhole, thisrepresents a challenging design space for amodel that is
not constrained in generation to local sequence neighborhoods near
known functional wild types and also not provided with structural pri-
ors. We collected a dataset of 55,948 sequences from these five families
from Pfam and UniprotKB sources for obtaining positive controls and
for fine tuning® > ProGen.

After fine tuning ProGen using the curated lysozyme data-
set, we generated one million artificial sequences using ProGen by
providing the Pfam ID for each family as a control tag. Our artificial
lysozymes span the sequence landscape of natural lysozymes (Fig. 2a)
across five families that contain diverse protein folds, active site
architectures and enzymatic mechanisms***". As our model can
generate full-length artificial sequences within milliseconds, a large
database can be created to expand the plausible sequence diversity
beyond natural libraries (Supplementary Table 3). Although artifi-
cial sequences may diverge from natural sequences purely from a
sequence identity calculation, (Fig. 2b and Supplementary Fig. 3),
they demonstrate similar residue position entropies when forming
separate multiple sequence alignments of natural and artificial proteins
withineach family (Fig. 2c). This indicates that the model has captured
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Fig. 2| Generated artificial antibacterial proteins are diverse and express well
in our experimental system. a, When analyzed using ¢-distributed stochastic
neighbor embedding (¢-SNE) as a dimensionality reduction technique for
visualization purposes, artificial sequences from our model are shown to span the
landscape of natural proteins from five lysozyme families. Each point represents
anatural or generated sequence embedded in a two-dimensional ¢-SNE space.

b, With sufficient sampling, ProGen can generate sequences that are highly
dissimilar from natural proteins. Max ID measures the maximum identity of an

proteins

proteins Position in multiple sequence alignment

artificial protein with any publicly available natural protein. ¢, Artificial proteins
maintain similar evolutionary conservation patterns as natural proteins across
families. Plots demonstrate the variability at each aligned position for alibrary of
proteins. Conserved positions are represented as curve dips. seq., sequence.

d, From our generated proteins, we select one hundred proteins for synthesis and
characterization in our experimental setup. e, Artificial proteins express well even
withincreasing dissimilarity from nature (40-50% max ID) and yield comparable
expression quality to one hundred representative natural proteins.

evolutionary conservationpatternswithouttrainingonexplicitalignment
information such as with Potts models*?, as implemented in direct
coupling analysis™>,

Toexperimentally evaluate ProGen performance across arange of
sequence divergences from natural proteins, we selected one hundred
sequences filtered on the basis of generation quality and diversity to
natural sequences, measured as top-hit identities (‘max ID’) to any
proteininour training dataset containing 280 million proteins, which is
primarily composed of UniParc? (Supplementary Fig.4). Our selected
proteins included 100 artificial sequences (Supplementary Table 2),
with a minimum of 8 proteins from each protein family. The average
sequence length for artificial proteins varies between 93-179 across
families, comparable to natural lysozymesin our curated dataset from
Pfam. Artificial proteins included specific amino acids and pairwise
interactions never before observed in aligned positions in lysozyme
family-specific alignments (Supplementary Tables 4 and 5). We also
selected a positive control group from the 55,948 curated lysozyme
sequences. We clustered the natural sequences with MMseqs2*” and

chose roughly 20 cluster-representative sequences from each of the
five families.

To evaluate function, full-length genes were synthesized and puri-
fied via cell-free protein synthesis and affinity chromatography. Inthe
positive control set of 100 natural proteins, 72% were well expressed
as measured by chromatography peaks and band visualization. The
ProGen-generated proteins express equally well (72/100 total) across
all bins of sequence identity to any known natural protein (max ID
40-90%; Fig. 2e). In addition, we designed artificial proteins using
bmDCA’, a statistical model that is based on direct coupling analysis,
which explicitly approximates first and second-order residue depend-
encies. Starting from their publicly available code, we tried to make the
bmDCA model converge on the same sequences as ProGen and using
additional alignment information and searched over a wide range
of hyperparameters. bmDCA was unable to fit three out of the five
lysozyme families, and exhibited 60% detectable expression (30/50
proteins) for the remaining two protein families. These resultsindicate
that ProGen can generate artificial proteins that are structurally well

Nature Biotechnology | Volume 41| August 2023 | 1099-1106

1101


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-022-01618-2

folded for proper expression as compared to a batch of natural pro-
teins, even when sequence alignment size and quality limit the success
of alternative approaches.

Next we examined activity on the basis of quench release of
fluorescein-labeled Micrococcus lysodeikticus cell wall (Molecular
Probes EnzChek Lysozyme kit) using 90 randomly chosen proteins out
of each expressed set of 100. Proteins were prepared in 96-well plate
format to extract fluorescence curves over time (Fig. 3a). Hen egg white
lysozyme (HEWL), a naturally evolved exemplar protein, was meas-
ured as positive control, in addition to ubiquitin as negative control.
Proteins that generated fluorescence one standard deviation above
the maximum fluorescence of any negative control were considered
functional. Among our artificial proteins, 73% (66/90) were functional
and exhibited highlevels of functionality across families (Fig. 3¢c). The
representative natural proteins exhibited similar levels of functionality
with 59% (53/90) of total proteins considered functional. None of the
bmDCA artificial proteins exhibited a detectable level of functionality
(Supplementary Fig. 5), which may be due to convergence, sampling,
orotherspecific model runissues further highlighting the versatility of
ProGen providing a potentially more robust alternative. These results
indicate that ProGen generates protein sequences that not only can
express well but also maintain enzymatic function for diverse sequence
landscapes across protein families.

In addition to a binary value for functionality, we calculated a
relative activity score with respect to HEWL for the in vitro assay. Our
artificial proteins matchactivity levels of natural proteins even at lower
levels of sequence identity to any known natural protein, (Fig. 3b and
Supplementary Fig. 6). Notably asmall number of proteins, both within
thenatural and artificial proteins, were within an order of magnitude of
HEWL, which was substantially more active than all negative controls.
These highly active outliers demonstrate the potential for our model
to generate sequences that may rival natural proteins that have been
highly optimized through evolutionary pressures.

From the 100 artificial proteins, we selected five proteins that
spanned a wide range of max IDs (48-89%) to recombinantly express
in Escherichia coli. Of these, only one, LO0S8, generated no detectable
expression (Supplementary Fig. 7). Two (LO13 and LO38) expressed
robustly to inclusion bodies and were not pursued further. Two pro-
teins, LO56 (max ID 69.6%) and LO70 (max ID 89.2%) expressed well
and incurred bactericidal activities towards the E. coli BL21(DE3)
strain used during overnight induction at 16 °C. Spent medium har-
bored enzymatic activity, therefore, enzymes were purified from
this material.

