
Where is genomic medicine in 2024?

Genetic factors play a role, to a greater or lesser extent, in all human diseases

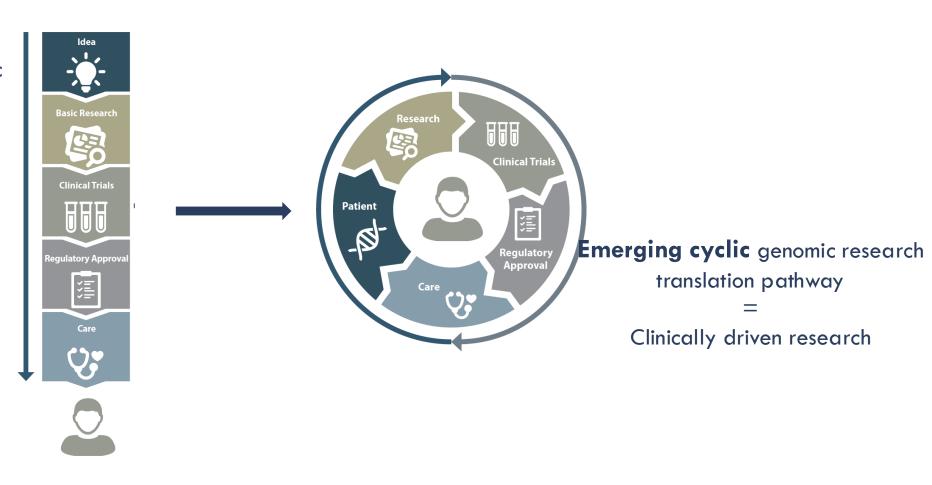
Genomic research and medicine are central for biomedical research and healthcare

Benefits provided by genomic medicine

Plan France Médecine Génomique 2025

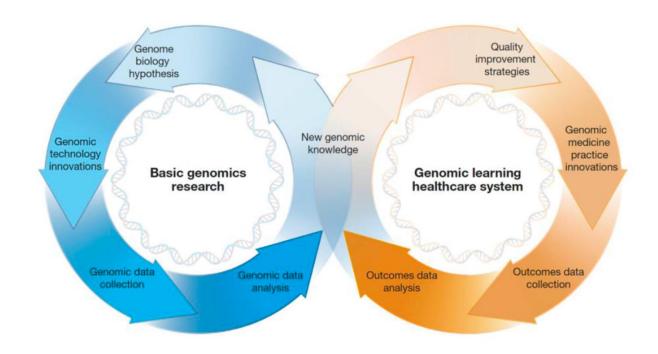
Launched by the French government in 2016

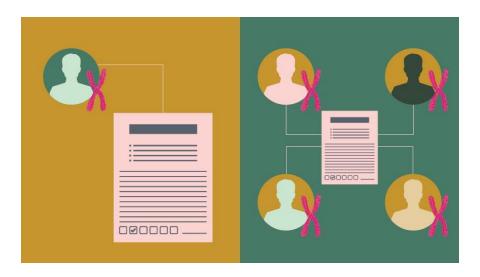
"Genomic medicine is no longer a promise - it is already a reality that will transform how we prevent, diagnose, treat and predict the prognosis of disease.


• • •

It is a public health issue. Genomic medicine is revolutionizing the care pathway and therefore how the public health system is organized."

Genomics is changing the research transition pathway


Traditional linear genetic research translation pathway


Genomic learning healthcare systems

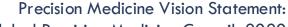
Positive cycles driven by new knowledge and technological innovation in human genomics research and clinical care

Clinical versus Research Genetic Testing

Clinical genetic testing

- Medical need, recommended by MD
- Informed consent for testing
- Clinical accreditation of the testing protocol
- Targets gene(s) relevant to a particular disease
- Evidence-based interpretation
- Results shared with the patient
- Information for individual diagnosis, treatment
- Individual benefits

Research genetic testing


- Voluntary decision by participant
- Informed consent for research, sharing
- Approval of the research protocol by IRB
- Broad analysis, screening of genetic variation
- Exploratory interpretation, novelty
- Results shared with the community
- New scientific knowledge
- Collective benefits

Will societies be able to afford genomic medicine as a routine service?

Governance gaps related to equitable and widespread implementation of genomic medicine tools and services, by the WEF

- International data sharing and interoperability
- Ethical use of technologies
- Patient and public engagement and trust
- Access and delivery of the services, their pricing and reimbursement
- Responsive regulatory systems

A Product of the World Economic Forum Global Precision Medicine Council, 2020

What is needed for responsible implementation?

