BIO-373 Genetics & Genomics

Extranuclear inheritance

Jacques Fellay

School of Life Sciences, EPFL Precision medicine unit, CHUV

jacques.fellay@epfl.ch

Extranuclear inheritance

- Transmission of genetic information to offspring through cytoplasm, not nucleus
- Varieties in extranuclear inheritance
 - Organelle heredity
 - Mitochondria or chloroplasts
 - Infectious heredity
 - Symbiotic or parasitic association with microorganism
 - Inherited phenotype due to microbe in host's cytoplasm
 - Maternal effect
 - Influence of nuclear gene products present in oocyte

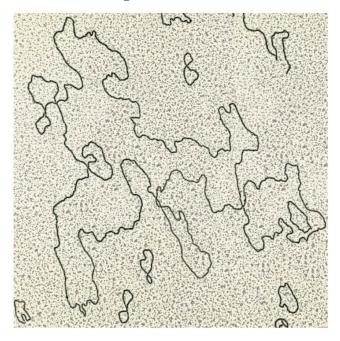
Plan

- 1. Organelle heredity
- 2. Human mtDNA and mitochondrial diseases
- 3. Maternal effect and infectious heredity

1. Organelle heredity

Endosymbiotic theory

 Mitochondria and chloroplasts (organelles) arose independently 2 billion years ago from free-living bacteria


Main points of endosymbiotic theory

- Bacteria were engulfed by larger eukaryotic cells
- Beneficial symbiotic relationship developed
- Bacteria lost ability to function autonomously
- Eukaryotic cells gained oxidative respiration / photosynthesis

DNA in chloroplasts and mitochondria

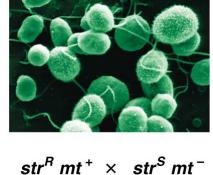
 DNA in mitochondria and chloroplasts (doublestranded circular DNA) is unlike DNA seen in the nucleus of eukaryotic cells

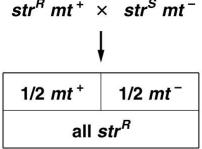
cpDNA

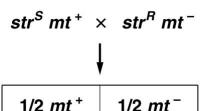
mtDNA

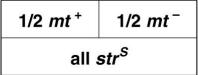
TABLE 9.1 The Size of mtDNA in Different Organisms

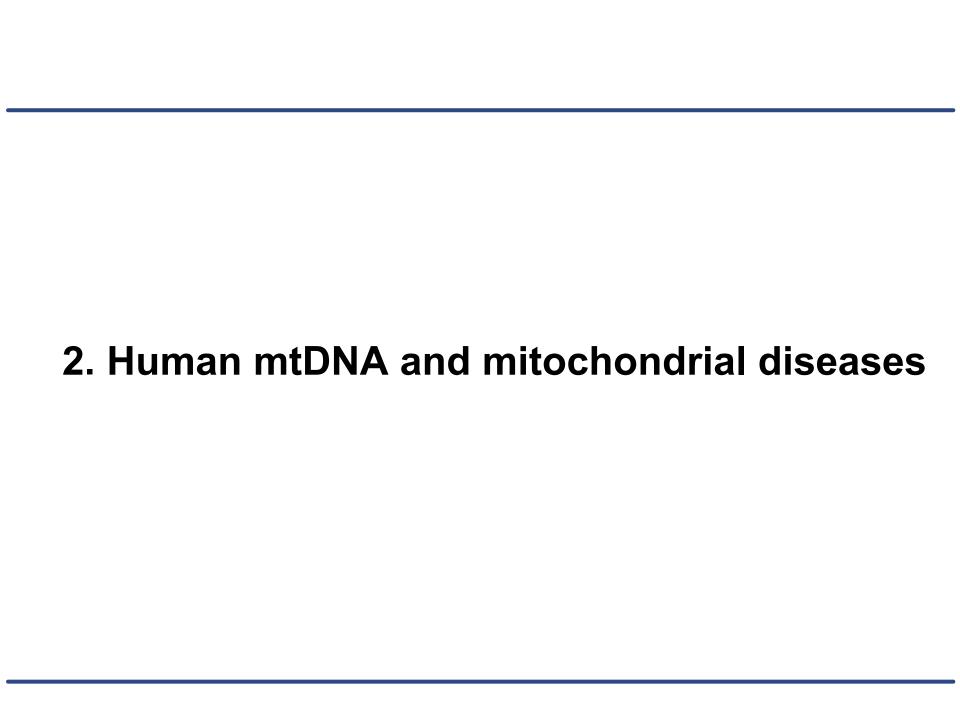
Organism	Size (kb)
Homo sapiens (human)	16.6
Mus musculus (mouse)	16.2
Xenopus laevis (frog)	18.4
Drosophila melanogaster (fruit fly)	18.4
Saccharomyces cerevisiae (yeast)	75.0
Pisum sativum (pea)	110.0
Arabidopsis thaliana (mustard plant)	367.0