While both enzymes purified as monomers at the expected size
by size-exclusion chromatography, we also observed a defined later
eluting (apparent lower molecular weight, likely owing to binding to
the dextran component of the column) species for each enzyme that
corresponded to full-length enzyme by SDS-PAGE (Supplementary
Fig. 7). The Ky, values of both monomers were too weak to be meas-
ured using a heterogeneous, fluorescein-labeled M. lysodeikticus cell
wall substrate (Molecular Probes EnzChek Lysozyme kit); however,
both monomers were active using a pseudo-first-order kinetic assay
(Supplementary Fig. 8). By contrast, we could readily measure the
Ky values for the purified apparent lower molecular weight species,
where both L0O56 and LO70 were highly active and had comparable
Michaelis-Menten parametersto HEWL (Fig. 3d). Takentogether, LO56
and LO70 harbor potent catalytic activity and bactericidal capabilities
thatare comparable to HEWL, while diverging from their nearest known
natural sequence by 53 and 18 amino acids, respectively. We also found
thatthereisnobiastolocation or structural element to the mutations
that diverge L0O56 and LO70 from their respective nearest sequence
homolog in nature. Differing residues are instead uniformly distrib-
uted. Some mutations are even found within the active site cleft and
withinregions thatinfluence conformational state (for L056). Despite
having comparable enzymatic activities, LO70 and LO56 only share

17.9% sequence ID. Insum, these results demonstrate that ProGen can
generate artificial proteins with near native activity.

Next, we examined the structural divergence of the artificial pro-
teins. We determined a 2.5-A resolution crystal of LO56 (Fig. 3e and
Supplementary Table 6). The global fold was similar to predictions, with
aCaroot meansquared deviation (RMSD) of 2.9 A from the backbone
structure predicted by trRosetta and 2.3 A RMSD from a wild-type T4
lysozyme structure*®*°. The largest structural divergence occursin the
beta hairpin formed by residues 18-31. This region forms the bottom of
the substrate-binding cleft® and is part of a hinge binding motion that
isimportant for substrate binding®. The structure of the M61 mutant
of T4 lysozyme (Protein Data Bank (PDB) accession 150L) is used as a
model of the ‘open’ state of this hinge and more closely resembles the
structure of L056 (1.0 A Ca RMSD). Alignment with a structure featur-
ing a covalently trapped substrate (PDB accession 148L) reveals that
the active site cleft is well formed with the key catalytic residue Glul5
(Glu11in T4L) and key substrate-binding residue Thr30 (Thr26 in T4L)
correctly positioned. Inaddition, the hydrophobic core of LO56 is well
packed, with only two small packing voids of less than 5 A*in volume,
which s typical for structures of this size™.

To examine whether ProGen could generate functional proteins
in the ‘twilight zone’ sequence identity> where two proteins are not
assumed to share functional similarity**, we generated 95 new artifi-
cial sequences with maximum sequence identities lower than 40% to
any known natural protein for two lysozyme families (PF00959 and
PF05838). Ofthe selected sequences, 78 out of the 89 (88%) expressed
well and 24 out of the 78 (31%) were soluble (Supplementary Fig. 9).
We purified six highly expressed proteins and found that they were all
active, but with lower Michaelis—Menten activities than HEWL or the
previously generated artificial proteins L056 and LO70 (Fig. 3f, Sup-
plementary Fig.10, and Supplementary Table 7). The protein with the
lowest sequence identity to a natural protein, D4 (31.4% ID to a protein
from an Arcobacter nitrofigilis organism), had a k_,,/K,, 0of 20.2M™s 7,
approximately 200-fold below HEWL. While the activity is substan-
tially lower for these distant proteins, directed evolution could be
employed toimprove activity. Collectively, these results demonstrate
a procedure for generating soluble, active proteins that are distant
enoughinsequence space that they might notbe considered traditional
sequence homologs.

To additionally compare across structural representations, we
used AlphaFold2 (ref.**) to predict the structure of functional artificial
sequences. As in the crystal structure of L056, the predicted artificial
structures roughly match known structures found in nature (Supple-
mentary Fig.11) including for low identity (<40%) artificial sequences.

Trained on a universal protein sequence dataset spanning many
families, ProGen designs proteins from any family when provided
with the corresponding control tag as input. To explore this capability
beyond the lysozyme clan, we evaluated the performance of ProGen
in generating and predicting functional full-length sequences from
families where other methods have previously been applied: choris-
mate mutase (CM)’ and malate dehydrogenase (MDH). Generated
proteins exhibit similar conservation patterns to natural sequence
libraries (Fig. 4a,d). After aligning the generations to asequence with
known structure (Fig. 4b,e), we observed that the conserved positions
ingenerated sequences correlate with ligand-binding and buried resi-
dues. Using previously published sequences and their experimentally
measured assay data for CM” and MDH® proteins, we also evaluated
the concordance of the ProGen model likelihood for these sequences
totheirrelative activity and compared it with the generative methods
used inthe original studies—bmDCA” and proteinGAN>, Specifically, we
measured per-token log-likelihoods for artificial sequences using Pro-
Genandused themto predictifartificial sequences should function. On
CMfunctiondata, ProGenlog-likelihoods had anarea under the curve
(AUC) of 0.85, significantly better (P < 0.0001, two-tailed test, n =1617)
than bmDCA, which had an AUC of 0.78 (Fig. 4c). On MDH function
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Fig. 3| Artificial protein sequences are functional while reaching as low as
31%identity to any known protein, exhibit comparable catalytic efficiencies
to a highly-evolved natural protein, and demonstrate similar structures

to known natural folds. a, Artificial proteins bind well to substrates and

exhibit high fluorescence responses over time (n = 90). For HEWL and negative
(ubiquitin) controls, the minimum and maximum fluorescence range ofn=3
replicates are shown as bars. b, Artificial proteins remain active even while being
dissimilar (40-50% max ID that is, top hit-identity) from known natural proteins.
Outliers indicate high activity samples where relative activity is computed with
respect to HEWL. Box plots are derived from n =90, 23, 28, 22, 8, 9 samples for
each category from top to bottom, respectively. Boxes display the median, first
quartile and third quartile with whiskers which extend to 1.5x the inter-quartile
range. ¢, Artificial proteins are functional across protein families. Functional is
defined as a fluorescence one standard deviation above the maximum value of
allnegative controls. d, Michaelis-Menten kinetics of HEWL natural lysozyme
(red) and two generated lysozymes (blue; LO56 and LO70) against cell wall