- Public and professional trust
- Modernizing and education
- Focus on inclusion and facilitating access
- IT-infrastructure and technology
- Legal and ethical framework

Prerequisites for human health-related genomics

Understanding of **genomic**architecture in the population

Infrastructure and policies for data exchange and analysis, optimized for large-scale genomic data

Readiness to participate in international collaborations and data exchange ecosystems

National genomic medicine initiatives (non-exhaustive list)

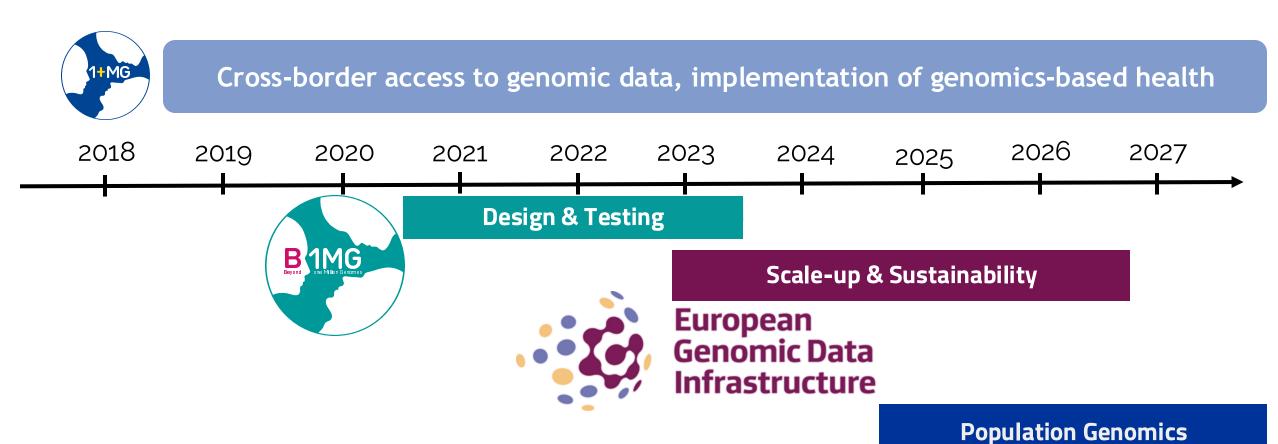
Implementation of genomic medicine

Where does Europe stand?

THE FUTURE OF EUROPEAN COMPETITIVENESS - PART | SECTION 1 | CHAPTER 9

1. Maximise the impact of the European Health Data Space (EHDS)

Further scale up genome sequencing capacities in the EU and present a strategic blueprint beyond 2026. Building on the European 1+ Million Genomes (1+MG) initiative and complementing Beyond 1 Million Genomes (B1MG), there is a continued need to strengthen the infrastructure for whole-genome sequencing, including to enhance data sharing across borders under the EHDS. This action, to be set up under a private-public partnership, should build on the European Genomic Data Infrastructure, delivered by a project that will conclude by 2026.


"The Future of European Competitivness"

Report by Mario Draghi

September 2024

The European Union 1+MG Roadmap

Funded by the European Union's Digital Europe Program Grant agreement #101168231 Part of 1+MG Initiative

1+MG Framework

Core 1+MG Framework

Technical framework

Data quality & inclusion

Sequence data generation and quality requirements for WGS/WES data to be labelled as 1+MG compliant

Data models, standards & ontologies

1+MG minimal data models for different use cases and recommendations on ontologies and data standards

Technical infrastructure

Stack of standards, open source references implementations, synthetic data and proof of concepts that can be used to establish a 1+MG node

Implementation

Governance and ELSI

Guidance and recommendations on how to address governance and ELSI aspect to ensure data can be made available

Genomics into healthcare

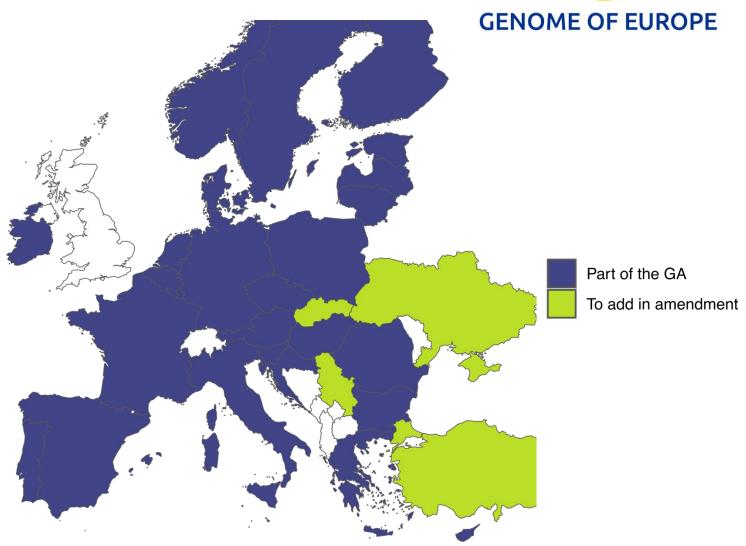
Assessment Maturity Level Model to guide healthcare systems on their journey to implement genomic medicine

National implementation

Find pointers to country specific information resources and national research data management practices

Implementation of genomic medicine

Where does Europe stand?