mtDNA mutations


- mtDNA is highly susceptible to mutations
 - No structural protection from histones
 - mtDNA repair mechanism limited
 - High concentrations of reactive oxygen species (ROS) generated by cell respiration
 - ROS is toxic—damages organelle contents (proteins, lipids, mtDNA)


Chloroplast DNA variation

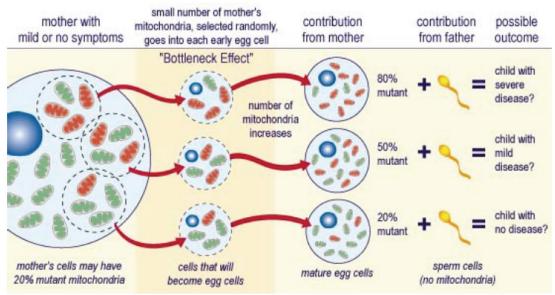

Chlamydomonas (unicellular alga)


- Excellent model system for studying organelle heredity
- Has a single large chloroplast with 75 copies of circular double-stranded DNA
- Streptomycin resistance has been shown to be encoded in cytosolic DNA (i.e. in chloroplast genome)
- Studies by Ruth Sager (1954): differences in reciprocal crosses with susceptible strains
 trait passed through female parent

mtDNA in humans

Human mtDNA

- Double-stranded DNA, 16,569 base pairs
- 5-10 copies per mitochondrion
- Coding for 2 rRNA, 22 tRNA and 13 proteins required for aerobic cellular respiration

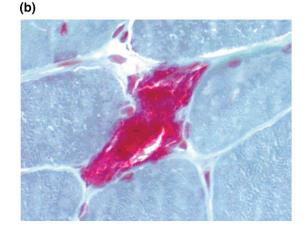

	Total	Mito	Nucléaire
Complexe I	43	7	36
Complexe II	4		4
Complexe III	11	1	10
Complexe IV	13	3	10
Complexe V	16	2	14
	87	13	74

mtDNA human disorders

- Criteria for human disorder to be attributed to mtDNA
 - Maternal inheritance pattern
 - Disorder reflects a deficiency in the bioenergetic function of organelle
 - Mutation in one or more mitochondrial gene

Heteroplasmy


- If mutation are present in a subset of mitochondria present in the zygote, they will be found at various levels in adult cells
- This "mixture" of normal and abnormal organelles is called heteroplasmy
- Very variable clinical presentation, hard to do genetic counseling



Example of human disease: MERRF

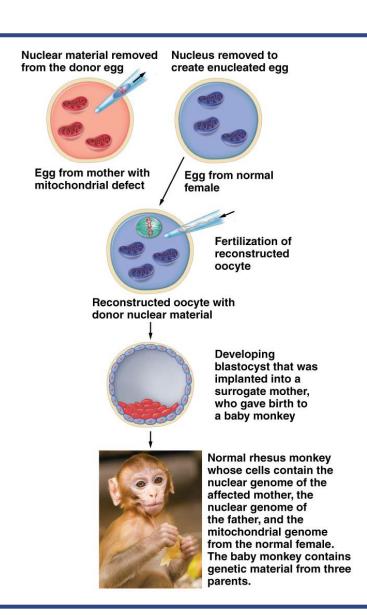
Myoclonic epilepsy and ragged- red fiber disease

- Pattern of inheritance consistent with maternal transmission
- Ataxia (lack of muscular coordination), deafness, dementia, epilepsia
- "Ragged-red" skeletal muscle fibers: red color results from proliferation of abnormal mitochondria
- Due to a mutation in the MT-TK mitochondrial gene, which encodes a transfer RNA for Lysine - tRNA^{LYS}

Example of human disease: LHON

Leber's hereditary optic neuropathy

- Pattern of inheritance consistent with maternal transmission
- Bilateral blindness with rapid progression, age 20-30
- Various mutations affecting oxidative phosphorylation
- Most often sporadic (no familial history)



Mitochondria, health and aging

- Mitochondrial dysfunction implicated in most human diseases
 - Anemia
 - Type II diabetes
 - Infertility
 - Neurodegenerative diseases
- Likely due to the progressive accumulation of somatic mutations, leading to a loss of mitochondrial function

Prevention of mtDNA disorders?