substrate show comparable performance (n =3 technical replicates where error
bars represent standard deviation). e, We determined a 2.5-A resolution crystal
of LO56 artificial lysozyme. A global overlay of LO56 crystal structure with two
representative T4 lysozyme conformations is shown with LO56 presented in sky
blue, ‘open’ conformation of M61 T4 lysozyme (PDB accession150L) indark red,
‘closed’ conformation of wild-type T4 lysozyme (PDB accession 3FA0) in orange,
and substrate (PDB accession 148L) colored by element. Catalytic threonine
(T30inL0OS6 and T26 in T4 lysozyme) and first catalytic glutamate (E15in LO56
and E11in T4 lysozyme) are represented as sticks. f, Bars represent Michaelis-
Menten k,/Ky, constants derived for lysozyme variants demonstrating arange
of catalytic activities across variants of varied maximal sequence IDs to known
natural protein. Error bars represent propagated standard deviations derived
from fitting procedure (n = 3 for A5, LO56 and LO70 technical replicates; n = 4 for
C9 and Elltechnical replicates; two biological replicates of each n = 4 technical
replicates for D4). Asterisk denotes k.,/Ky derived from initial rate analysis and
unit converted (Supplementary Table 7).

data, ProGen log-likelihoods had an AUC of 0.94 (Fig. 4f), which was
better than ProteinGAN discriminator scores, with an AUC of 0.87
(P<0.1,two-tailed test, n = 56).In sum, the model likelihoods of ProGen

are better aligned with experimentally measured assay data on two
diverse protein datasets—CM and MDH—than the sequence-generation
methods from original studies specifically tailored for these families.
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than the coevolutionary bmDCA’ algorithm from the original study. d, ProGen
can also generate MDH proteins that exhibit a similar residue distribution

to nature. e, The conserved residues among generated sequences correlate
toburied residues. f, The model likelihoods of ProGen are also accurate in
predicting functionality of published variants of MDH, similar to the generative
proteinGAN>* model used in the original study.

Tounderstand the relativeimpact of the universal sequence data-
setand of sequences from the protein family of interest on the genera-
tion ability of ProGen, we perform two ablation studies using the CM
and MDH experimentally measured assay data. First, we evaluated
the performance of ProGen trained only with the universal sequence
dataset. We measured per-token log-likelihoods for artificial sequences
for this version of ProGen using control tags for CM and MDH. These
likelihoods showed asignificant dropin AUC of 0.18 for CM (P< 0.0001,
two-tailed test, n=1,617) and 0.08 for MDH (P< 0.1, two-tailed test,
n=>56), as compared to fine-tuned ProGen when predicting if an arti-
ficial sequence should function. Conversely, the ProGen architecture
trained on CM and MDH protein sequences alone without the benefit
ofinitial training on the universal sequence dataset also showed a sig-
nificantdrop in performance as compared to fine-tuned ProGen—the
AUC reduced by 0.11 (P < 0.0001, two-tailed test, n=1,617) and 0.04
(P<0.05,two-tailed test, n=56) onthe CMand MDH data, respectively.

Theseresultsindicate that bothcomponents of our training strat-
egy—initial training on the universal sequence dataset and fine tun-
ing on the protein family of interest—contribute significantly to final
model performance. Training with the universal sequence dataset
containing many protein families enables ProGentolearnagenericand
transferable sequence representation that encodes intrinsic biologi-
cal properties. Fine tuning on the protein family of interest steers this
representation to improve generation quality in the local sequence
neighborhood. Similar to the adaptability shown by neural networks
trained on large datasets using transfer learning and fine tuning in
natural language processing®***° and computer vision®”*, protein
language models have the potential to be a versatile tool for generating
tailored proteins with desired properties. In Supplementary Fig. 12,

the distribution of available sequences for different protein families
indicates there is a large portion of the protein universe where our
current technique would be useful. We extrapolate thatit may be pos-
sible tosuccessfully generate artificial proteins with functional activity
without fine tuning, especially for larger protein families; however, it
would likely do so atasmallsuccessrate. We did not attempt to experi-
mentally test generated sequences without additional fine tuning in
our study.

Discussion

Inconclusion, our study shows that astate-of-the-art transformer-based
conditional language model trained only with evolutionary sequence
data generates functional artificial proteins across protein families.
Additional analyses suggest that our model has learned a flexible pro-
tein sequence representation that can be applied to diverse families
such aslysozymes, CM, and MDH. While we do not expect our language
model to generate proteins that belong to a completely different dis-
tribution or domain (for example, creating a new fold that catalyzes
anunnatural reaction), it can substantially expand the space of protein
sequences from those sampled by evolution. Combining biophysi-
cal modeling with generative models could further help us explore
data distributions that are completely distinct from those sampled
by evolution**°, Applications of our model could include generating
synthetic libraries of highly likely functional proteins for discovery or
iterative optimization. In combination with ever-increasing sources
of sequence data and more expressive control tags, our work points
to the potential for the use of deep-learning-based language models
for precise de novo design of proteins to solve problems in biology,
medicine, and the environment.
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Methods

Training data curation

Totrain ProGen, we collected a universal protein sequence dataset con-
taining 281 million non-redundant protein sequences (from >19,000
Pfam” families) and associated metadata (as control tags) from Uni-
Parc”, UniprotKB*, Pfam?® and NCBI taxonomic information® (Fig. 1d
and Supplementary Table 1). The amino acid vocabulary consisted of
thestandard 25 amino acids designations in IUPAC®2. The control tags
were divided into two categories: (1) keyword tags and (2) taxonomic
tags. Following the definitions laid out in the UniprotKB controlled,
hierarchical vocabulary of keywords (many of which are derived from
Gene Ontology (GO) terms®), the control keyword tags included 1,100
termsranging from cellular component, biological process, and molec-
ular function terms. The taxonomic tags include 100,000 terms from
the NCBI taxonomy across the eight standard taxonomic ranks. The
aggregated dataset was split into a training set of size 280 million and
two test sets, an out-of-distribution test set (OOD-test) of size 100,000
from 20 protein families and a randomly sampled in-domain test set
(ID-test) of size 1 million, that were held out for training and used for
evaluation. After model training on the training database, the model
was further trained, that is fine tuned, to the following datasets for
generation and classification tasks.