Current grant agreement:

• 27 EU and EEA countries

Additional consortium members

 Amendment in preparation: Turkey, Slovakia, Serbia, Ukraine

Where does Europe stand?

Swiss Federated Genomics Network

National genomic strategy to facilitate genomic research and accelerate the integration of genomics into healthcare practice

- To develop a streamlined infrastructure supporting collaborative genomic research
- To provide researchers and clinicians with secure and efficient access to genomic information
- To collect data and knowledge about the genetic structure of the Swiss population
- To serve as stepping stone for international collaborations

Swiss Federated Genomics Network

Genome of Switzerland

Swiss fEGA repository

Aim to align with the parallel ongoing genomics initiatives at European level

General ethical principles in biomedical research

Respect for persons

- Respect for individual's autonomy and self-determination
- Persons with diminished autonomy are entitled to protection, should be afforded security against harm or abuse

Beneficience

- Do not harm (nonmaleficience)
- Ethical obligation to maximize possible benefits and to minimize possible harms

Justice

- Treat each person in accordance with what is morally right and proper
- Equitable distribution of both the burdens and the benefits (fairness in distribution)

What are the emerging problems in "Genethics"?

Genetic paternalism

Balance between professional opinion and individual autonomy

Control over personal data

Data ownership, sharing and re-use for common good

Re-identification of individuals

Finding family members, matching tissue donors

Right to know and to not know

In the context of abundant, heterogeneous genomic risk information

The shared nature of genomic information

Implications of disclosure, avoiding harm to relatives

Incidental findings

Clinically relevant information, nonpaternity, unexpected ancestry

Secondary findings

Opprotunistic screening of clinically relevant genomic variants

Equal access to benefits

Costly, but life-saving experimental therapies

Who need special care in the context of population-scale genomics?

Minors

Subordination of children's autonomy to that of their parents

Individuals with limited capacity

Lack of inclusion and equal access to benefits

Diverse ethnicities

Genomic knowledge is largely biased towards Europeans

Minority populations

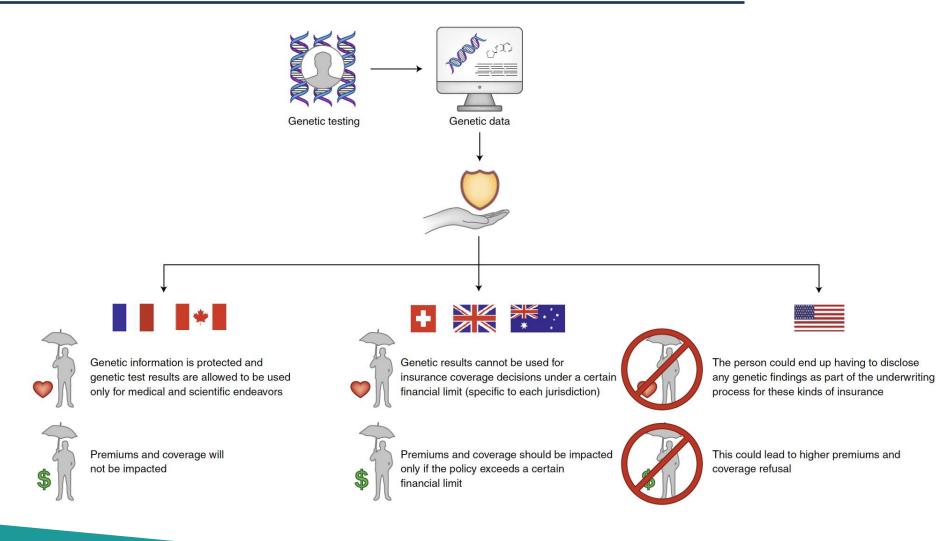
The effects of being underrepresented, equal acces to benefits

Close relatives, twins, siblings

Restricted freedom to choose and decided to know or not to know

People with disabilities

Elimination or marginalization of disabilities (severe disease)


Neuropsychiatric diseases

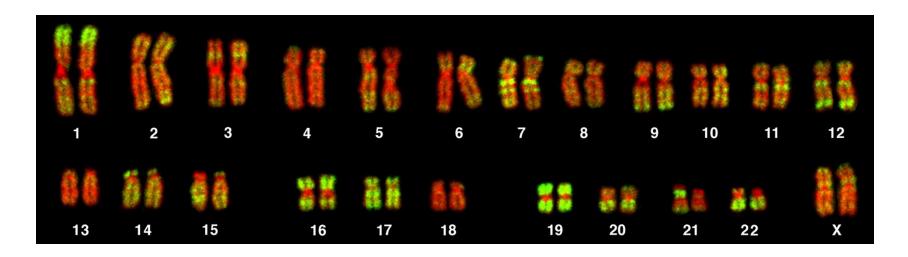
Genetic determinants of vulnerability, risk for stigmatism