- 1 in 5000 humans have mtDNA-based disease or are at risk for developing one
 - Can be detected by genetic testing
 - New therapies can prevent transmission of mtDNA mutations to offspring
 - Mitochondrial swapping in oocytes

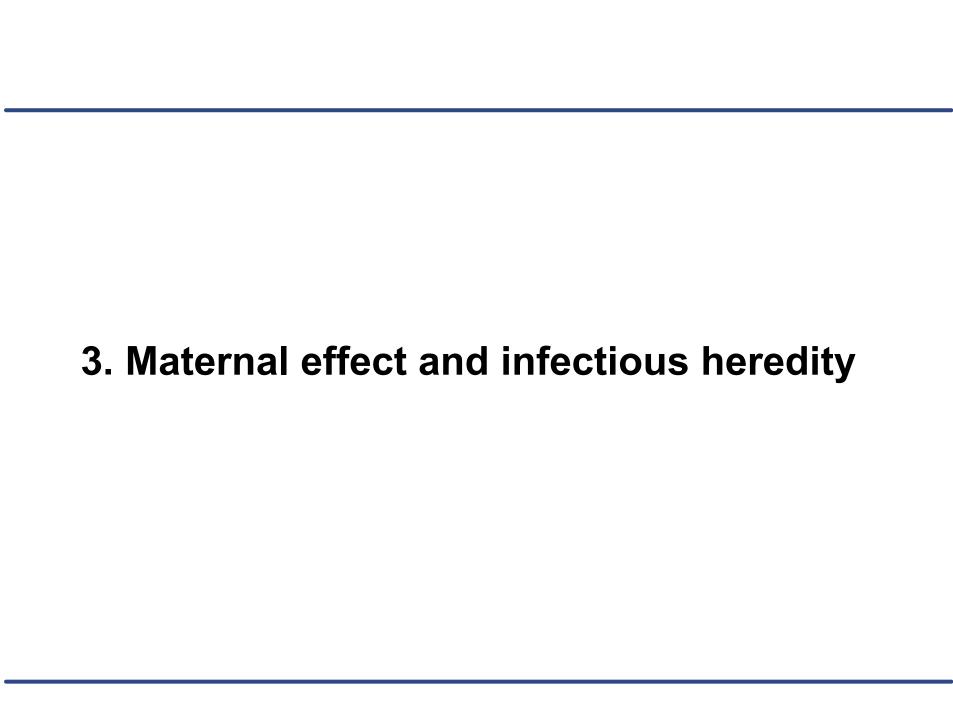

日本語要約

Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations

Eunju Kang, Jun Wu, Nuria Marti Gutierrez, Amy Koski, Rebecca Tippner-Hedges, Karen Agaronyan, Aida Platero-Luengo, Paloma Martinez-Redondo, Hong Ma, Yeonmi Lee, Tomonari Hayama, Crystal Van Dyken, Xinjian Wang, Shiyu Luo, Riffat Ahmed, Ying Li, Dongmei Ji, Refik Kayali, Cengiz Cinnioglu, Susan Olson, Jeffrey Jensen, David Battaglia, David Lee, Diana Wu, Taosheng Huang \blacksquare et al.

Affiliations | Contributions | Corresponding authors

Nature **540**, 270–275 (08 December 2016) | doi:10.1038/nature20592 Received 14 March 2016 | Accepted 02 November 2016 | Published online 30 November 2016


NATURE | NEWS

'Three-parent baby' claim raises hopes — and ethical concerns

Questions surround report of baby created using controversial mitochondrial-replacement technique.

Maternal effect

- Offspring's phenotype is under control of nuclear gene products present in egg
- Nuclear genes of female gamete transcribed; genetic products accumulate in egg's cytoplasm
- Products distributed among newly formed cells, influencing patterns/traits established early in development

Maternal effect in snail

Lymnaea peregra

- Maternal effect on shell coiling
- Example of maternal effect on permanent rather than transitory phenotype
- Coiling pattern of progeny snails determined by genotype of parent producing egg, regardless of phenotype of parent

Infectious heredity

- Results from the presence in eukaryotic cytoplasm of a micro-organism or a particle
- Most often symbiotic
- Example: CO₂ sensitivity in *Drosophila*,
 dependent on the presence of a *sigma* virus