For fine tuning on lysozyme proteins, five protein families from
the Pfam database were selected, phage lysozyme (PF00959), pesticin
(PF16754), glucosaminidase (PF01832), glycoside hydrolase family
108 (PF05838) and transglycosylase (PF06737), yielding a total of
55,948 sequences. Proteins were provided to the model during fine
tuning as unaligned protein sequences with one control tag prepended
for the protein family designation. For fine tuning on CM proteins, a
search with HHBIits and blastp was performed with residues 1-95 of
EcCM (the CM domain of the E. coli CM-prephenate dehydratase, the
P-protein) yielding 20,214 sequences. For fine tuning on MDH proteins,
theL-lactate/MDH protein family from Interpro IPRO01557 was selected
with 17,094 sequences.

Conditional language modeling

Leta = (a, ..., a,,)be asequence of amino acids that specifies a protein
of length n, -1 appended with an ‘end of sequence’ token. Let
¢ = (¢, ... Cpc)be anassociated set of descriptors such as protein family
orsource organism, that s, ‘control tags’, through which we would like
to control generation of amino acid sequences. Let x =[c;a] be the
sequence formed by prepending a control tag sequence to an amino
acid sequence. The probability over such a combined sequence of
length n=n,+ n_is then P(x). Language modeling decomposes the
problem of generating xinto a next-token prediction problem®, where
atoken can either be an amino acid or a control tag. We train a neural
network with parameters 6 to minimize the negative log-likelihood
overadataset D = {x!, ..., x/!}

1D| nt

D 2 i 2 logp (k) m

Ho= 1Dl 5 nk i

Anew protein gof length m, with desired properties encoded by a
control tag sequence coflength m.canthenbe generated by sequentially
sampling its constituent tokens: py(ailc), pe(asla;, c),....ps(ajla, c)
(ref. *%). Generation continues until the model generates an ‘end of
sequence’ token.

We use a transformer-based®* neural network architecture for
constructing ProGen. The transformer learns long-range context
within sequences using a series of stacked layers, each containing a
self-attention mechanism (Fig. 1e). The self-attention mechanism in
each layer infers pairwise interaction relationships between all posi-
tionsinitsinputsequence. Stacking multiple self-attention layers allows
us to learn multiple-residue interactions®. The transformer-based
approach has been shown to be related to coevolutionary methods

for sequence design such as MRFs®, Potts models®® and Hopfield net-
works®. In contrast to transformer-based language models thatencode
amino acid sequences for discriminative protein prediction tasks**’%",
ProGen is a decoder transformer tailored for autoregressive genera-
tion: it generates asequenceinaleft-to-right manner, token-by-token,
where the next tokenis conditioned on all previously generated tokens.

The transformer architecture of ProGen has 36 layers, and 8
self-attention heads per layer and a total of 1.2 billion trainable neu-
ral network parameters. We trained ProGen to minimize the nega-
tive log-likelihood defined in Eq. 1 using this dataset with a batch size
of 2,048 for 1 million iterations. Training was performed across 256
Google Cloud TPU v3 cores for 2 weeks. Once trained, ProGen could
be used to generate protein sequences from scratch by specifying a
control tag (for example, protein family identifier from Pfam; Fig. 1c).

ProGen training

Fortraining, weincluded eachsequence andits reverse. We prepended
eachsequence withacorresponding subset of control tags. Foragiven
sequence, there can be multiple versions across databases, each with
their own associated control tags. We randomly sampled which set
of control tags to use, but biased sampling toward SwissProt tags as
they are manually verified. Additionally, we always included a sample
with the sequence alone without control tags so that ProGen could be
used to complete proteins using sequence dataalone. We truncated all
sequences to a maximum length of 512. Sequences of length less than
512were padded, and padded tokens were excluded from the cost func-
tion used for training. The average token length of control tags during
pretraining was eight. Our model was implemented in TensorFlow and
trained with a global batch size of 2048 distributed across 256 cores of
a Cloud TPU v3 Pod for a fixed number of 1 million iterations, with no
specific stopping criterion. The perplexity on a held-out test set was
monitored and did not exceed training set perplexity throughout model
training. Training took approximately 2 weeks using Adagrad with linear
warmup from0to1x 102 over theinitial 40,000 steps with alinear decay
for the remainder of training. The model was initialized with pretrained
weights of CTRL?®, which was trained on an English language corpus.

Lysozyme generation

Fine tuning involves making limited, computationally inexpensive,
gradient updates to the parameters of the trained model. We fine tuned
ProGento the 55,948-sequence fine tuning dataset using the conditional
language modeling loss function introduced in Eq. 1, using a separate
control tag foreach of the five lysozyme families. The fine tuning dataset
was clustered at 80% sequence identity and 10% of the clusters were
held-out asavalidation set for hyperparameter optimization and stop-
pingcriteria. The model was fit for 4 epochs using the Adam optimizer™
withalearningrate of 0.0001, batch size of 2, gradient norm clipping”
threshold of 0.25,and adropout™ rate of 0.1. We then applied sampling
using the final checkpoint of the fine-tuned model. We generated 1 mil-
lion artificial sequences from the learned conditional probability dis-
tribution pg (a;]a.;, cusing each of the five lysozyme families as a control
tag c,and applying top-p sampling”, which zeros out the probability of
the tail of the distribution during sampling, and uses ahyperparameter
ptodetermine what fraction of the original distribution to keep. Lower
p values result in sequences with a higher likelihood under the model,
but lower diversity. We generated a batch of 1 million synthetic
sequences (Supplementary Fig. 3) using p values that varied in
[0.25,0.50,0.75], and applied the sequence selection criteriain the next
section to determine which sequences to synthesize.

Lysozyme sequence selection

We selected sequences for synthesis by ranking them using the com-
bination of an adversarial discriminator?”® and generative model
log-likelihood scoring”. First, we trained an adversarial discrimina-
tor to distinguish between natural lysozymes and ProGen-generated
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lysozymes. A higher discriminator score indicates a protein sequence
that is ‘semantically’ and ‘grammatically’ closer to natural sequences,
butnot necessarily one of high sequence identity to natural proteins. To
trainthe discriminator, we generated abatch of samples from fine-tuned
ProGen (with nucleus sampling turned off, or p =1) that was the same
size and distribution of families as our dataset of natural lysozymes. The
discriminator architecture was a fine-tuned TAPE-BERT"". For robust-
ness, we trained three discriminators using different random seeds.
We assigned each sequence a discriminator score as the geometric
mean of the probability of the sample being a natural sequence as pre-
dicted by the three discriminators. We also assigned each sequence a
log-likelihood score as the average per-token log-likelihood for each
sample computed using the fine-tuned ProGen model and conditioned
onthe control tag used to generate the sequence, given by

1
Score (a) = .- > logpg (ajla;,c) @
a j=1

A higher log-likelihood score indicates a sequence close to
the probability distribution of sequences seen in training. Model
log-likelihoods are directly correlated with perplexity as a language
modeling evaluation metric. We selected artificial sequences using
separate rankings based on the discriminator and log-likelihood scores.
We separately ranked candidate sequences in maximum sequence
identity ranges of 40-50%, 50-60%, 60-70%, 70-80% and 80-90%.
For each range, we added the top discriminator-ranked sequences,
skipping any sequences that were >80% identical to any previously
selected sequence, for a total of 90 sequences. Ten more sequences
were added on the basis of ranking by generative model log-likelihood
scoresin eachrange, again skipping any sequences with >80% identity
to any previously selected sequence.