Examples of vulnerability in clinical care

Source	Cited examples of vulnerability in health care	
Agency for Healthcare Research and Quality	 Populations less able than others to safeguard their own needs and interests adequately. Populations who may incur different health outcomes traceable to unwarranted disparities in their care or stemming from special needs for care of barriers to care. 	
Aday	 Social status Age: infants, children, adolescents, elderly Gender: females Race and ethnicity: African Americans, Hispanics, native Americans, Asian Americans Social capital Family structure: living alone, female head Marital status: single, separated, divorced, widowed Voluntary organizations: non-member Social networks: weak Human capital School: less than high school Jobs: unemployed, blue collar Income: poor, low income Housing: substandard 	
Danis and Patrick	 Those at risk at any particular point in time for unequal opportunity to achieve maximum possible health and quality of life because of differences in intrinsic and extrinsic resources that are associated with good health. Financial circumstances Place of residence Cultural background and ethnicity Age Health conditions (such as terminal illness or mental illness, impairments, including psychological and cognitive ones, and functional status or disability, such as inability to communicate effectively) 	

Potential impact of genetic analysis for insurance

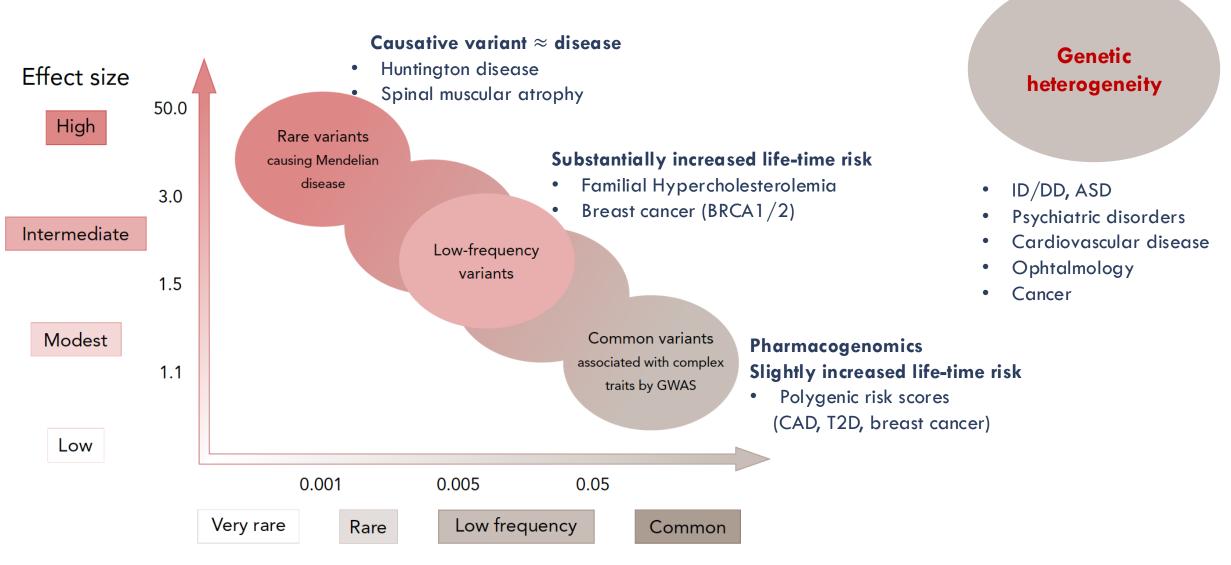
The key differences between genomic and genetic analyses


Genomics	Genetics
The study of an organism's complete set of genetic information	The study of heredity
Analysis includes both genes (coding) and non-coding DNA	Analysis of the function and composition of single genes
Genome: The complete genetic information of	Gene: Specific sequence of DNA that encodes for a functional
an organism	molecule

Source: adapted from the NHS Genomics Education Programme https://genomicseducation.hee.nhs.uk

Genetic variation - Random changes in our genome

The total length of diploid human genome is 6.5 billion nucleotides



Every human genome contains approximately **4-5 million variants**, including single-nucleotide (sequence) variants and DNA copy-number variants (duplicated or deleted chromosome fragments)

An average newborn has acquired 50 de novo mutations ("random errors of nature")

About 100 genuine LoF variants, with ca 20 genes completely inactivated in every human genome

Genetic variants by their frequency and effect size

