Questions lecture 1: Introduction to Genomics

- 1) a. What was David Botstein's contribution to the Human Genome project, b. explain the underlying principles, and why was it crucial for the project to succeed?
- 2) Define 1 cM. What's the physical equivalent in humans? Is it the same in Drosophila for example?
- 3) a. What was the major difference in sequencing approach between the "public" and "private" Initiatives? Explain the underlying principles and why there was common belief that the private effort would fail.
- b. Sanger sequencing revolutionized genome biology. Explain briefly how it works and which "upgrades" it required by Smith and Hunkapillar to make it useful for sequencing the human genome.
- 4) When Bill Clinton announced in June 2000 the availability of the human genome sequence, was his statement correct? Please clarify.
- 5) A. Explain the principle of Illumina sequencing. B. Name other sequencing approaches and describe the principle underlying each in 2-3 sentences.
- 6) A. How does genome size relate to complexity? B. And what about the gene number? No correlation between complexity and number of genes.
- 7) What's the difference between homologs, orthologs, and paralogs?
- 8) What is meant when it is stated that the human FOXP2 has undergone accelerated evolution?
- 9) What are syntenic genomic regions?
- 10) Can humans and chimps interbreed?
- 11) Provide a rough proportional breakdown of the human genome in constrained, repetitive, and coding sequence.
- 12) What is the difference between LINEs, SINEs, and DNA transposons, and which constitute the largest genome portion? And what's the difference between an autonomous and non- autonomous repetitive element?
- 13) Which kind of repetitive elements enlarges the genome? Explain the mechanism.
- 14) A. What's the difference between a micro- and mini-satellite? B. Describe how they may originate.
- 15) Explain the mechanism of DNA fingerprinting and a concrete application.