Evaluating ProGen on other protein systems

Wealso evaluated ProGen on generation of CM and MDH proteins. We
separately fine tuned ProGen on datasets of CM and MDH proteins
using the Adam optimizer, a learning rate of 1x 10, a gradient norm
clipping threshold of 0.25,and a dropout rate of 0.1. We also prepended
the CM and MDH data with control tags that corresponded to CM
and MDH families in original training of ProGen. After fine tuning, we
generated a set of 64,000 sequences using top-p sampling (p = 0.75)
fromthe CM and MDH fine-tuned models, respectively. We measured
concordance of the log-likelihoods of our model with protein func-
tion data on CM and MDH sequences, and compared with bmDCA’
and ProteinGAN® baselines, respectively. We computed the AUC in
receiver operating characteristic (ROC) curves for predicting binary
function labels from model scores. We computed model scores for
each sequence in both CM and MDH by using the per-token model
log-likelihood in Eq. 2. We used model scores for bmDCA given by
negative energy of each CM sequence provided by the authors of the
study’. We also applied thresholding at 0.42 normrelative enrichment
to obtainbinary labels for CM function, which roughly corresponds to
the cutoff point between two modes that existin CM function data, to
be used for ROC curves, following the original study’.

Since modellikelihoods for GANs are intractable, we used discrimi-
nator scores corresponding to the probability at which the ProteinGAN
discriminator predicted each sample was real as a ProteinGAN model
score foreach MDH sequence. The MDH functional labels are binary, so
no thresholding was needed to compute AUCs. For an ablation study on
ProGen, we also evaluate: i) arandomly initialized LM that has the same
architecture as ProGenandis fine tuned to the same task-specific data
asProGen (CM or MDH), but is not pretrained on alarger dataset; and
ii) ProGen without task-specific fine tuning, conditioning on control
tags for CM or MDH from the original ProGen pretraining data. After
measuring the AUC of eachmodel for each dataset, we used bootstrap-
ping to compute the statistical significance of the difference in AUC of

fine-tuned ProGen versus the reference method (bmDCA and ProGen
ablations for CM, ProteinGAN and ProGen ablations for MDH). At each
bootstrapping iteration, we resampled a new dataset of fitness and
model score pairs the same size as the original dataset by randomly
selecting data points from the original dataset with replacement. For
each sample dataset, we compute the difference in AUC score between
fine-tuned ProGen and the reference method. We drew atotal of 10,000
bootstrapping samples, and the Pvalue is given by the percentage of
thesamples where the baseline achieves an AUC greater than or equal
to fine-tuned ProGen, multiplied by two to give two-tailed.

Materials

Allreagents were purchased from Thermo Fisher Scientific unless oth-
erwise noted. DNAs used for in vitro translation were purchased from
Twist Bioscience and DNAs used for E. coli expression and purification
were purchased from VectorBuilder.

High-throughput cell-free expression of lysozymes

Lysozymes were expressed using the Tierra Bioscience cell-free expres-
sion platform. Cell-free extracts for protein expression were prepared
accordingtothe methods of Sun et al.”* with the following modifications:
TerrificBrothwas usedin lieu of 2xYT, cells were lysed in a single pass by
Frenchpressat10,000 p.s.i, dithiothreitol was omitted from wash buff-
ers, and run-off and dialysis steps were removed to streamline extract
processing. Expression reactions were composed of cell-free extract, an
energy bufferand alinear DNA template containinga promoter sequence,
the protein sequence of interest, the sequence of a strep purification
tag and a terminator sequence; reactions were carried out at 29 °C for
6 hours. Expression reactions for screening optimal affinity purification
tag terminus were performed in 10 pL volumes; selected reactions with
good expression were then scaled to 200 pL. Lysozymes were purified
from expression reactions by affinity chromatography with elution by
enzymatic cleavage with 3 C protease leaving a small sequence scar.

High-throughput screening of lysozyme activity

Purified cell-free synthesized lysozymes were assayed with the EnzChek
Lysozyme Assay Kit (Thermo Fisher Scientific). The assay was per-
formed according to protocol with minimal modifications. HEWL
standards and purified proteins in buffer (100 mM Tris pH7.4,150 mM
NaCl, 2 mM TCEP, 20% glycerol) were brought to 50 pl with reaction
buffer (100 mM sodium phosphate pH7.5,100 mM NaCl,2 mMNaN,) in
a96-well plate. Fifty microliters of DQ lysozyme substrate, fluorescein
conjugate (1 mg ml™) was added to each well and fluorescence (excita-
tion 485/20; emission 528/20) was collected every 5 min with aSynergy
2 multi-mode microplate reader (BioTek) for 6 hat 37 °C.

For each 96-well plate, three random wells were dedicated for
HEWL controls and three wells were dedicated for a negative control
of ubiquitinexpressed and purified on the Tierra Biosciences cell-free
expression platform. A purified protein was considered functional if
it exhibited a higher fluorescence than one standard deviation above
the maximum fluorescence value of all negative controls. Therelative
activity for each protein was calculated by the following equation:

rprotein - rnegative MypwL (3)

Relative activity =

THEWL — rnegative mprotein

Where ris the linear rate of fluorescence increase in the initial 20 min
of the fluorogenic assay and mis the mass of protein as determined by
Bradford assay concentration and measured volumes.

E. coliexpression of lysozyme variants

We chose five generated lysozyme variants (LO0S8, L013, L038, LO56,
LO70) for expression in E. coli on the basis of strength of signal in
the in vitro assay, expression level in the cell-free system and max
ID to natural proteins. Generated lysozyme variants, were codon
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optimized for E. coli (Integrated DNA Technologies) with an HRV3C
protease site N-terminal of the open reading frame. DNA was syn-
thesized and cloned in-frame with a 5" His¢-tag in a pET vector and
transformed into BL21(DE3) (Vectorbuilder). One liter of Terrific Broth
(Fisher) was prewarmed to 37 °C before being inoculated with 10 ml
overnight starter culture. Cultures were grown to 0.6 < OD¢,, < 1.0
before temperature was dropped to 16 °C for expression. Cultures
were induced with 0.5 mM isopropyl 3-D-1-thiogalactopyranoside
(source) and protein expression was allowed to continue overnight.
Forinduced cultures of LO56 and LO70, turbidity was observed in the
spent medium after cells were pelleted at 3,500 r.c.f. for 30 min at
4°C. Spent medium also harbored lysozyme activity as ascertained
through fluorescence increase over time of the fluorescein-labeled M.
Lysodeikticus cell wall substrate (EnzChek kit; Thermo Fisher). Spent
medium was saved for protein purification (outlined below) and cell
pellet frozen and stored at —20 °C. Variant LOO8 did not express under
multiple different conditions. LO13 and L0O38 expressed highly to
inclusion bodies.

Purification of LO56 and LO70 from spent medium

Mediumwas splitinto two 0.5 I pools each. The first pools were loaded
onto a5 mlHisTrap FF NiNTA column (GE) using a peristaltic pump at
room temperature. Columns were washed with 200 ml30 mM HEPES
pH 7.6,150 mM NaCl, 25 mM imidazole, 0.5 mM TCEP. Columns were
eluted with 25 ml 30 mM HEPES pH 7.6, 150 mM NacCl, 250 mM imida-
zole, 0.5 mM TCEP. Eluates were concentrated to 8-10 mland dialyzed
against 30 mM HEPES pH 7.6,150 mM NacCl, 0.5 mM TCEP with HRV3C
protease added overnight at 4 °C. Dialyzed protein was put through an
ortho 5 ml HisTrap FF NiNTA column (GE) to remove HRV3C protease
and uncleaved lysozyme. Though highly pure by SDS-PAGE analysis,
protein was further purified by size-exclusion chromatography and
loaded onan S7510/300 gl column pre-equilibrated with 30 mM HEPES
pH7.6,150 mM NacCl, 0.5 mM TCEP. Two peaks were resolved for each
variant that harbored lysozyme activity against the fluorescein-labeled
M. Lysodeikticus cellwall substrate (EnzChek kit; Thermo Fisher). Indi-
vidual peaks were pooled and protein concentration determined either
by Bradford assay (Biorad) or by SDS-PAGE using colloidal coomassie
(Thermo Fisher) and HEWL in-gel standards.

The second spent medium pools were batch bound to 5 mlHisPur
NiNTAresin (Thermo Fisher) at 4 °Cfor1hbefore protein-bound resin
was pelleted through centrifugation at 3,000 r.c.f. for 5min at 4 °C.
Protein-bound resin was resuspended with25 ml30 mM HEPES pH 7.6,
150 mM NacCl, 25 mMimidazole, 0.5 mM TCEP and applied to a gravity
flow column (BioRad) at room temperature. Columns were washed with
200 mI30 mMHEPES pH 7.6,150 mM NaCl, 25 mM imidazole, 0.5 mM
TCEP. Columns were eluted with 25 ml 30 mM HEPES pH 7.6, 150 mM
NaCl, 250 mM imidazole, 0.5 mM TCEP. Eluates were concentrated
to 8-10 ml and dialyzed against 30 mM HEPES pH 7.6, 150 mM NacCl,
0.5 mMTCEP with HRV3C protease added overnightat4 °C.Lysozyme
was separated from HRV3C protease by size-exclusion chromatography
onanS7510/300 gl column pre-equilibrated with30 mMHEPES pH 7.6,
150 mM Nacl, 0.5 mM TCEP. Two peaks were resolved for each variant
that harbored lysozyme activity against the fluorescein-labeled M.
Lysodeikticus cell wall substrate (EnzChek kit; Thermo Fisher) that cor-
responded to peaks observed in the first pool purification. Individual
peaks were pooled and protein concentration determined either by
Bradford assay (Biorad) or by SDS-PAGE using colloidal coomassie
(Thermo Fisher) and HEWL in-gel standards.

Michaelis-Menten kinetics of lysozyme variants using
fluorescein-labeled M. lysodeikticus cell wall
Fluorescein-labeled M. Lysodeikticus cell wall substrate (EnzChek kit;
Thermo Fisher) was reconstituted in 30 mM HEPES pH 7.6, 150 mM
NaClto1mg ml™, aliquoted and stored at—20 °C until use. A serial two-
fold dilution series of substrate was prepared in 30 mM HEPES pH 7.6,

150 mM NaCland treated as a 2x solution for enzymatic assays. Enzyme
concentration was calculated either through Bradford assay (Bio-Rad)
or by SDS-PAGE, in-gel using Novex or Abcam Colloidal Coomassie stain
againstaHEWL standard (Alfa Aesar). Enzymes were diluted to between
10and100 nMin30 mMHEPES pH7.6,150 mM NaCl (HEWL) or 30 mM
HEPES pH 7.6,150 mM NaCl, 0.5 mM TCEP (LO56 and L070) and these
stocks treated asa2x solution for enzymatic assays. Kinetic assays were
performedinaTecan Spark10 M plate reader using monochrometers
with a fixed 20 nm bandpass filter in a 384-well black-bottom plate
(Corning) at 10 pl final volume. Reactions were initiated by pipetting
5 plof substrate into appropriate wells followed immediately by 5 pl of
enzyme, mixed by pipetting before starting dataacquisition. The dead
time fromreactioninitiation to acquisition of first read was measured
tobe 24 s.Forreactions carried out above ambient temperature (25 °C),
the plate was preincubated at temperature for at least 5 min before
reaction initiation. Initial velocities were calculated through linearly
fitting fluorescence intensity (a.u.) versus time for the first 2 min of
eachreaction. Finally, velocities were converted froma.u. to fluorescein
liberated through application of afluorescein (Sigma) standard curve
(Supplementary Fig. 7) and normalized to enzyme concentration.
Averaged data (n =3 technical replicates) were non-linearly fit to the
Michaelis-Menten model (Eq. 4) in IgorPro 7 to report K, in units of
fluorescein liberated enzyme ™ min™and Ky, in units of g I’ (the average
molecular weight of the fluorescein-labeled M. Lysodeikticus cell wall
substrate was unknown and likely heterogeneous).

Kcar = [substrate]

= 4
Ky + [substrate] @

[

For low ID lysozyme A5, the above protocol was altered slightly to
accommodate lower catalytic activity of these variants: reaction
volumes were increased to 20 pl, the plate was covered with an opti-
cally transparent seal (Microseal ‘B’ seal; BioRad) to mitigate sample
evaporation, fluorescence reads were taken every 5 min for 16 h with
5soflinear plate shaking before each measurement to minimize pho-
tobleaching of substrate and ensure substrate maintained homo-
geneous dispersion during longer reactions. The rate of substrate
photobleaching was measured using a buffer-only control and used as
abackground rate subtraction for initial rate determination.

Lysozyme k_,/K,, extrapolation from pseudo-first-order
kineticdata

For the higher molecular weight LO56 and LO70 species whose K}, val-
ues were beyond the concentration regime of the fluorescein-labeled
M. Lysodeikticus cell wall substrate (EnzChek kit; Thermo Fisher), the
ratio k,/K,,was measured through pseudo-first-order kinetics where
when [Enyzme] » Substrate the Michaelis-Menten model simplifies
to Eq. 5. Fluorescein-labeled M. Lysodeikticus cell wall substrate was
diluted to 0.01 g 1™ and this stock was treated as 2x for kinetic assays.
Kinetic assays were performed ina Tecan Spark 10M plate reader using
monochrometers with a fixed 20-nm bandpass filter in a 384-well
black-bottom plate (Corning) at 10 ul final volume. The dead time
from reaction initiation to acquisition of first read was measured at
24 sand the O s fluorescence intensity was measured through dilution
of substrate with buffer. Reactions were initiated by pipetting 5 pl 2x
enzyme into 5 pl 2x substrate in a prewarmed 384-well black assay
plate (Corning). Five technical replicates were performed across four
enzyme concentrations. The resultant data were not described by a
single exponential model but were described by a double exponen-
tial model (Eq. 6), likely owing to the heterogeneity of the substrate,
and all data were fit in IgorPro 7. The reciprocal of the weighted sum
of each tau component was taken to estimate a single k,,, value for
subsequent analysis (Eq. 7). To estimate k,/Ky, ks Values were plot-
ted against enzyme concentration where the slope of a linear fitting
isequal to K ,./Ky.
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For lowID lysozyme variants the above protocol was altered slightly
to accommodate lower catalytic activity of these variants: reaction
volumeswereincreased to 20 plwhere 2 il 0.05 mg mI™(0.005 mg ml™
final) of fluorescein-labeled M. lysodeikticus cell wall substrate was
diluted with 18 pl lysozyme variant to initiate reactions, plate was
covered with an optically transparent seal (Microseal ‘B’ seal; BioRad)
to mitigate sample evaporation, fluorescence reads were taken every
5min for 16 h with 5s of linear plate shaking before each measure-
ment to minimize photobleaching of substrate and ensure substrate
maintained homogeneous dispersion duringlonger reactions. At least
four enzyme concentrations were tested. Initial rates from these data
(first2 h of reaction) were also collected to determine enzyme relative
activity according to Eq. 3 (Supplementary Fig. 10).

Crystallization and structure determination of LO56

Purified LO56 was concentrated t018.6 mg ml™in30 mM HEPES pH 7.6,
150 mMNacCl, 0.5 mM TCEP. Crystals were identified from sitting drop
vapor diffusion experiments set at 20 °C with a 1:1ratio of 200 nl pro-
tein and 200 nl well solution (0.1 M CHES 9.5 pH, 30 %w/v PEG 3000).
Diffraction datawere collected from asingle crystal at Beamline 8.3.1.
atthe Advanced Light Source. Data were processed using XDS”’and a
molecular replacement solution was identified using phaser®® with a
trRosetta model of LO56 as a search model. Significant translational
non-crystallographic symmetry and differences with the searchmodel
resulted in maps that were initially hard tointerpret. The initial model
was improved using Refmac jelly body refinement® using rebuilding
using phenix.autobuild® and the CCP4 buccaneer_pipeline®>. The
model was finalized and iteratively improved with multiple rounds of
manual modification in Coot* and refinement using phenix.refine®.
The modelis deposited as PDB accession 7RGR.

Low max ID lysozyme sequence selection, expression and
assay

To evaluate whether ProGen can generate low max ID sequences, we
generated an additional batch of sequences selected to have maximum
sequence identities under 40% with respect to any natural protein.
Since we could only test a limited number of proteins in vitro for this
experiment, we modified our earlier generation procedure to bias the
distribution of generations towards lysozyme families with higher
measured functionality in previous experiments. We fine tuned an
ensemble of four ProGen models only to lysozymes in PFO0959 and
PF05838 families. During generation, we used control tags for the two
families, as well as control tags to indicate proteins with at least a30%
sequence similarity to L056 and LO70, two proteins that we were able
to successfully measure catalytic efficiency for in the previous batch.
We then used a geometric ensemble of these four models to generate
1million samples across these control tag settings with varying top-p
values. We only kept generations with maximum sequence identities
between 20-40%, and ranked these generations using discriminator
scores using the same methodology as before, except with alarger 5B
parameter discriminator that was pretrained as the T5* model, instead
of TAPE-BERT. Our final batchincluded 12 sequences with the PFO0959
control tag, 13 with the PFO5838 control tag, 20 with the ‘L0O56 similar’
control tag, 20 with the ‘L070 similar’ control tag, 13 across control
tags with under 30% maximum sequence identity and 20 sequences

from the 1 million generated for the original batch (with 10 at least
30% similar to LO56 or L070, and 10 not similar), ranked by both the
TAPE-BERT and T5 discriminators.

High-throughput expression testing of low max ID lysozyme
variants

Variant sequences were appended with an N-terminal His,and HRV3C
tagged on their N-termini, codon optimized (VectorBuilder), cloned
into a pET vector (VectorBuilder), transformed into BL21(DE3) and
shipped from VectorBuilder as a glycerol stock in 96-well block. Vari-
ants were inoculated into 1 ml ZYM-5052 autoinduction medium®
supplemented with 100 pg mi™ carbenicillin in a 96-well deep block,
covered with agas-permeable seal and allowed to grow and expressed
by shaking at 37 °C overnight (16 h). High-density expressed cultures
were lysed by addition of detergent (Promega Fast Break Cell Lysis
Reagent) supplemented with lysis buffer 30 mMHEPES pH 7.6,150 mM
NaCl, 0.5 mM TCEP, cOmplete mini EDTA free protease inhibitor cock-
tail (Roche), benzonase nuclease) with incubation under gentle shak-
ing for at least 15 min at room temperature before whole expression
SDS-PAGE gel samples were taken. Individual wells from 96-well block
were transferred to microcentrifuge tubes, centrifuged at 21,000g for
5Sminatroomtemperature, and the soluble fraction was transferred to
anew 96-well block for soluble protein SDS-PAGE sample collection.

Expression and purification of lowID lysozyme variants

Variants A5, B6,C9, D4, D10 and E11 were chosen for follow up biochemi-
cal characterization on the basis of their high expression and solubility
(Supplementary Fig. 10). Variants were inoculated into 50-200 ml
ZYM-5052 autoinduction medium® supplemented with 100 pg ml™
carbenicillin and allowed to grow and express constructs overnight
(16 h) at 37 °C. High-density cell culture was pelleted by centrifugation
at4,000g for 20 min at 4 °C and resuspended to halfthe total culture
volume in 30 mM HEPES pH 7.6, 150 mM Nacl, 0.5 mM TCEP, cOm-
plete mini EDTA free protease inhibitor cocktail (Roche), benzonase
nuclease. Resuspended cells were being lysed by addition of detergent
(Promega Fast Break Cell Lysis Reagent) by rotating end-over-end at
4 °Cforatleast15 min. Lysate was clarified by centrifugation at4,000g
for 20 min at 4 °C. Clarified lysate was batch bound to 0.5-1ml dry
volume of HisPur NiNTA resin (Thermo Fisher) for 45 min at 4 °C by
rotating end-over-end. NiNTA bound variants were purified by either
gravity or vacuum flow by washing resin with 75-125 ml 30 mM HEPES
pH 7.6,150 mM NacCl, 0.1 mM TCEP, 25 mM imidazole before eluting
with 4 ml 30 mM HEPES pH 7.6, 150 mM NacCl, 0.5 mM TCEP, 250 mM
imidazole. His, tags were removed through addition of HRV3C protease
and cleavage was allow to proceed either at room temperature for2 h
followed by buffer exchange using EconoPac10 DG desalting columns
(BioRad) equilibrated with30 mMHEPES pH 7.6,150 mM Nacl, 0.5 mM
TCEP or dialyzed overnight at4 °C against 30 mM HEPES pH 7.6,150 mM
NaCl, 0.5 mM TCEP. If total protein concentration was low, protein
was concentrated in 3 kDa molecular weight cutoff Amico centrifugal
filters. In-gel Coomassie quantification against HEWL standard curve
was performed for all preparations and used for variant enzymology.

Structure prediction methods

Topredictstructure for the functional artificial sequences, we used Alpha-
Fold2" insingle-sequence mode (without multiple sequence alignment
(MSA) information), with PDB templates, and 12 recycles. We performed
structure prediction withoutan MSA asinputsoasto not heavily bias the
structure prediction toward a known natural mode. The highest ranked
predicted structure among five models was used. We attempted structure
predictionwithout templates under varyingsettings (1-48recycles) using
three different implementations (AlphaFold2 run locally, ColabFold®®
runon Google Colab and ColabFold runlocally), however all predictions
for our functional artificial sequences yielded unreliable results with
predicted local distance difference test (pLDDT) scores below 60.
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Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All sequence databases used in this study are publicly available and
include UniprotKB, UniParc, NCBI Taxonomy, Pfam, Uniref30, NCBI nr
database and Interpro. Please refer to Supplementary Table 1for more
details. Sequences and activity data for natural and artificial lysozymes
tested are in the Supplementary Material. Evaluation data for the CM
experiments can be found in Russ et al.®. Evaluation data for the MDH
experiments can be found in Repecka et al.”>. The crystal structure
datasets generated during the current study are available under PDB
accession 7RGR. Source data are provided with this paper.

Code availability

Our code and checkpoints are publicly available on Zenodo and can
be reproduced using the details provided in the Methods section on
data preparation, model architecture and training protocol. Major
components of our model architecture and training protocol can be
reproduced using CTRL (https://github.com/salesforce/ctrl). The most
updated and supported codebase canbe found at https://github.com/
salesforce/progen.
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XXX [0 0 XX [OOOS

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  mmseqs2 was used for clustering and searching. pytorch 1.6 and tensorflow 1.14 was used to format data for model training. The progen
code used in this study can be found at https://zenodo.org/record/7296780 and the newest version can be found in https://github.com/
salesforce/progen

Data analysis alphafold2 and trrosetta2 for predicting structures, pymol 2.4.0 was used for structure visualization and alignment, scikit-learn 0.24.1 and
matplotlib 3.3.1 were used for figure creation, tools for structure determination were XDS79, phaser80, Refmac jelly body refinement81,
phenix.autobuild82, CCP4 buccaneer_pipeline83, Coot84, phenix.refine85

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All sequence databases used in this study are publicly available and include UniprotKB (https://www.uniprot.org/uniprot/), UniParc (https://www.uniprot.org/
uniparc/), NCBI Taxonomy (https://www.ncbi.nlm.nih.gov/taxonomy), Pfam (https://pfam.xfam.org/), Uniref30 (https://www.uniprot.org/uniref/), NCBI nr database
(https://www.ncbi.nIm.nih.gov/refseq/about/nonredundantproteins/), and Interpro (https://www.ebi.ac.uk/interpro/). Sequences and activity data for natural and
artificial lysozymes tested are in the Supplementary Material. Evaluation data for the chorismate mutase experiments can be found in Russ et al (https://
www.science.org/doi/10.1126/science.aba3304). Evaluation data for the malate dehydrogenase experiments can be found in Repecka et al (https://
www.nature.com/articles/s42256-021-00310-5). The crystal structure datasets generated during the current study are available in the Protein Data Bank repository,
under accession 7RGR (https://www.rcsb.org/structure/7RGR).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in
study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the
source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for
sharing of individual-level data; provide overall numbers in this Reporting Summary. Please state if this information has not
been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based
analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were not chosen based on a predetermined statistical method. It was chosen based on 96 well plates with 6 wells dedicated for
controls. Five samples were chosen for cell-based expression. Should be sufficient to support a claim that our method has the capability to
engineer highly-active enzymes that are far in sequence space.

Data exclusions  No data was excluded.

Replication All samples were replicated three times within a trial. Eight samples were replicated as an independent trial for high-throughput activity data
by re-performing DNA synthesis, in vitro expression, and activity measurement. The samples characterized in cell-based assay were also
present in the cell-free setting. All attempts at replication were successful.

Randomization  Natural samples were selected at random but was ensured to note have 80% sequence identity with any other natural sequence. Artificial
sequences were selected in defined sequence identity bins and prioritized by generative model likelihood and adversarial discriminator

scores. No two sequences across artificial sequences shared greater than 80% identity overlap.

Blinding Experimentalists performing synthesis and characterization were blinded until completion of measurement.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study

|:| Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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